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Abstract

Correspondence analysis (CA) is a multivari-
ate statistical tool used to visualize and in-
terpret data dependencies. CA has found
applications in fields ranging from epidemi-
ology to social sciences. However, current
methods used to perform CA do not scale
to large, high-dimensional datasets. By re-
interpreting the objective in CA using an
information-theoretic tool called the prin-
cipal inertia components, we demonstrate
that performing CA is equivalent to solving
a functional optimization problem over the
space of finite variance functions of two ran-
dom variable. We show that this optimiza-
tion problem, in turn, can be efficiently ap-
proximated by neural networks. The result-
ing formulation, called the correspondence
analysis neural network (CA-NN), enables
CA to be performed at an unprecedented
scale. We validate the CA-NN on synthetic
data, and demonstrate how it can be used
to perform CA on a variety of datasets, in-
cluding food recipes, wine compositions, and
images. Our results outperform traditional
methods used in CA, indicating that CA-NN
can serve as a new, scalable tool for inter-
pretability and visualization of complex de-
pendencies between random variables.

1 Introduction

Correspondence Analysis (CA) is an exploratory mul-
tivariate statistical technique that converts data into
a graphical display with orthogonal factors. CA’s his-
tory in the applied statistics literature dates back sev-
eral decades (Benzécri, 1973; Greenacre, 1984; Lebart,
2013; Greenacre, 2017). In a similar vein to Princi-
pal Component Analysis (PCA) and its kernel vari-
ants (Hoffmann, 2007), CA is a technique that maps
the data onto a low-dimensional representation. By
construction, this new representation captures possi-
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bly non-linear relationships between the underlying
variables, and can be used to interpret the depen-
dence between two random variables X and Y from
observed samples. CA has the ability to produce in-
terpretable, low-dimensional visualizations (often two-
dimensional) that capture complex relationships in
data with entangled and intricate dependencies. This
has led to its successful deployment in fields ranging
from genealogy and epidemiology to social and envi-
ronmental sciences (Tekaia, 2016; Sourial et al., 2010;
Carrington et al., 2005; ter Braak and Schaffers, 2004;
Ormoli et al., 2015; Ferrari et al., 2016).

Despite being a versatile statistical technique, CA has
been underused on the large datasets currently found
in the machine learning landscape. This can poten-
tially be explained by the fact that, traditionally, CA
utilizes as its main ingredient a singular value decom-
position (SVD) of the normalized contingency table
of X and Y (i.e., an empirical approximation of the
joint distribution Px y ). This contingency table-based
approach for performing CA has three fundamental
limitations. First, it is restricted to data drawn from
discrete distributions with finite support, since con-
tingency tables for continuous variables will be highly
dependent on a chosen quantization which, in turn,
may jeopardize information in the data. Second, even
when the underlying distribution of the data is dis-
crete, reliably estimating the contingency table (i.e.,
approximating Py y) may be infeasible due to lim-
ited number of samples. This inevitably hinges CA
on the more (statistically) challenging problem of es-
timating Px y. Third, building contingency tables is
not feasible for high-dimensional data. For example,
if X € {0,1}* and all outcomes have non-zero proba-
bility, then the contingency table has 2% rows.

We address these limitations by taking a fresh theoreti-
cal look at CA and re-interpreting the low-dimensional
representations produced by this technique from a
functional analysis vantage point. We bring to bear
an information-theoretic tool called the principal in-
ertia components (PICs) of a joint distribution Py y
(Calmon et al., 2017). In essence, the PICs provide
a fine-grained decomposition of the statistical depen-
dency of X and Y, fully determining an orthornormal
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set of finite-variance functions of X that can be reliably
estimated from Y (and vice-versa) called the principal
functions (PFs). The débute of PICs under different
guises can be traced back to the works of Hirschfeld
(1935), Gebelein (1941), and Rényi (1959). The PICs
are at the heart of the Alternating Conditional Ex-
pectations (ACE) algorithm (Buja, 1990; Breiman and
Friedman, 1985) and have been studied in the infor-
mation theory and statistics literature (Witsenhausen,
1975; Makur and Zheng, 2015; Huang et al., 2017; Cal-
mon et al., 2017).

We demonstrate that the low-dimensional projections
produced by CA are exactly the principal functions
found in the theory of PICs. The principal functions,
in turn, can be determined by solving a quadratic opti-
mization problem over the space of finite variance func-
tions of X and Y. Solving this optimization for arbi-
trary variables is, at first glance, infeasible. However,
by restricting our search to functions representable
by multi-layer neural networks, we demonstrate how
the principal functions can be efficiently approximated
for both discrete and continuous (potentially high-
dimensional) random variables. In summary, by first
formulating CA in terms of a PIC-based optimization
program, and then approximating this program using
neural networks, we are able to perform CA at an un-
precedented scale.

The contributions of this paper are as follows:

1. We show how the PICs and principal functions
can be used for correspondence analysis (Sec-
tion 2).

2. We introduce the Correspondence Analysis Neu-
ral Net (CA-NN) to estimate the PICs and prin-
cipal functions, thereby making CA scalable to
discrete and continuous (high-dimensional) data
(Section 3).

3. We use synthetic data to demonstrate that the
principal functions found by CA-NN match the
functions predicted by theory (Section 4.1).

4. Moreover, we apply the CA-NN on several real-
world datasets, including images (MNIST (LeCun
et al., 1998), CIFAR-10 (Krizhevsky and Hinton,
2009)), recipes (Yummly, 2015), and UCI wine
quality (Asuncion and Newman, 2007). These ex-
amples demonstrate how the interpretable analy-
sis and visualizations found in the CA literature
can now be produced at a much larger scale (Sec-
tion 4.2). All codes and experiments are available
in (Hsu, 2019).

1.1 Related Work
Several statistical methods exist for producing corre-
lated low-dimensional representations of two variables

X and Y. For example, Canonical Correlation Anal-
ysis (CCA) (Hotelling, 1936) seeks to find linear re-
lationships between variables. Kernel Canonical Cor-
relation Analysis (KCCA) (Bach and Jordan, 2002)
extends this approach by first projecting the variables
onto a reduced kernel Hilbert space. The method clos-
est to the one described here is Deep Canonical Corre-
lation Analysis (DCCA) (Andrew et al., 2013), where
non-linear representations of multi-view data is pro-
duced using neural nets. The objective of DCCA in
(Wang et al., 2015, Eq. 1) is similar to finding the
PICs. However, the non-linear projections found by
DCCA are not exactly the principal functions, and
Wang et al. (2015) do not make a connection to CA,
PICs, nor Hilbert spaces. DCCA is also closely related
to maximal correlated PCA (Feizi and Tse, 2017).

PICs are a generalization of Rényi maximal corre-
lation; in fact, the first PIC is identical to Rényi
maximal correlation (Buja, 1990). Maximal correla-
tion can be estimated using the Bivariate ACE algo-
rithm, which determines non-linear projections f(X)
and ¢g(Y) that are maximally correlated whilst hav-
ing zero mean and unit variance (Breiman and Fried-
man, 1985). The projections are found by iteratively
computing E[g(Y)|X] and E [f(X)|Y], and converge
to the first principal functions. However, for large,
high-dimensional datasets, iteratively computing con-
ditional expectations is intractable. To overcome this
problem, neural-based approaches such as Correla-
tional Neural Nets (Chandar et al., 2016) have been
proposed. Unlike previous efforts, the approach that
we outline here allows the PICs and principal functions
to be simultaneously computed, generalizing existing
methods in the literature.

Finally, we mention Karhunen-Loeve Transform, Prin-
cipal Component Analysis (PCA), and its kernel ver-
sion (kPCA) (Hoffmann, 2007). Similar to CA, these
methods aim at representing data in terms of orthogo-
nal (uncorrelated) components. As such, they capture
the structural relationship within a high dimensional
random vector of features X. However, these meth-
ods disregard whether these representations are rel-
evant from the point of view of another variable Y.
Instead, CA finds orthogonal components of both X
and Y jointly, with the resulting components being
highly correlated. Note that this is different from per-
forming PCA or kPCA on the joint pair (X,Y), as
evidenced by the derivations in Section 2. Moreover,
unklike kPCA, CA produces non-linear, highly corre-
lated representations without requiring a kernel to be
defined a priori.

1.2 Notation

Capital letters (e.g. X) are used to denote random
variables, and calligraphic letters (e.g. X’) denote sets.
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We denote the probability measure of X x Y by Pxy,
the conditional probability measure of Y given X by
Py x, and the marginal probability measure of X and
Y by Px and Py respectively. We denote the fact that
X is distributed according to Px by X ~ Px. If X
and Y have finite support sets |X| < co and |Y| <
00, then we denote the joint probability mass function
(pmf) of X and Y as px,y, the conditional pmf of ¥’
given X as py|x, and the marginal distributions of X
and Y as px and py, respectively. A sample drawn
from a probability distribution is denoted by lower-
case letters (e.g. x and y). Matrices are denoted in
bold capital letters (e.g. X) and vectors in bold lower-
case letters (e.g. x). The (¢,7)-th entry of a matrix
X is given by [X]; ;. We denote the identity matrix of
dimension d by I, and the all-one vector of dimension
d by 14. Given v € R? we denote the matrix with
diagonal entries equal to v by diag(v).

2 Correspondence Analysis and the
Principal Inertia Components

In this section, we formally introduce CA, the PICs
and the principal functions, as well as the connection
between the PICs and CA.

2.1 Correspondence Analysis

Correspondence analysis considers two random vari-
ables X and Y with |X| < oo, |Y| < oo, and pmf
px,y (cf. Greenacre (1984) for a detailed overview).
Given samples {xy, yr }}'_; drawn independently from
Px,y, a two-way contingency table Px y is defined
as a matrix with |X| rows and |Y| columns of
normalized co-occurrence counts, ie. [Pxyli; =
(# of observations (z;,y;) = (4,7))/n. Moreover, the
marginals are defined as px £ Pxy1ly and py £
P% 1 x). Consider a matrix

Q2D (Pxy — pxpl)Dy 7%, (1)

where Dx £ diag(px) and Dy £ diag(py), and let
the SVD of Q be Q = UXVT. Let d = min{|X|, |V|}—
1, and {o;}¢_; be the singular values, then we have the
following definitions (Greenacre, 1984):

e The orthogonal factors of X are L £ D 12y,

e The orthogonal factors of Y are R £ D_l/ V.
e The factor scores are \; = O'i , 1 <i<d.
1< <d.

e The factor score ratios are = A
i=1

CA makes use of the orthogonal factors L and R to
visualize the correspondence (i.e., dependencies), be-
tween X and Y. In particular, the first and sec-
ond columns of L and R can be plotted on a two-
dimensional plane (with each row corresponding to a
point) producing the so-called factoring plane. The re-
maining planes can be produced by plotting the other

columns of L and R. The factor score ratio quantifies
the variance (“correspondence”) captured by each or-
thogonal factor, and is often shown along the axes in
factoring planes.

We provide next the definition of the PICs, which will
enable the CA decomposition in (1) to be performed
for arbitrary random variables under appropriate com-
pactness assumptions.

2.2 Functional Spaces and the Principal
Inertia Components

For a random variable X over the alphabet X, we let
L2(Px) be the Hilbert Space of all functions from
X — R with finite variance with respect to Px,
e, La(Px) 2 {f: X - R|E[|f(X)]2] < o}. For
f1,f2 € L2(Px), this Hilbert space has an associ-
ated inner product given by (f1, f2) = E[f1(X) f2(X)].
As customary, this inner product induces a distance
between two functions fi,fs € Lo(Px), namely
the Mean-Square- Error (MSE) distance given by
d(f1, f2) = E[(f1(X) ))?]. One can construct
the projection operator from L2(Px) to L2(Py) by

Iy—y[f] = aergr(n;n) Exy [(f(X) = g(Y))*|Y =y]
= E[f(X)Y =y, ()

with adjoint operator llx_.[g] = E[g(Y)|X = z] de-
fined for g € Lo(Py). The projection operator de-
scribes the closest function, in terms of mean-square-
error, to a given function f of the inputs. Since Lo(Px)
is a Hilbert space, there exists a basis (in fact infinitely
many) through which any function f € £o(Px) can be
equivalently represented. However, at a high level, it
is of interest to find a basis for Lo(Px), which diago-
nalizes the projection operator Iy .

This naturally leads to the following proposition.

Proposition 1 (Witsenhausen (1975)). Without loss
of generality, let |Y| < |X| and let d £ |Y| — 1, or
be infinity if both sets X and Y are infinite. There
exists two sets of functions of F = {fo, f1,---, fa} C
Lo(Px) and G = {g0,91,---94} € L2(Py), and a set
S={1,\,...,\q} such that:
o fo(X) and go(Y) are constant function almost
surely, BLf:(X) (X)) = 615 and Elgs(Y)g;(Y)] =
di,; (orthornormality).

o E[fi(X)[Y = y] = VAigi(y), and E[gi(Y)|X =
x] = VAifi(x) for all i = 1,...,d (diagonaliza-
tion,).

e Any function g € Lo(Py) can be represented as
a linear combination g(y) = Zg:() Bigi(y). Sim-
ilarly, any function f € Lo(Px) can be repre-
sented as a linear combination f(x) = f+(z) +
Zf:() a; fi(x), where f* is orthogonal to all f; for
alli=0,1,...,d (basis).
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The functions within the sets F and G are defined here
as the principal functions of Px y, and the elements of
S as the principal inertia components of Px y. We call
fi(x) and g;(y) the i*" PFsof X and Y, and 0 < \; < 1
the i*" PIC. Without loss of generality, we let A\; >
A2 > ... > Ag. Moreover, v/ is also known as Rényi
maximal correlation. A more thorough introduction
to PICs can be found in (Witsenhausen, 1975; Buja,
1990; Calmon et al., 2017).

2.3 The Reconstitution Formula and
Correspondence Analysis

As illustrated in (2), the principal functions precisely
characterize the MSE-performance of estimating a
function of X from an observation Y (and vice-versa).
In fact, the PICs and principal functions can be used
to reconstitute the joint distribution entirely (Buja,
1990, Sec. 3), i.e.

d
W =1+ VAfil@)gily). (3)
1=1

px (@)py (y

This decomposition has also appeared in the CA liter-
ature (Greenacre, 1984, Chap. 4). This reconstitution
formula is key for bridging the PICs and CA, and en-
ables us to generalize CA to continuous variables. We
make this connections precise in the following propo-
sition, which demonstrates that the orthogonal factors
found in CA are exactly the principal functions.
Proposition 2. If |X| and |Y| are finite, we set
[Fliy = fi(0), [Glr; = g5(k) for 1 < i < [X[, 1 <
j<dandl<k<|Y|, and let A = diag(A1, -+, Aa)-
Moreover, let L, R and X follow from Section 2.1 and
assume the diagonal entries of X are in descending
order. Then, the PFs F and G are equivalent to the
orthogonal factors L and R in the CA, and the factor-
ing scores X are the same as the PICs A.

3 The Correspondence Analysis
Neural Net (CA-NN)

In the previous section, we demonstrated that the or-
thogonal factors found via CA are equivalent to the
principal functions given by the PIC decomposition
of Pxy (Prop. 2). Thus, we can (at least in theory)
perform CA by computing principal functions directly,
without having to build a contingency table first. Prin-
cipal functions, in turn, are well-defined for both dis-
crete and continuous (or mixed) X and Y, enabling
CA to be extended to a broader range of data types.
For the rest of the paper, we use the term principal
functions and PICs to indicate the orthogonal factors
and factor scores, respectively.

Equations (2), (3), and Prop. 1 suggest that the prin-
cipal functions can be computed for arbitrary variables

by finding maximally correlated functions in £o(Px)
and Lo(Py). Finding such functions, however, require
a search over the space of all finite-variance functions
of X or Y, which is not feasible for high dimensional
data. Thus, in order to approximate the principal
functions and scale up CA, we restrict our search to
functions representable by neural nets. Note that the
output of any neuron of a feed-forward neural net that
receives X as an input can be viewed! as a point in
L2(Px) (and equivalently when receiving Y as input).

In this section, we introduce the Correspondence Anal-
ysis Neural Net (CA-NN). The CA-NN estimates the
PICs and the principal functions of Px y by minimiz-
ing an appropriately defined loss function (described
next) using gradient descent and backpropagation. We
will use the CA-NN to perform CA at scale.

3.1 Method

For two random variables (X,Y"), we denote the d prin-
cipal functions of X and Y, respectively, as

f(X)é[fl(X)’ 7%(X)]T€Rd><1v (4)
-, ga(Y)]T € R (5)

Under these assumptions, the solution of the optimiza-
tion problem

min__E[||AF(X) - B(V))3]
AcRixd f & (6)

subject to E [AF(X)(AF(X))T} =1

recovers the d largest PICs. To see why this is the
case, let

£(X) = AF(X) = [f1(X), -, £2(X)]T, (7)

and suppose that f,g and A achieve optimality in
(6). Optimality under quadratic loss implies that
() =E[fi(X)|Y =y] forie {1,...,d}. Moreover,
the orthogonality constraint assures that the entries
of f(X) satisty E[f;(X)f;(X)] = 0, and thus form
a basis for a d-dimensional subspace of Lo(Px). As
discussed in Section 2, conditional expectation on Y
is a compact operator from Lo(Px) — La(Py), and
from orthogonality of f(X), it follows directly from
the Hilbert-Schmidt Theorem (Reed and Simon, 1980)
that the optimal value of (6) is 2" A;, with f and g
corresponding to the d largest principal functions.

We can further simplify the objective function in (6)
using the following proposition.

"We assume that the outputs of a neural network have
finite variance — a reasonable assumption since several
gates used in practice have bounded value (e.g., sigmoid,
tanh) and, at the very least, the output is limited by the
number of bits used in floating point representations.
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Encoder F-Net

Encoder G-Net

Figure 1: The architecture of the CA-NN, consisting of two encoders F-Net and G-Net for X and Y respectively to

estimate the principal functions. The PIC loss is given by (8).

Proposition 3. The minimization in (6) is equivalent
to the following unconstrained optimization problem.

min —2||C;* Cyylla + E[I&(YV)I3]; (8)
8

where Cy; = E[f(X)f(X)T], Cy, = E[f(X)g(Y)T], and
|Z||q is the d-th Ky-Fan norm, defined as the sum
of the singular values of Z (Horn et al., 1990, Eq.
(7.4.8.1)). Denoting by A and B the whitening ma-
trices® for £(X) and g(Y), the principal functions are
given by £(X) = [fo(X), -, fa(X)]T = Af(X) and
g(Y) =lg0(Y),-,ga(Y)]T = Bg(Y).

The proof of this propositon is related to the or-
thogonal Procrustes problem (Gower and Dijksterhuis,
2004), which convergence properties have been studied
in (Nie et al., 2017).

3.2 Implementation

Observe that (8) is an unconstrained optimization
problem over the space of all finite variance functions
of X and Y. As discussed in the introduction of this
section, we restrict our search to functions given by
outputs of neural nets, parameterizing f(X) and g(Y)
by 0r and 6g, respectively. Here, 8 and 65 denote
weights of two neural nets, called the F-net and the
G-net (Fig. 1). The F-Net and the G-Net encode X
and Y to R, respectively. The parameters of each net-
work can be fit using gradient-based back-propagation
of the objective (8), as described next.

’ yn] ? F’n (X’n) =

Given n samples {zy,yx}7_, from Pxy, we denote
)in £ [xla"'i‘rn]a Yn £ [ylv"‘

[f(z1,0F), -, f(2,,0p)]T € R" and G,(y,) =
[E(y1,0c), - ,&(Yn,0c)] € R¥*™. The empirical eval-

*We call A and B the whitening matrices since in
Proposition 1, it is cleat that the covariance matrices of
f(X) and g(Y) should both be identity matrices.

uations of the terms in (8) are

1~ ~
Cf ~ ﬁFn(XnaaF)Fn(Xn’eF)Tv (ga)
1~ ~
Cfg ~ ﬁFn(XnaaF)Gn(ynvaG)Tv (gb)
1 n d
E[lg(Y)[3] =~ EZZ@;’(%,@GV- (9¢)
i=1 j=1

After extracting ﬁn(xn) and én(yn) from the F-Net
and G-Net, respectively, Proposition 3 suggests that
the principal functions can be recovered by producing
whitening matrices A for f and B for g. Without loss
of generality, we will assume that F,,(x,,) and G (y»)
have zero-mean columns, which can always be done by
subtracting the column-mean element-wise. Then A
is given by A = UTC;1/2, with U the left singular
vectors of the matrix

L= (G} Fu(x))(C; Y Culya)). (10)

The matrix C;l/ % guarantees that F,(x,) has or-
thonormal columns, while U rotates the set of vectors
to align with (NZ‘:n(yn) By symmetry, B = VTC;UQ,
where V are the right singular vectors of L. The pro-
duced matrices F,,(x,) = AF,(x,) and G,(y,) =

BG,, (yn) satisty

() TR (0) = 5 Ga(ya) C(ya) = Ly (1)
and LF,(x,)TGy,(yn) = A being the diagonal matrix
with the estimated PICs. It should be emphasized that
in the implementation and subsequent experiments, we
estimate the whitening matrices A and B on the train-
ing set alone prior to evaluation on the test set. For
clarity, we summarize this whitening process by Algo-
rithm 1 in the Supplementary Material.

4 Experiments

The experiments contain two parts. First, we apply
the CA-NN to synthetic data where the PICs and
principal functions can be computed analytically, and
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Figure 2: CA-NN recovers the Hermite polynomials, the
principal functions in the Gaussian example.

Table 1: CA-NN reliably approximates the top four PICs
in discrete and Gaussian cases.

Discrete PICs

CA-NN 0.8011 0.7942 0.7918 0.7883
Analytic value 0.8000 0.8000 0.8000 0.8000
Gaussian PICs
CA-NN 0.7007 0.4938 0.3376 0.2037
Analytic value 0.6977 0.4675 0.2979 0.2113

demonstrate that the proposed method recovers the
values predicted by theory. Second, we use the CA-
NN to perform CA on two real-world datasets where
contingency table-based CA fails: the Kaggle What’s
Cooking Recipes (Yummly, 2015) and UCI Wine Qual-
ity data (Asuncion and Newman, 2007). In particular,
the UCI Wine Quality dataset includes a mixture of
discrete and continuous variables, demonstrating the
versatility of the proposed methods. We select these
datasets since their features naturally lend themselves
to interpretable visualizations of the underlying de-
pendencies in the data by factoring planes. In or-
der to demonstrate that the CA-NN can be used to
perform CA at an unprecedented scale, we also apply
this method to image datasets (MNIST (LeCun et al.,
1998) and CIFAR-10 (Krizhevsky and Hinton, 2009)),
albeit these experiments do not lend themselves to the
same kind of interpretable analysis found in the food
related datasets. Detailed experimental setups (e.g.,
architecture of the CA-NN, training details, depths of
encoders, etc.) are provided in the Supplementary Ma-
terial. All the 95%-confidence intervals of the estima-
tion of the PICs in Tables 1 and 2 are less than 1% for
CA-NN.

4.1 Synthetic Data
We demonstrate next through two examples — one on
discrete data and one on continuous data — that the

CA-NN is able to reliably recover the PICs and the
principal functions predicted by theory.

4.1.1 Discrete Synthetic Data

We consider X ~ Bernoulli(p), Z ~ Bernoulli(d),
and Y = X @ Z, where @ is the exclusive-or operator
and ¢ is the crossover probability. Note that Y can
be viewed as the output of a discrete memoryless bi-

nary symmetric channel (BSC) (Cover and Thomas,
2012) with input X. For any additive noise binary
channel, the PICs can be mathematically determined
(O’Donnell, 2014; Calmon et al., 2017). We set X to
be a binary string of length 5, § = 0.1, and p = 0.1.
The results in Table 1 show that the CA-NN reliably
approximates the PICs, and we observed this consis-
tent behaviour over multipe runs of the experiment.
Details (including analytical expressions for the PICs
and principal functions) are given in the Supplemen-
tary Material.

4.1.2 Gaussian Synthetic Data
When X ~ N(0,021,), Y|X ~ N(X,021,), the set of
principal functions are the Hermite polynomials (Abbe

and Zheng, 2012). More precisely, if the i*" degree
Hermite polynomial is given by

é 7(_1)ze§ dlve_ﬁ
Vil dx?
(01)

2 1 € (0,00),
then the i*" principal functions f; and g; are H,
H_(U1+62)
(]

H" (2) (12)

and respectively, and the it PIC can then
be given by their inner product. We pick o7 = 05 =1,
and show estimation of PICs and principal functions
in Table 1 and Fig. 2. Observe that the CA-NN closely
approximates the first Hermite polynomials.

4.2 Real-World Data

We first investigate two datasets, Kaggle What’s
Cooking Recipes(Yummly, 2015) and UCI Wine Qual-
ity (Asuncion and Newman, 2007). These dataset con-
tain highly non-linear dependencies which are inter-
pretable via CA. In order to illustrate that we can
perform CA on high-dimensional, continuous data, we
conclude this section by applying the CA-NN to two
image datasets.

4.2.1 Kaggle What’s Cooking Recipe Data

The Kaggle What’s cooking dataset (Yummly, 2015)
contains 39774 recipes as X, composed of 6714 ingre-
dients (e.g. peanuts, sesame, beef, etc.), from 20 types
of cuisines as Y (e.g. Japanese, Greek, Southern US,
etc.). The recipes are given in text form, so we pre-
process the data in order to combine variations of the
same ingredient and, for the sake of example and inter-
pretable visualizations, keep only the 146 most com-
mon ingredients. In Table 2, we show that CA-NN
outperforms contingency table-based CA using SVD?,
with the resulting PICs being more correlated (i.e.,
achieving a higher value of Eq. (8)) than its contin-
gency table-based counterpart.

In Table 2, we compare the CA-NN with baseline tech-
niques such as CCA and KCCA (with radial basis func-

3We only consider combinations of ingredients observed
in the dataset as possible outcomes of X.
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Table 2: CA-NN outperforms contingency table-based CA (SVD) and CCA/ KCCA (which also produces transformation
of X and Y, cf. Section 1.1) on Kaggle What’s Cooking dataset to explore dependencies in samples.

Top ten principal inertia components

CA-NN 0.9092 0.8667 0.8412 0.7932 0.7391 0.6413 0.6018 0.4792 0.4508 0.2821
SVD 0.4504 0.3894 0.3149  0.2943 0.2413  0.1958 0.1547  0.1191 0.1146  0.1035
Correlations between transformed samples
CCA 0.1915 0.1751 0.1342  0.1083 0.1050  0.0823 0.0623  0.0488 0.0485  0.0431
KCCA 0.6585 0.1223 0.0860 0.0636 0.0320 0.0131 0.0090  0.0089 0.0051  0.0011
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Figure 3: The first factoring plane of CA on Kaggle What’s cooking dataset (Colored dots: recipe, dark blue: ingredient).

tion kernels). The resulting low-dimensional represen-
tation produced by CA-NN captures a higher correla-
tion/variance than these other embeddings. We recog-
nize that these results may vary if other kernels were
selected, but note that the CA-NN does not require
any form of kernel selection by a human prior to ap-
plication. In Fig. 3 we display a traditional CA-style
plot produced using CA-NN, showing the first factor-
ing plane of the CA (i.e., the first and second principal

functions for X and Y'). The intersection of two dashed
lines (x = 0 and y = 0) indicates the space where X
and Y have insignificant correlation.
There are three key observations which can be ex-
tracted from Fig. 3. First, we observe clear clusters
under the representation learned by CA-NN which can
be easily interpreted. The cluster on the right-hand
side represents East-Asian cuisines (e.g. Chinese, Ko-
rean), the one on the left-hand side represents West-
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Figure 4: The first factoring plane of CA on UCI wine
quality dataset.

ern cuisine (e.g. French, Italian) and in between sits
Indian cuisine. Second, we observe that the first prin-
cipal function learns to distinguish Asian cuisine (e.g.
Chinese, Korean) from Western cuisine, naturally sep-
arating these contrasting culinary cultures. Interest-
ingly, Indian cuisine sits in between Asian and West-
ern cuisine, and Filipino cuisine is represented between
Indian and Asian cuisine over this axis. The second
principal function further indicates finer differences be-
tween Western cuisines, and singles out Mexican cui-
sine. Third, by plotting the ingredients on this plane
(i.e., recipes containing only one ingredient), we can
determine signature ingredients for different kinds of
cuisines. For example, despite the fact that ginger is
in both Western and Asian dishes, it is closer in the
factor plane to Asian cuisine, revealing that it plays a
more prominent role in this cuisine. Some ingredients
share much stronger correlation with the cuisine type,
e.g. curry in Indian dishes and tortilla in Mexican
ones. See the supplementary material for additional
factorial planes.

4.2.2 UCI Wine Quality Data

The UCI wine quality dataset contains 4898 red wines
with 11 physico-chemical attributes (e.g. pH value,
acid, alcohol) and 6 levels of qualities (from 2 to 7).
We set X to be the 11 attributes and Y be the qual-
ity, and report the results of CA in Fig. 4. Note that
since the attributes are continuous, performing con-
tingency table-based CA is not well-defined for this
case. In Fig. 4, we can see that despite the existence
of 6 classes of qualities, the principal functions discover
three sub-clusters, namely poor quality (less or equal
to 4), medium quality (equal to 5), and high quality
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Figure 5: The first factoring planes of noisy MNIST (left)
and CIFAR-10 (right).

(6 and above) Moreover, Fig. 4 also shows how the
attributes affects the quality of a wine. For example,
high quality wines (quality 6 and 7) tends to have low
citric and volatile acidity, but with high sulphates. Fi-
nally, we randomly sample a low quality and a high
quality wine, and take the linear interpolation of their
features. We represent the path that this linear inter-
polation draws in the factorial plane by the orange line
in Fig. 4. This sheds light on how a “bad” wine can
be transformed into a “good” wine.

4.2.3 MNIST and CIFAR-10

In Fig. 5, we show that CA-NN enables CA on image
datasets such as noisy MNIST (Wang et al., 2015) and
CIFAR-10 (Krizhevsky and Hinton, 2009) datasets.
Noisy MNIST is a more challenging version of MNIST
(LeCun et al., 1998), containing 60000 gray-scale im-
ages for training and 10000 for test, where each im-
age is a 28 x 28 pixels handwritten digit with random
rotation and noise; CIFAR-10 contains 50000 colored
images for training and 10000 for test in 10 classes,
where each images has 32 x 32 pixels. Since the fea-
tures (pixels) of these images are not very informative,
we do not show them in Fig. 5.

5 Conclusion

We proposed a neural-based estimator for the prin-
cipal inertia components and the principal functions,
called the Correspondence Analysis Neural Network
(CA-NN). By proving that the principal functions are
equivalent to orthogonal factors in CA, we are able
to use the CA-NN to scale up CA to large, high-
dimensional datasets with continuous features. We
validated the CA-NN on synthetic data, and showed
how it enables CA to be performed on large real-world
datasets. These experiments indicate that CA-NN sig-
nificantly outperforms other approaches of CA. Future
research directions include characterizing generaliza-
tion properties of CA-NN in terms of the number of
training samples, as well as the impact of network ar-
chitecture on the resulting principal functions. We
hope that the CA-NN can allow CA to be more widely
applied to the large datasets found in the current ma-
chine learning landscape.
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