
Supplementary Material for
Scalable Gaussian Process Inference with Finite-data

Mean and Variance Guarantees

A Experiments

Table 1: Datasets used for experiments. All datasets from the UCI Machine Learning
Repositorya except for synthetic and delays10k datasets.
K = number of datapoints used to construct ν (approximately 10% of Ntrain)

Name Ntrain Ntest d K Name Ntrain Ntest d K
synthetic 1000 1000 1 100 abalone 3177 1000 8 300
delays10kb 8000 2000 8 800 airfoil 1103 400 5 100
CCPP 7568 2000 4 700 wine quality 3898 1000 11 300
a http://archive.ics.uci.edu/ml/index.php
b Hensman et al. [5]

(a) synthetic

(b) abalone

Figure A.1: KL divergences of the approximate posteriors and root mean squared error of the
approximate posteriors for the VFE and pF-DTC trials with the smallest objective values.

http://archive.ics.uci.edu/ml/index.php


(a) airfoil

(b) CCPP

(c) wine

(d) delays10k

Figure A.2: KL divergences of the approximate posteriors and root mean squared error of the
approximate posteriors for the VFE and pF-DTC trials with the smallest objective values.
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B Proof of Proposition 3.1

Choose the means and variances of η and η̃ such that (µ̃−µ)2 = s̃2{exp(2δ)−1} and s2 = exp(2δ)s̃2.
We then have that

KL(η̃||η)

= 0·5{s̃2/s2 − 1 + log(s2/s̃2) + (µ̃− µ)2/s2}
= 0·5[s̃2/{exp(2δ)s̃2} − 1 + log{exp(2δ)s̃2/s̃2}+ s̃2{exp(2δ)− 1}/{exp(2δ)s̃2}]
= 0·5[exp(−2δ)− 1 + log{exp(2δ)}+ {exp(2δ)− 1} exp(−2δ)]

= δ.

C Details of Example 4.1

We take H to be the reproducing kernel Hilbert space with reproducing kernel r. The posterior
covariance functions for η and η̃ are equal to

kD(x, x′) = e−(x−x
′)2/2 − (1 + σ2)−1e−x

2/2−(x′)2/2 (C.1)

while their posterior means are, respectively, µ(x) = (1 + σ2)−1e−x
2/2t and µ̃(x) = (1 +

σ2)−1e−x
2/2t̃ Define the induced kernel k′(x, x′) := 〈kx, kx′〉. Since their covariance operators are

equal, the 2-Wasserstein distance between the η and η̃ is [2, Thm. 3.5]

W2(η, η̃) = ‖µ− µ̃‖ = ‖k(0, ·)‖ (1 + σ2)−1|t− t̃|

=
√
k′(0, 0) (1 + σ2)−1|t− t̃|. (C.2)

The log-likelihoods associated with η and η̃ are, respectively, L(f) := − 1
2σ2 (f(0) − t)2 and

L̃(f) := − 1
2σ2 (f(0)− t̃)2. Using Lemma F.3, in the non-preconditioned case we have

dF,ν(η, η̃)2 = Ef∼ν [〈DL,DL〉+ 〈DL̃,DL̃〉 − 2〈DL,DL̃〉]
= σ−4r(0, 0)[(t− µ̂(0))2 + (t̃− µ̂(0))2 − 2(t− µ̂(0))(t̃− µ̂(0))]

= σ−4r(0, 0)(t− t̃)2. (C.3)

Eqs. (C.2) and (C.3) together show that c =
√
r(0, 0)/k′(0, 0) .

The preconditioned case is almost identical to Eq. (C.3). Using Lemmas F.1 and F.4 and Eq. (C.1),
for any f ∈ H,

Cη̃DL(f) = −(1 + σ2)−1(f(0)− t)k(0, ·)

and similarly for Cη̃DL̃(f). Hence,

dpF,ν(η||η̃) = Ef∼ν [〈Cη̃DL, Cη̃DL〉+ 〈Cη̃DL̃, Cη̃DL̃〉 − 2〈Cη̃DL, Cη̃DL̃〉]
= (1 + σ2)−2k′(0, 0)[(t− µ̂(0))2 + (t̃− µ̂(0))2 − 2(t− µ̂(0))(t̃− µ̂(0))]

= (1 + σ2)−2k′(0, 0)(t− t̃)2. (C.4)

Eqs. (C.2) and (C.4) together show that dpF,ν(η||η̃) =W2(η, η̃).

D Proof of Theorem 4.3

Theorem 4.3 will follow almost immediately after we develop a number of preliminary results. For
more details on infinite-dimensional SDEs and related ideas, we recommend Hairer et al. [3, 4] and
Da Prato and Zabczyk [1].

The notation in this section differs slightly from the rest of the paper in order to follow the conventions
of the stochastic processes literature. Let W denote a C-Wiener process [1, Definition 4.2], where
C : H→ H is the linear, self-adjoint, positive semi-definite, trace-class operator. Let µ ∈ H and let
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b, b̃ : H→ R and consider the following infinite-dimensional stochastic differential equations (SDEs)
in H :

dXt = (µ−Xt)dt+ b(Xt)dt+
√

2 dWt (D.1)

dYt = (µ− Yt)dt+ b̃(Yt)dt+
√

2 dWt. (D.2)

We will need the constructions from the following lemma, the proof of which is deferred to Ap-
pendix D.1.

Lemma D.1. Let H̃ := H⊕H, the direct sum of H with itself, for which the inner product is given by

〈(x1, x2), (y1, y2)〉H̃ = 〈x1, y1〉+ 〈x2, y2〉.

Define the self-adjoint operator C̃ : H̃→ H̃ given by (x, y) 7→ (C(x+ y), C(x+ y)). Then Eqs. (D.1)
and (D.2) can be written on a common probability space as

d(Xt, Yt) = (µ, µ)dt− (Xt, Yt)dt+ (b(Xt), b̃(Yt))dt+
√

2 d(Wt,Wt) (D.3)

or

(Xt, Yt) =

∫ t

0

(µ, µ)ds−
∫ t

0

(Xs, Ys)ds+

∫ t

0

(b(Xs), b̃(Ys))ds+
√

2 (Wt,Wt),

where t 7→ (Xt, Yt) is a process on H̃ and t 7→ (Wt,Wt) is a C̃-Wiener process on H̃.

Let P denote the space of Borel measures on H. Recall that for any η ∈ P , the ‖·‖η-norm acting on
functions A : H→ H is defined by

‖A‖η :=

(∫
‖A(x)‖2 η(dx)

)1/2

.

Theorem D.2. Assume that Eq. (D.3) has a unique stationary law with the marginal stationary
laws of Eqs. (D.1) and (D.2) given by η̃ and η respectively. Suppose that for X ∼ η̃ and Y ∼ η,
E ‖X‖2 < ∞ and E ‖Y ‖2 < ∞. Suppose that for some α > 0, b satisfies the one-sided Lipschitz
condition

〈b(x)− b(y), x− y〉 ≤ (−α+ 1) ‖x− y‖2 for all x, y ∈ H.
Then

W2(η, η̃) ≤ α−1‖b− b̃‖η. (D.4)

We defer the proof to Appendix D.2.
Proposition D.3. If the hypotheses of Theorem D.2 hold, then for any distribution ν ∈ P such that
ν � η,

W2(η, η̃) ≤ α−1
∥∥∥∥dη

dν

∥∥∥∥1/2
∞
‖b− b̃‖ν (D.5)

Proof. Using Hölder’s inequality, we have

‖b− b̃‖2η =

∫
‖b(x)− b̃(x)‖2η(dx)

=

∫
dη

dν
(x)‖b(x)− b̃(x)‖2ν(dx)

≤
∥∥∥∥dη

dν

∥∥∥∥
∞

∫
‖b(x)− b̃(x)‖2ν(dx).

Eq. (D.5) follows by plugging the previous display into Eq. (D.4).

Proposition D.4. If η, ν ∈ P ,W2(η, ν) ≤ ε and H = Hr, then for all x ∈ X ,

|µη(x)− µν(x)| ≤ r(x,x)1/2ε

|kη(x,x)1/2 − kν(x,x)1/2| ≤
√

6 r(x,x)1/2ε

|kη(x,x)− kν(x,x)| ≤ 3 r(x,x)1/2 min(kη(x,x), kν(x,x))1/2ε+ 6 r(x,x)ε2.
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We defer the proof to Appendix D.3.

The result will follow by taking C = Cη̃. With this choice of C, b = 0 and µ = µη̃, so b satisfies
the one-sided Lipschitz condition with α = 1. The remaining hypotheses of Theorem D.2 hold by
construction, so Theorem 4.3 follows by applying Propositions D.3 and D.4.

D.1 Proof of Lemma D.1

We first check that the process t 7→ (Wt,Wt) satisfies the definition of a Wiener process. It starts
from 0, has continuous trajectories and independent increments. Furthermore,

L ((Wt,Wt)− (Ws,Ws)) = N (0, (t− s)C̃).

To see that for t ≥ s the variance of (Wt,Wt)− (Ws,Ws) in H̃ is indeed equal to (t− s)C̃, note that,
for any (x1, x2), (y1, y2) ∈ H̃

E
[
〈(x1, x2), (Wt,Wt)− (Ws,Ws)〉H̃〈(y1, y2), (Wt,Wt)− (Ws,Ws)〉H̃

]
= E [(〈x1,Wt −Ws〉+ 〈x2,Wt −Ws〉) (〈y1,Wt −Ws〉+ 〈y2,Wt −Ws〉)]
= 〈(t− s)Cx1, y1〉+ 〈(t− s)Cx1, y2〉+ 〈(t− s)Cx2, y1〉+ 〈(t− s)Cx2, y2〉
= 〈(t− s)C(x1 + x2), y1〉+ 〈(t− s)C(x1 + x2), y2〉
= 〈(t− s)C̃(x1, x2), (y1, y2)〉H̃.

Given that C is self-adjoint, it follows that C̃ is self-adjoint as well:

〈C̃(x1, x2), (y1, y2)〉H̃ = 〈C(x1 + x2), y1 + y2〉
= 〈x1 + x2, C(y1 + y2)〉
= 〈(x1, x2), C̃(y1, y2)〉H̃.

D.2 Proof of Theorem D.2

We begin by quoting the Itô formula we will be using (see Da Prato and Zabczyk [1] for complete
details):
Theorem D.5 (Itô formula, Da Prato and Zabczyk [1, Theorem 4.32]). Let H and U be two Hilbert
spaces and W be a Q-Wiener process for a symmetric non-negative operator Q ∈ L(U). Let
U0 = Q1/2(U) and let L2(U0, H) be the space of all Hilbert-Schmidt operators from U0 to H .
Assume that Φ is an L2(U0, H)-valued process stochastically integrable in [0, T ], ϕ is an H-valued
predictable process Bochner integrable on [0, T ] almost surely, and X(0) a H-valued random
variable. Then the following process:

Xt = X0 +

∫ t

0

ϕ(s)ds+

∫ t

0

Φ(s)dWs, t ∈ [0, T ]

is well defined. Assume that a function F : [0, T ]×H → R and its partial derivatives Ft, Fx, Fxx
are uniformly continuous on bounded subsets of [0, T ]×H . Under these conditions, almost surely,
for all t ∈ [0, T ]:

F (t,Xt) = F (0, X0) +

∫ t

0

〈Fx(s,Xs),Φ(s)dWt〉+

∫ t

0

Ft(s,Xs)ds

+

∫ t

0

〈Fx(s,Xs), ϕ(s)〉ds

+

∫ t

0

1

2
Tr
[
Fxx(s,Xs)(Φ(s)Q1/2)(Φ(s)Q1/2)∗

]
ds.

Let F : [0,∞)× H̃→ R be given by F (t;x, y) = e2αt ‖x− y‖2. Then the Fréchet derivative of F
with respect to the space parameters is given by

F(x,y)(t;x, y)[(h1, h2)] = 2e2αt〈x− y, h1 − h2〉. (D.6)
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Eq. (D.6) holds because ∣∣∣‖x+ h1 − y − h2‖2 − ‖x− y‖2 − 2〈x− y, h1 − h2〉
∣∣∣√

‖h1‖2 + ‖h2‖2

=
‖h1 − h2‖2√
‖h1‖2 + ‖h2‖2

≤ 2

√
‖h1‖2 + ‖h2‖2

‖h1‖,‖h2‖→0−−−−−−−−→ 0.

Furthermore, the second Fréchet derivative with respect to the space parameters is
F(x,y),(x,y)[(h1, h2), (h3, h4)] = 2e2αt〈h3 − h4, h1 − h2〉.

Note that C̃1/2(x, y) =
√
2
2

(
C1/2(x+ y), C1/2(x+ y)

)
. Using the one-sided Lipschitz condition

and the Cauchy-Schwarz inequality, we obtain

〈b(Xt)− b̃(Yt), Xt − Yt〉
= 〈b(Xt)− b(Yt), Xt − Yt〉+ 〈b(Yt)− b̃(Yt), Xt − Yt〉
≤ (−α+ 1) ‖Xt − Yt‖2 + ‖b(Yt)− b̃(Yt)‖ ‖Xt − Yt‖ . (D.7)

We will assume that we start the process t 7→ (Xt, Yt) at joint stationarity (with X0 ∼ η and Y0 ∼ ν).
By the Itô formula given by Theorem D.5, applied to the process described by Eq. (D.3) and function
F (so that ϕ(t) = (b(Xt), b̃(Yt))− (Xt, Yt) in Theorem D.5):

e2αt ‖Xt − Yt‖2 = ‖X0 − Y0‖2 +

∫ t

0

2
√

2 e2αs〈Xs − Ys,dWs − dWs〉

+

∫ t

0

2αe2αs ‖Xs − Ys‖2 ds

+

∫ t

0

2e2αs〈Xs − Ys, b(Xs)−Xs − b̃(Ys) + Ys〉ds

+

∫ t

0

e2αs Tr [(x, y) 7→ (C(x+ y)− C(x+ y), C(x+ y)− C(x+ y))] ds

= ‖X0 − Y0‖2 +

∫ t

0

2αe2αs ‖Xs − Ys‖2 ds

+

∫ t

0

2e2αs〈Xs − Ys, b(Xs)−Xs − b̃(Ys) + Ys〉ds.

Taking expectations on both sides (with respect to everything that is random and at the fixed time t),
multiplying by e−2αt and applying Eq. (D.7)

E ‖Xt − Yt‖2

≤ e−2αtE ‖X0 − Y0‖2 + E
[∫ t

0

2e2α(s−t)‖b(Ys)− b̃(Ys)‖ ‖Xs − Ys‖ ds

]
≤ e−2αtE ‖X0 − Y0‖2

+

(∫ t

0

2e2α(s−t)E‖b(Ys)− b̃(Ys)‖2ds

)1/2(∫ t

0

2e2α(s−t)E ‖Xs − Ys‖2 ds

)1/2

(D.8)

= e−2αtE ‖X0 − Y0‖2

+
(
α−1/2(1− e−2αt)1/2‖b− b̃‖ν

)(
α−1/2(1− e−2αt)1/2

(
E ‖Xt − Yt‖2

)1/2)
(D.9)

= e−2αtE ‖X0 − Y0‖2 + α−1(1− e−2αt)‖b− b̃‖ν
(
E ‖Xt − Yt‖2

)1/2
,
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where Eq. (D.8) follows by the Cauchy-Schwarz inequality and Eq. (D.9) follows from the assumption
that we start the process t 7→ (Xt, Yt) at joint stationarity.

Now, dividing by
(
E‖Xt − Yt‖2

)1/2
, taking t → ∞ and noting that the process t 7→ (Xt, Yt)

remains at joint stationarity, we obtain the result.

D.3 Proof of Proposition D.4

Let f ∼ η and g ∼ ν and define k̄ν(x,x′) := E[g(x)g(x′)]. By Cauchy-Schwarz and Jensen’s
inequalities,

|µη(x)− µν(x)| = |E[f(x)− g(x)]| = |E[〈f − g, rx〉]|
≤ E[‖f − g‖ ‖rx‖] ≤ r(x,x)1/2E[‖f − g‖2]1/2

≤ r(x,x)1/2ε.

Without loss of generality we can assume µη = 0, since if not then we consider the random variables
f̃ := f − µη and g̃ := g − µη instead. It follows from the Cauchy-Schwarz inequality that

|kη(x,x)− k̄ν(x,x)| = |E[f(x)2 − g(x)2]|
= E[(f(x)− g(x))(f(x) + g(x))]

≤
√

E[(f(x)− g(x))2]
√

E[(f(x) + g(x))2]

≤ r(x,x)1/2ε
√

2E[f(x)2 + g(x)2]

≤
√

2 r(x,x)1/2ε(kη(x,x)1/2 + k̄ν(x,x)1/2)

|kη(x,x)1/2 − k̄ν(x,x)1/2| ≤
√

2 r(x,x)1/2ε.

Also,

k̄ν(x,x)1/2 ≤
√
kν(x,x) + µν(x)2 ≤ kν(x,x)1/2 + r(x,x)1/2ε.

We now have that
|kη(x,x)− kν(x,x)| = |kη(x,x)− k̄ν(x,x) + µν(x)2|

≤ |kη(x,x)− k̄ν(x,x)|+ µν(x)2

≤
√

2 r(x,x)1/2ε(kη(x,x)1/2 + k̄ν(x,x)1/2) + r(x,x)ε2

≤
√

2 r(x,x)1/2ε(kη(x,x)1/2 + kν(x,x)1/2) + (1 +
√

2 )r(x,x)ε2

|kη(x,x)1/2 − kν(x,x)1/2| ≤
√

2 r(x,x)1/2ε+
(1 +

√
2 )r(x,x)ε2

kη(x,x)1/2 + kν(x,x)1/2
.

Let a := 1+
√

3+2
√
2√

2
r(x,x)1/2ε. If max(kη(x,x)1/2, kν(x,x)1/2) ≤ a, then clearly

|kη(x,x)1/2 − kν(x,x)1/2| ≤ a. Otherwise we have

|kη(x,x)1/2 − kν(x,x)1/2| ≤
√

2 r(x,x)1/2ε+
(1 +

√
2 )r(x,x)ε2

a
= a.

Hence we conclude unconditionally that

|kη(x,x)1/2 − kν(x,x)1/2| ≤ 1 +
√

3 + 2
√

2√
2

r(x,x)1/2ε <
√

6 r(x,x)1/2ε.

Thus, we also have that

|kη(x,x)− kν(x,x)| ≤
√

2 r(x,x)1/2ε(kη(x,x)1/2 + kν(x,x)1/2) + (1 +
√

2 )r(x,x)ε2

<
√

2 r(x,x)1/2ε(2kη(x,x)1/2 +
√

6 r(x,x)1/2ε) + (1 +
√

2 )r(x,x)ε2

= 2
√

2 r(x,x)1/2kη(x,x)1/2ε+ (1 +
√

2 +
√

12 )r(x,x)ε2

< 3 r(x,x)1/2kη(x,x)1/2ε+ 6 r(x,x)ε2.

The final inequality follows from Jensen’s inequality (which implies that the 1-Wasserstein distance
lower bound the 2-Wasserstein distance) and [7, Rmk. 6.5].
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E Proof of Proposition 4.5

We first write k in terms of the orthonormal basis of Hk:

k(x,x′) =
∑
j≥1ej(x)ej(x

′).

Define

r(x,x′) :=
∑
j≥1λjej(x)ej(x

′).

If
∑
j≥1 λ

−1
j < ∞ then r dominates k. So given inputs X = (xn)Nn=1, and defining anm,j :=

ej(xn)ej(xm), to show the existence of the required kernel r we need to show there exists a solution
to

∀(n,m) ∈ [N ]2,

∣∣∣∣∣∣
∑
j≥1

λjanm,j −
∑
j≥1

anm,j

∣∣∣∣∣∣ ≤ ε,
∑
j≥1

λ−1j <∞, and ∀j ∈ N, λj ≥ 0.

By assumption on the pointwise decay of orthonormal basis elements, for all (n,m) ∈ [N ]2,
|anm,j | = o(j−2). Define aj := max(n,m)∈[N ]2 |anm,j |. Therefore √aj = o(j−1),

∑
j≥1
√
aj <

∞, and there exists a J > 0 such that

∀j > J,
√
aj < 1 and

∑
j≥J

√
aj < ε.

Setting λj = 1 for each j ∈ 1, . . . , J and λj = 1 +
√
aj
−1 for j > J , we have that for any

(n,m) ∈ [N ]2, ∣∣∣∣∣∣
∑
j≥1

λjanm,j −
∑
j≥1

anm,j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j≥J

anm,j√
aj

∣∣∣∣∣∣ ≤
∑
j≥J

√
aj < ε.

Finally since√aj = o(j−1), λj = ω(j), and so λ−1j = o(j−1) yielding
∑
j≥1 λ

−1
j <∞.

F Proof of Proposition 5.1

Let Ln(f) := − 1
2σ2 (f(xn)− yn)2 denote the log-likelihood of the nth observation and recall that

H = Hr.
Lemma F.1. For any f ∈ H,

DLn(f) = −σ−2(f(xn)− yn)rxn
.

Proof. For g ∈ H,

|Ln(f + g)− Ln(f) + 〈σ−2(f(xn)− yn)r(xn, ·), g〉|

=

∣∣∣∣− 1

2σ2
(f(xn) + g(xn)− yn)2 +

1

2σ2
(f(xn)− yn)2 + σ−2(f(xn)− yn)g(xn)

∣∣∣∣
≤ 1

2σ2
g(xn)2 =

1

2σ2
〈r(xn, ·), g〉2 ≤

r(xn,xn)

2σ2
‖g‖2 .

Lemma F.2. For any f ∈ H,

DL(f) = −σ−2(f(X)− y)>rX

and

DL̃(f) = −σ−2(Q̄XX̃f(X̃)− y)>Q̄XX̃rX̃ .

Proof. Both results follow directly from Lemma F.1.
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Lemma F.3. If ν = GP(µ̂, k̂), then

Ef∼ν [〈DLn(f),DLm(f)〉] = σ−4r(xn,xm)[k̂(xn,xm) + (yn − µ̂(xn))(ym − µ̂(xm))].

Proof. Using Lemma F.1, we have

Ef∼ν [〈DLn(f),DLm(f)〉] = σ−4〈rxn
, rxm

〉Ef∼ν [(f(xn)− yn)(f(xm)− ym)]

= σ−4r(xn,xm)[k̂(xn,xm) + (yn − µ̂(xn))(ym − µ̂(xm))].

Lemma F.4. If η = GP(0, `) then (Cηf)(x) = 〈f, `x〉.

Proof. Since (Cηrx′) = 〈rx′ , `·〉 = `x′ , for f ∼ η,

〈rx, Cηrx′〉 = 〈rx, `x′〉 = `(x,x′) = Cov(f(x), f(x′)).

Lemma F.5. For the DTC log-likelihood approximation π̃,

(Cπ̃f)(x) = (Cπ0f)(x)− 〈f, kX̃〉(k
−1
X̃X̃
− Σ̃)kX̃x,

where Σ̃ := (kX̃X̃ + σ−2kX̃XkXX̃)−1.

Proof. Since π̃ has covariance function k(x,x′)−Qxx′ + kxX̃Σ̃ kX̃x [6], the result follows from
Lemma F.4.

It follows from Lemmas F.2 and F.5 that

Cπ̃DL̃(f) = −σ−2(Q̄XX̃f(X̃)− y)>KXX̃Σ̃kX̃

Cπ̃DL(f) = −σ−2(f(X)− y)>(kX − Q̄XX̃kX̃ +KXX̃Σ̃kX̃).

We therefore have that

−σ2Cπ̃D(L − L̃)(f)

= (f(X)− y)>(kX − Q̄XX̃kX̃) + (f(X)− Q̄XX̃f(X̃))>KXX̃Σ̃kX̃

Consider the limit r → k, so k′ → k. Then

σ4‖Cπ̃D(L − L̃)(f)‖2

= (f(X)− y)>(KXX + Q̄XX̃KX̃X̃Q̄
>
XX̃
− 2KXX̃Q̄

>
XX̃

)(f(X)− y)

+ (f(X)− y)>(KXX̃Σ̃KX̃X − Q̄XX̃KX̃X̃Σ̃KX̃X)(f(X)− Q̄XX̃f(X̃))

+ (f(X)− Q̄XX̃f(X̃))>KXX̃Σ̃KX̃X̃Σ̃KX̃X(f(X)− Q̄XX̃f(X̃))

= (f(X)− y)>(KXX −QXX)(f(X)− y)

+ (f(X)− Q̄XX̃f(X̃))>SXX(f(X)− Q̄XX̃f(X̃)),

where SXX := KXX̃Σ̃KX̃X̃Σ̃KX̃X . Let EXX := KXX −QXX . Taking expectations we get

Eν [(f(X)− y)>EXX(f(X)− y)]

= Eν [(f(X)− µ̂(X) + µ̂(X)− y)>EXX(f(X)− µ̂(X) + µ̂(X)− y)]

= Tr(K̂XXEXX) + (µ̂(X)− y)>EXX(µ̂(X)− y)

and

Eν [(f(X)− Q̄XX̃f(X̃))>SXX(f(X)− Q̄XX̃f(X̃))]

= Eν [‖(f(X)− µ̂(X) + Q̄XX̃ µ̂(X̃)− Q̄XX̃f(X̃) + µ̂(X)− Q̄XX̃ µ̂(X̃))>S
1/2
XX‖

2
2]

= Tr(K̂XXSXX) + Tr(K̂X̃X̃Q̄
>
XX̃

SXXQ̄XX̃)− 2 Tr(K̂X̃XSXXQ̄XX̃)

+ (µ̂(X)− Q̄XX̃ µ̂(X̃))>SXX(µ̂(X)− Q̄XX̃ µ̂(X̃).
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Let S′
XX̃

:= KXX̃Σ̃KX̃X̃Σ̃. Putting everything together, conclude that

σ4‖Cπ̃D(L − L̃)‖2ν
= Tr((K̂XX + (µ̂(X)− y)(µ̂(X)− y)>)(KXX −QXX))

+ Tr(K̂XXSXX) + Tr(K̂X̃X̃Q̄
>
XX̃

SXXQ̄XX̃)− 2 Tr(K̂X̃XSXXQ̄XX̃)

+ (µ̂(X)− Q̄XX̃ µ̂(X̃))>SXX(µ̂(X)− Q̄XX̃ µ̂(X̃)).

= −Tr(KX̃X(K̂XX + (µ̂(X)− y)(µ̂(X)− y)>)Q̄XX̃)

+ Tr((KX̃XK̂XX +KX̃XQ̄XX̃K̂X̃X̃Q̄
>
XX̃
− 2KX̃XQ̄XX̃K̂X̃X)S′

XX̃
)

+ (µ̂(X)− Q̄XX̃ µ̂(X̃))>S′
XX̃

KX̃X(µ̂(X)− Q̄XX̃ µ̂(X̃)) + C(X).

(F.1)

It is clear from Eq. (F.1) that all quantities can be computed while never instantiating a matrix larger
than N ×M , hence, up to the constant C(X), the pF divergence can be computed in O(NM2) time
and O(NM) space.
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