Supplementary Material for
Scalable Gaussian Process Inference with Finite-data
Mean and Variance Guarantees

Experiments

Table 1: Datasets used for experiments. All datasets from the UCI Machine Learning
Repository® except for synthetic and delays10k datasets.
K = number of datapoints used to construct v (approximately 10% of Niain)

Name ‘ ]Vtrain ‘ ]Vtest ‘ d ‘ K Name ‘ N, train ‘ ]Vtest ‘ d ‘ K
synthetic 1000 | 1000 | 1 | 100 abalone 3177 | 1000 | 8 | 300
delays10k® | 8000 | 2000 | 8 | 800 airfoil 1103 | 400 | 5 | 100
CCPP 7568 | 2000 | 4 | 700 wine quality | 3898 | 1000 | 11 | 300
4 http://archive.ics.uci.edu/ml/index.php
b Hensman et al. [5]
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Figure A.1: KL divergences of the approximate posteriors and root mean squared error of the
approximate posteriors for the VFE and pF-DTC trials with the smallest objective values.
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Figure A.2: KL divergences of the approximate posteriors and root mean squared error of the
approximate posteriors for the VFE and pF-DTC trials with the smallest objective values.



B Proof of Proposition 3.1

Choose the means and variances of 77 and 7 such that (ji—pu)? = §%{exp(26)—1} and s? = exp(2J)32.
We then have that

KL(7l|n)

= 0-5{5%/s* = 1 +log(s*/5*) + (i — p)*/5*}

= 0-5[5%/{exp(20)3®} — 1 + log{exp(26)3?/5*} + 5% {exp(20) — 1} /{exp(20)3?}]
= 0-5[exp(—2d) — 1 + log{exp(2d)} + {exp(2d) — 1} exp(—29)]

= .

C Details of Example 4.1

We take H to be the reproducing kernel Hilbert space with reproducing kernel r. The posterior
covariance functions for 7 and 7 are equal to

kp(z,z') = e~(@=a)?/2 _ (1+ 02)_16_9”2/2_(”/)2/2 (C.1)

while their posterior means are, respectively, (z) = (1 + 02)~le=*"/2t and fi(z) = (1 +
02)~1e="/2{ Define the induced kernel k' (z, 2') := (ky, ky). Since their covariance operators are
equal, the 2-Wasserstein distance between the 1 and 7 is [2, Thm. 3.5]

Wa(n, 1) = |l — all = [k, )l (1 + o)t — 1]

= /k'(0,0) (1 + o)1t — 1. (C.2)

The log-likelihoods associated with 7 and 7j are, respectively, £(f) = —5(f(0) — t)* and
L(f) == — 52 (f(0) — ). Using Lemma F.3, in the non-preconditioned case we have

v (1, 7)? = By [(DL, DL) + (DL, DE) — 2(DL, DL)
=0~ 4r(0,0)[(t = £(0))* + (£ = 1(0))* — 2(t — f1(0))( — f1(0))]
=0 4(0,0)(t — ). (C.3)
Egs. (C.2) and (C.3) together show that ¢ = 1/7(0,0)/k’(0,0) .

The preconditioned case is almost identical to Eq. (C.3). Using Lemmas F.1 and F.4 and Eq. (C.1),
for any f € H,

CDL(f) = ~(1+0%) 7 (7(0) ~ k(0. )
and similarly for C;DL(f). Hence,
dor o (l17) = B [(CDL, CiDL) + (CGDL, C3DL) — 2(C;DL, CDL)]
N )2

= (14 0%) 72K (0,0)[(t — 2(0))* + (£ — 2(0))* — 2(t — 4(0))( — 1(0))]
= (14 %) 72K (0,0)(t — £)%. (C.4)

Egs. (C.2) and (C.4) together show that dpr ,,(1]|7) = Wa(n, 7).

D Proof of Theorem 4.3

Theorem 4.3 will follow almost immediately after we develop a number of preliminary results. For
more details on infinite-dimensional SDEs and related ideas, we recommend Hairer et al. [3, 4] and
Da Prato and Zabczyk [1].

The notation in this section differs slightly from the rest of the paper in order to follow the conventions
of the stochastic processes literature. Let W denote a C-Wiener process [1, Definition 4.2], where
C : H — H is the linear, self-adjoint, positive semi-definite, trace-class operator. Let ;» € H and let



b,b: H — R and consider the following infinite-dimensional stochastic differential equations (SDEs)
inH:
dX; = (u — Xp)dt + b(X;)dt + V2 dW; (D.1)
dY; = (u— Yy)dt + b(Yz)dt + vV2'dW;. (D.2)
We will need the constructions from the following lemma, the proof of which is deferred to Ap-
pendix D.1.
Lemma D.1. Let H := H& H, the direct sum of H with itself, for which the inner product is given by

(@1, 22), (y1,92))g = (v1, 1) + (22, 92).
Define the self-adjoint operator C : H — H given by (z,y) = (C(z+y),C(x+y)). Then Egs. (D.1)
and (D.2) can be written on a common probability space as
(X, Y2) = (p p)dt = (Xp, Yi)dt + (0(X), b(Yy))dt + V2A(We, Wi) (D3)

(X0, Vi) = / (1, 1)dls — / (X.,Y,)ds + / (b(X.), B(Y2))ds + V2 (Wi, W),

where t — (X,Y;) is a process on H and t — (Wy, W,) is a C-Wiener process on H.

Let P denote the space of Borel measures on H. Recall that for any 7 € P, the ||-|| ,-horm acting on
functions A : H — H is defined by

jal, = (/ A(x)||2?7(dw))1/2-

Theorem D.2. Assume that Eq. (D.3) has a unique stationary law with the marginal stationary
laws of Egs. (D.1) and (D.2) given by 1 and n respectively. Suppose that for X ~ nandY ~ n,
E|X]|? < coand E||Y||* < oc. Suppose that for some o > 0, b satisfies the one-sided Lipschitz
condition

(b(x) = by),z —y) < (—a+1) ||z — y||2 forall x,y € H.
Then
Wa(n,7) < o H1b = bll,. (D.4)

We defer the proof to Appendix D.2.

Proposition D.3. If the hypotheses of Theorem D.2 hold, then for any distribution v € P such that
v,

an 112 3
A N —p D.5)

5 < -1
Wa(n, 1) < o o

oo

Proof. Using Holder’s inequality, we have
15— B2 = / 1b(z) — b(a)|*n(dx)
=/ (@) b(z) — b(z)|v(dz)

H [ 1) = BlPotn),

Eq. (D.5) follows by plugging the previous display into Eq. (D.4). O
Proposition D.4. Ifn,v € P, Wa(n,v) < e and H = H,., then for all x € X,
1y (@) = pu(@)] < 7(@, @)%
|kn(a:,w)1/2 — k() 2| < V6 (2, x) %
|ky(z, ) — ky (2, 2)| < 3r(x, x)l/? min(k,(x, x), k. (x, x)) 2% + 6r(xz, ).




We defer the proof to Appendix D.3.

The result will follow by taking C = Cj. With this choice of C, b = 0 and px = p, so b satisfies
the one-sided Lipschitz condition with o = 1. The remaining hypotheses of Theorem D.2 hold by
construction, so Theorem 4.3 follows by applying Propositions D.3 and D.4.

D.1 Proof of Lemma D.1

We first check that the process t — (W;, W;) satisfies the definition of a Wiener process. It starts
from 0, has continuous trajectories and independent increments. Furthermore,

L ((We, W) — (Wi, We)) = N(0, (t — 5)C).
To see that for ¢ > s the variance of (Wy, Wy) — (W, W) in H is indeed equal to (£ — s)C, note that,
for any (z1, z2), (y1,92) € H

[<($1,$2), (Wt, Wt) - (st Ws)>1ﬁ1<(y1a y2)7 (Wt; Wt) - (Ws> Ws)>[€u]
E [({z1, Wy = W) + (z2, Wi = Wis)) ({y1, We — W) + (y2, Wi — Wi))]
t —s)Cx1,y1) + ((t — 5)Cx1,y2) + ((t — 5)Cx2,y1) + ((t — 8)Cx2,Y2)

=((
= ((t = s)C(x1 + w2),91) + ((t — 5)C(z1 + T2), Y2)
= ((t = 8)C(z1,22), (41, ¥2)) -

Given that C is self-adjoint, it follows that Cis self-adjoint as well:

(Cla1,22), (y1,92))g = (C(z1 + T2), Y1 + Y2)
= (@1 + z2,C(y1 + y2))

= <(x17 x2)v é(yl, y2)>]ﬁl'
D.2 Proof of Theorem D.2

We begin by quoting the Itd formula we will be using (see Da Prato and Zabczyk [1] for complete
details):

Theorem D.5 (Itd formula, Da Prato and Zabczyk [1, Theorem 4.32]). Let H and U be two Hilbert
spaces and W be a Q-Wiener process for a symmetric non-negative operator QQ € L(U). Let

Up = Q'2(U) and let Ly(Uy, H) be the space of all Hilbert-Schmidt operators from Uy to H.
Assume that @ is an Lo(Uy, H )-valued process stochastically integrable in [0, T), ¢ is an H-valued
predictable process Bochner integrable on [0,T] almost surely, and X (0) a H-valued random
variable. Then the following process:

t t
X = Xo +/ o(s)ds —|—/ O(s)dWs, te€[0,T]
0 0

is well defined. Assume that a function F : [0,T] x H — R and its partial derivatives Fy, Fy, Fy,
are uniformly continuous on bounded subsets of [0, T] X H. Under these conditions, almost surely,
forallt € 0,T):

F(t,X;) = F(0,Xo) + /Ot (Fp(s,Xs), ®(s)dWy) + /Ot Fy(s, X,)ds
# [ s X as
+ /Ot % Tr [ Fra(s, X,) (@(5)QV/2) (@(5)Q'2)" | ds
Let F : [0, 00) x H — R be given by F(t; z,y) = 2 ||z — y||*. Then the Fréchet derivative of F

with respect to the space parameters is given by

Flay (t2,9)[(hn, he)] = 2e* (@ —y, hy — ha). (D.6)



Eq. (D.6) holds because
e+ Ay =y = hal* = llz = ylI* = 2@ = y, b — ha)

[ |f” + (o]
A1 — hol|®
2 2
[ [I” + ||zl

hall,||h2||—0
< 2\/||ha|? + || ho? Wrrllin2l=0,

Furthermore, the second Fréchet derivative with respect to the space parameters is
Flay) @) [(h1, h2), (hs, ha)] = 262 (hs — ha, by — ha).

z,Y

Note that ¢/ (x,y) = g (CY2(z +y),CY*(z + y)). Using the one-sided Lipschitz condition
and the Cauchy-Schwarz inequality, we obtain

(b(Xy) = b(Y3), Xy — V)
= (b(X1) = b(V2), Xy = Ya) + (b(Y) — b(Vy), X; — Y3)
< (—a+ 1) [ X = Yil® + [Ib(Ys) = bV | X — Ve - (D.7)

We will assume that we start the process ¢ — (X, Y;) at joint stationarity (with Xy ~ 7 and Y; ~ v).
By the It6 formula given by Theorem D.5, applied to the process described by Eq. (D.3) and function

F (so that p(t) = (b(X3),b(Y:)) — (X+,Y:) in Theorem D.5):

t
e || X, — Yi|? = [|Xo - Yo|® + / 2T (X, — Yo, AW, — dIV,)
0
t
+/ 200%°% | X, — Y||* ds
0
t ~
+ / 262 (X, — Yy, b(X,) — X5 — b(Y,) + Y, )ds
0
t
+ [ Trl(m) o (€ +9) ~ Clat ), Cla ) = Clo + )] ds
0
t
X0 — Yo ? +/ 2062 || X, — Ya|2 ds
0

t
+ / 262 (X, — Yy, b(Xs) — X — b(Ys) + Y,)ds.
0

Taking expectations on both sides (with respect to everything that is random and at the fixed time t),
multiplying by e~2%* and applying Eq. (D.7)
E||IX; - Vi
t
< B X - B B | [ 260 b(r) - B, - Vil ds|
0

< e 2R | X, — Yo
1/2

t 1/2 t
s ([ aeeompor) <iipas) ([ 2eeeElx - vitas) o)
0 0
= X — Yo
. 1/2
+ <a71/2(1 _ 6720415)1/2”() _ bHu) <a1/2(1 _ 672at)1/2 (E X, — YiHQ) ) (D.9)

—2at 2 -1 —2at 7 21/2
= ¢ T2IE || X - Yol + a7 (1= e 2 o~ Bll, (B X, - il?)



where Eq. (D.8) follows by the Cauchy-Schwarz inequality and Eq. (D.9) follows from the assumption
that we start the process ¢ — (X¢, Y;) at joint stationarity.

Now, dividing by (E[/X; — Yt||2)1/2, taking ¢ — oo and noting that the process t — (X;,Y;)
remains at joint stationarity, we obtain the result.

D.3 Proof of Proposition D.4

Let f ~ nand g ~ v and define k,(x,z’') := E[g(z)g(z’)]. By Cauchy-Schwarz and Jensen’s
inequalities,

(@) — ()| = [E[f(2) — 9(@)]] = [E[(f — g9, 72)]|
<E[If = glllIrall] < r(x, )" *E[| f - gl "]"/?
< r(x, )%
Without loss of generality we can assume /1, = 0, since if not then we consider the random variables
f:=f—pyand g := g — p, instead. It follows from the Cauchy-Schwarz inequality that
|y (, ) — ko (2, 2)| = [E[f(x)* — g(x)?]]
=E[(f(z) - g(2))(f(2) + g(x))]
< VE[(f(z) - g(x))?] VE[(f(z) + g(x))?]
< r(z, @)%\ 2E[f(2)? + g(2)?]
<V2'r(x, ) e (ky (2, 2)V? + &, (x,2)"/?)
ey (2, 2) Y% — Ky (2, 2) % < V2 r(x, ) %

Also,

ky(x, )% <k (z,2) + po ()2 < ky(x,2)Y? 4 r(x,x)/ 2.

We now have that
|kn (2, @) — Ky (@, )| = ) + 1 ()?]
)+ ()°

<V2'r(x, ) e (ky(x, )% + Ey (2, 2)?) + r(z, 2)e?

) — ky(z,x
(z,x

, e(ky x, )% 4+ ky(x,2)?) + (1 + V2)r(x, x)e?
2
1/2 1/2 1/2 (1+ \/5)7“(9% T)e
|kn(maw) k (33 :L') | < ﬁr(w7w) €+ kn(w,w)1/2 +kl,(£l:,:l:)1/2-
Let a = %r(m,m)l/%. If max(k,(x,x)"/? k,(x,2)"/?) < a, then clearly

|ky(z, 2)'/? — kb, (2, 2)'/2| < a. Otherwise we have

2
o (. )2 — ko (, @)% < VT r(, )2 + LT V2)r(e,@)e?
a

Hence we conclude unconditionally that

12 < 1+3+2V2 @
S5

|kn(ac,a:)1/2 —ky(z,x) L)% < VB (z,2) %,

Thus, we also have that

ky (2, ) — Ky (2, )| < V21 (2, 2) 2e(ky (2, 2) Y% + Ky (2, 2) %) + (1 4+ V2)r(z, x)e?
<V2'r(x, )22k, (2, )2 + V6 r(z, ) %) + (1 + V2)r(z, x)e?
= 2V2'r(z, ) 2k, (2, 2) % + (1 + V2 + V12)r(, )e?
< 37(z, )k, (@, )% + 6 (2, )2

The final inequality follows from Jensen’s inequality (which implies that the 1-Wasserstein distance
lower bound the 2-Wasserstein distance) and [7, Rmk. 6.5].



E Proof of Proposition 4.5

We first write k in terms of the orthonormal basis of H,:
k(w,x') =30 e5(x)ej(a).
Define
r(x, @) =351 Ae(@)e ().

If )5, )\j_l < oo then 7 dominates k. So given inputs X = (z,,)_,, and defining a,, ; =

e;(xn)ej(@y,), to show the existence of the required kernel r we need to show there exists a solution
to

Y(n,m) € [N]?, Z)\janmd — ZanmJ <, Zx\j_1 <oo, and VjeN, )\ >0.
Jj=21 j=1 Jj=>1

By assumption on the pointwise decay of orthonormal basis elements, for all (n,m) € [N]?,
= 0(j~?). Define a; := max(, m)e[n2 [@nm,j|- Therefore \/a; = o(j71), 32,51 /a5 <
00, and there exists a J > 0 such that

Vi>J,y/a; <1 and Z a; < e.

§>J

|anm,j

Setting \; = 1 foreachj € 1,...,J and \; = 1+ ,/a; ! for j > J, we have that for any
(n,m) € [NJ?,

anm,j
E )\janmyj — E Anm,j| = E T < E Va; <€
J>1 J>1 j>J VI J>J

Finally since ,/a; = o(j7!), \; = w(j), and so /\j_1 = o(j71) yielding 2is1 /\j_1 < 0.

F Proof of Proposition 5.1

Let £,,(f) := =555 (f(z4) — yn)? denote the log-likelihood of the nth observation and recall that
H=H,.

Lemma F.1. Forany f € H,
DLu(f) = =0 2(f(@n) = Yn)Tw,.-
Proof. For g € H,
1La(f +9) = La(f) + (0 (f(@n) = ya)r (@0, ), 9)]

= 2 (F(0) + 9(0) — 1) + ooy (F(@n) — ) + 0 2(F(@n) — ya)g(@n)

202 20
1 9 1 g _ T(@n,n) |, 2
< ﬁg(azn) = ﬁ<r(wnv')79> S g7 llgll”
O
Lemma F.2. Forany f € H,
DL(f)=—0(f(X) —y)'rx
and
DL(f) = -0 Qx5 f(X)—y) " Qxx7x-

Proof. Both results follow directly from Lemma F.1. O



Lemma F.3. If v = GP(ji, k), then
B [(DLL(f), DLw(f))] =0 4T(1’nv wm)[if(xm Tm) + (Yn — (x0)) (Ym — (@m))].

Proof. Using Lemma F.1, we have

Efmw (DL (f)s DLm(f)] = 0 s Tan JEpan [(f(@n) = 4n) (f (@) = Ym)]
= U_4T(wnv wm)[if(wnv Tm) + (Yn — (xn)) (Ym — ﬂ(mm))]

O
Lemma F4. Ifn = GP(0,¢) then (C,f)(x) = (f, lz).
Proof. Since (Cprg) = (rgr, L.) = g, for f ~ ),
<Tmacnrm > <Twa x’ > - é(x, :I:/) = COV(f(:ZZ), f(wl))
O

Lemma FE.5. For the DTC log-likelihood approximation T,
(C2h)(@) = (Cryf) (@) = (. hg) (kg — Dkzq

where Y = (kg g +0 kg xkxz) "

Proof. Since 7 has covariance function k(x, ') — Qgz + k - Xi k ¢, 16], the result follows from
Lemma F.4. U

It follows from Lemmas F.2 and F.5 that
CiDL(f) = -0 *(Qx g f(X) —y) KxxSkg
C:DL(f) = —o *(f(X) ~ o) " (kx — Qxxhx + KxxShg).
We therefore have that
—0°CxD(L — L)(f)
= (f(X) - )" (kx — Qxxkg) + (F(X) - Qx 2 [(X)) K x 3 Sk
Consider the limit 7 — k, so k" — k. Then
at|C=D(L ~ L)(f)II?
= (f(X) —9y) " (Kxx + QxxKxxQxx — 2KxxQx x)(f(X) —y)
+(f(X)—y) (KxxSK g x — Qxx K3 35Kz x)(f(X) — Qx  f(X))
+ (f(X) = Qx 2 [(X)) Ky x 2K ¢ k5K g x (F(X) = Qx 2 (X))
=(f(X)—y) (Kxx — Qxx)(f(X)—y)
+(f(X) = Qx 2 f(X) Sxx(f(X) - Qx 2 [(X)),
where Sx x = KXX'EK)ZX’EK)'()r Let Exx := Kxx — Q@xx. Taking expectations we get
E[(f(X) - y) Exx(f(X) - y)]
E[(f(X) = u(X) + UX) —y) " Exx (f(X) = 4(X) + 4(X) — y)]
= Tr(Kxx Exx) + ((X) —y)" Exx ((X) — y)

and
E,[(f(X) = Qx /(X)) Sxx (f(X) - Qx 2 f(X))]
E, [|(£(X) = 4(X) + Qx 2 (X) = Qx 2 f(X) + AX) = Qx 2 (X)) T SXx I3
= Tr(KxxSxx) -+ Tr( XxQ;XSXXQxx) 2Tr(K g xSxxQx %)
+ (A(X) = Qx (X)) T Sxx (AUX) = Qx g UX).



Let 8% - = Kxx YK % ¢ 3. Putting everything together, conclude that

o*|ciD(L - D)

= Tr((Kxx + ((X) — »)(UX) —y) (Kxx — Qxx))
+Tr(KxxSxx)+ Tr(Kgx Q) s SxxQx %) — 2Tr(K¢ xSxxQx 1)
+ (A(X) = Qx (X)) " Sxx (M(X) ~ Qx  AX))-

=~ Tr(K g x (Kxx + (A(X) = y)(A(X) — ) ")Qx x)
+Tr(KgxKxx + KxxQxxKxxQxx — 2KxxQxxKxx)%%x)  ED
+(UX) = Qx (X)) TSy g Kz x (UX) = Qx (X)) + C(X).

It is clear from Eq. (F.1) that all quantities can be computed while never instantiating a matrix larger
than N x M, hence, up to the constant C'(X), the pF divergence can be computed in O(N M?) time
and O(N M) space.
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