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A Proof of Theorem 1

By well-known theory (Gutmann and Hyvärinen,
2012; Friedman et al., 2001), after convergence of lo-
gistic regression, with infinite data and a function ap-
proximator with universal approximation capability,
the regression function will equal the difference of the
log-densities in the two classes:

n∑
i=1

ψi(hi(x),u) =
∑
i

qi(gi(x),u) + log p(u)

+log |det Jg(x)|−log ps(g(x))−log p(u)−log |det Jg(x)|

where the log ps is the marginal log-density of the com-
ponents when u is integrated out (as pointed above, it
does not need to be factorial), log p(u) is the marginal
density of the auxiliary variables, g = f−1, and the Jg
are the Jacobians of the inverse mixing—which nicely
cancel out. Also, the marginals log p(u) cancel out
here.

Now, change variables to y = h(x) and define v(y) =
g(h−1(y)), which is possible by the assumption of in-
vertibility of h. We then have∑

i

ψi(yi,u) =
∑
i

qi(vi(y),u)− log ps(v(y)) (17)

What we need to prove is that this can be true for all
y and u only if the vi depend on only one of the yi.

Denote q̄(y) = log ps(v(y)). Taking derivatives of
both sides of (17) with respect to yj , denoting the
derivatives by a superscript as

q1i (s,u) = ∂qi(s,u)/∂s (18)

q11i (s,u) = ∂2qi(s,u)/∂s2 (19)

and likewise for ψ, and vji (y) = ∂vi(y)/∂yj , we obtain

ψ1
j (yj ,u) =

∑
i

q1i (vi(y),u)vji (y)− q̄j(y) (20)

Taking another derivative with respect to yj′ with j′ 6=
j, the left-hand-side vanishes, and we have∑

i

q11i (vi(y),u) vji (y) vj
′

i (y) + q1i (vi(y),u) vjj
′

i (y)

− q̄jj
′
(y) = 0 (21)

where the vjj
′

i are second-order cross-derivatives. Col-
lect all these equations in vector form by defining

ai(y) as a vector collecting all entries vji (y) vj
′

i (y), j =
1, ..., n, j′ = 1, ..., j − 1 (we omit diagonal terms, and
by symmetry, take only one half of the indices). Like-

wise, collect all the entries vjj
′

i (y), j = 1, ..., n, j′ =
1, ..., j − 1 in the vector b(y), and all the entries
q̄jj

′
(y), j = 1, ..., n, j′ = 1, ..., j − 1 in the vector c(y).

We can thus write the n(n − 1)/2 equations above as
a single system of equations∑

i

ai(y)q11i (vi(y),u) + bi(y)q1i (vi(y),u) = c(y)

(22)
Now, collect the a and b into a matrix M:

M(y) =
(
a1(y), ...,an(y),b1(y), ...,bn(y)

)
(23)

Equation (22) takes the form of the following linear
system

M(y)w(y,u) = c(y) (24)

where w is defined in the Assumption of Variability,
Eq. (9). This must hold for all y and u. Note that the
size of M is n(n− 1)/2× 2n.

Now, fix y. Consider the 2n + 1 points uj given for
that y by the Assumption of Variability. Collect the
equations (24) above for the 2n points starting from
index 1:

M(y)
(
w(y,u1), ...,w(y,u2n)

)
=
(
c(y), . . . , c(y)

)
(25)

and collect likewise the equation for index 0 repeated
2n times:

M(y)
(
w(y,u0), ...,w(y,u0)

)
=
(
c(y), . . . , c(y)

)
(26)

Now, subtract (26) from (25) to obtain

M(y)

(
w(y,u1)−w(y,u0), ...,
w(y,u2n)−w(y,u0)

)
= 0 (27)

The matrix consisting of the w here has, by the As-
sumption of Variability, linearly independent columns.
It is square, of size 2n × 2n, so it is invertible. This
implies M(y) is zero, and thus by definition in (23),
the ai(y) and bi(y) are all zero.

In particular, ai(y) being zero implies no row of the
Jacobian of v can have more than one non-zero entry.
This holds for any y. By continuity of the Jacobian
and its invertibility, the non-zero entries in the Jaco-
bian must be in the same places for all y: If they
switched places, there would have to be a point where
the Jacobian is singular, which would contradict the
assumption of invertibility of h.

This means that each vi is a function of only one yi.
The invertibility of v also implies that each of these
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scalar functions is invertible. Thus, we have proven
the convergence of our method, as well as provided a
new identifiability result for nonlinear ICA.

B Proof of Theorem 2

For notational simplicity, consider just the case n =
2, k = 3; the results are clearly simple to generalize to
any dimensions. Furthermore, we set Qi ≡ 1; again,
the proof easily generalizes. The assumption of condi-
tional exponentiality means

q1(s1,u) = q̃11(s1)λ11(u) + q̃12(s1)λ12(u)

+q̃13(s1)λ13(u)− logZ1(u) (28)

q2(s2,u) = q̃21(s2)λ21(u) + q̃22(s2)λ22(u)

+q̃23(s2)λ23(u)− logZ2(u) (29)

and by definition of w in (9), we get

w(s,u) =
q̃′11(s1)λ11(u) + q̃′12(s1)λ12(u) + q̃′13(s1)λ13(u)
q̃′21(s2)λ21(u) + q̃′22(s2)λ22(u) + q̃′23(s2)λ23(u)
q̃′′11(s1)λ11(u) + q̃′′12(s1)λ12(u) + q̃′′13(s1)λ13(u)
q̃′′21(s2)λ21(u) + q̃′′22(s2)λ22(u) + q̃′′23(s2)λ23(u)


(30)

Now we fix s like in the Assumption of Variability, and
drop it from the equation. The w(s,u) above can be
written as

q̃′11
0
q̃′′11
0

λ11(u) +


q̃′12
0
q̃′′12
0

λ12(u) +


q̃′13
0
q̃′′13
0

λ13(u)

+


0
q̃′21
0
q̃′′21

λ21(u) +


0
q̃′22
0
q̃′′22

λ22(u) +


0
q̃′23
0
q̃′′23

λ23(u)

(31)

So, we see that w(s,u) for fixed s is basically given by
a linear combination of nk fixed “basis” vectors, with
the λ’s giving their coefficients.

If k = 1, it is impossible to obtain the 2n linearly in-
dependent vectors since there are only n basis vectors.
On the other hand, if k > 1, the vectors k vectors
for each i span a 2D subspace by assumption. For
different i, they are clearly independent since the non-
zero entries are in different places. Thus, the nk basis
vectors span a 2n-dimensional subspace, which means
we will almost surely obtain 2n linearly independent
vectors w(s,ui), i = 1, . . . , 2n by this construction for
λij independently and randomly chosen from a set of
non-zero measure (this is a sufficient but by no means

a necessary condition). Subtraction of w(s,u0) does
not reduce the independence almost surely, since it is
simply redefining the origin, and does not change the
linear independence.

C Proof of Theorem 3

Denote by q̄i(si) the marginal log-density of si. As in
the proof of Theorem 1, assuming infinite data, well-
known theory says that the regression function will
converge to

n∑
i=1

ψi(hi(x),u) = log p(s,u) + log |Jg(x)|− log p(s)

− log p(u)− log |Jg(x)|

=
∑
i

logQi(si)+[
∑
j

q̃ij(si)λij(u)]−logZi(u)−q0(s)

(32)

provided that such a distribution can be approximated
by the regression function. Here, we define q0(s) =
log ps(s). In fact, the approximation is clearly possible
since the difference of the log-pdf’s is linear in the
same sense as the regression function. In other words,
a solution is possible as∑

ij

h̃ij(x)T vij(u) + a(x) + b(u) =
∑
ij

q̃ij(si)λij(u)

+
∑
i

logQi(si)− q0(s)− logZi(u) (33)

with

h̃ij(x) = q̃ij(x) (34)

vij(u) = λij(u) (35)

a(x) =
∑
i

logQi(si)− q0(s) (36)

b(u) =
∑
i

− logZi(u) (37)

Thus, we can have the special form for the regression
function in (11). Next, we have to prove that this is
the only solution up to the indeterminacies given in
the Theorem.

Collect these equations for all the uk given by As-
sumption 3 in the Theorem. Denote by L a matrix of
the λij(uk), with the product of i, j giving row index
and k column index. Denote a vector of all the suf-
ficient statistics of all the independent components as
q̃(x) = (q̃11(s1), ..., q̃nk(sn))T .Collect all the v(uk)T

into a matrix V with again k as the column index.
Collect the terms

∑
i logZi(uk) + b(uk) for all the dif-

ferent k into a vector z.
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Expressing (33) for all the time points in matrix form,
we have

VT h̃(x) = LT q̃(s)−z+1[
∑
i

logQi(si)−q0(s)−a(x)]

(38)
where 1 is a T × 1 vector of ones. Now, on both sides
of the equation, subtract the first row from each of the
other rows. We get

V̄T h̃(x) = L̄T q̃(s)− z̄ (39)

where the matrices with bars are such differences of
the rows of VT and LT , and likewise for z. We see
that the last term in (38) disappears.

Now, the matrix L̄ is indeed the same as in Assump-
tion 3 of the Theorem, which says that the modula-
tions of the distributions of the si are independent in
the sense that L̄ is invertible. Then, we can multiply
both sides by the inverse of L̄ and get

Ah̃(x) = q̃(s)− z̃ (40)

with an unknown matrix A = L̄−1W̄, and a constant
vector z̃ = L̄−1z̄.

Thus, just like in TCL, we see that the hidden units
give the sufficient statistics q̃(s), up to a linear trans-
formation A, and the Theorem is proven.

D Alternative formulation of the
Assumption of Variablity

To further strengthen our theory, we provide an alter-
native formulation of the Assumption of Variability.
We define the following alternative:

[Alternative Assumption of Variability] As-
sume u is continuous-valued, and that there exist
2n values for u, denoted by uj , j = 1...2n such
that the 2n vectors in R2n given by

(w̃(y,u1), w̃(y,u2), ..., w̃(y,u2n)) (41)

with

w̃(s,u) = (
∂2q1(s1,u)

∂s1∂uj
, . . . ,

∂2qn(sn,u)

∂sn∂uj
,

∂3q1(s1,u)

∂s21∂uj
, . . . ,

∂3qn(sn,u)

∂s2n∂uj
) (42)

are linearly independent, for some choice of the
auxiliary variable index j.

Theorem 1 holds with with this alternative assumption
as well. In the proof of the Theorem, take derivatives
of both sides of (25) with respect to the uj in the
Theorem. Then, the right-hand-side vanishes, and we
have an equation similar to (25) but with w̃. All the
logic after (27) applies to that equation.

E Using a function of x as auxiliary
variable

We provide an informal proof without full generality
to show why defining u as a direct deterministic func-
tion of x is likely to violate the assumption of condi-
tional independent. Consider a simple linear mixing
x1 = s1 + s2 (with something similar for x2), and de-
fine tentatively u = x1. Conditioning s1 on u will now
create the dependence s1 = x1−s2 = u−s2 which vio-
lates conditional independence. (This example would
be more realistic with additive noise u = x1 + n to
avoid degenerate pdf’s, but the same logic applies any-
way.) In fact, if we could make the model identifiable
by such u defined as a function of x, we would have
violated the basic unidentifiability theory by Darmois.
Thus, conditional independence implies that u must
bring new information in addition to x, and this in-
formation must be, in some very loose intuitive sense,
”sufficiently independent” of the information in x.

F Additional discussion to Section 5.2

In (Hyvärinen and Morioka, 2017a), the model was
proven to be identifiable under two assumptions: First,
the joint log-pdf of two consecutive time points is
not “factorizable” in the conditionally exponential
form of order one, A variant of such dependency
was called “quasi-Gaussianity” in (Hyvärinen and
Morioka, 2017a). However, here we use a different ter-
minology to highlight the connection to the exponen-
tial family important in our theory as well as TCL.
There is also a slight difference between the two def-
initions, since in (Hyvärinen and Morioka, 2017a), it
was only necessary to exclude the case where the two
functions in the factorization are equal, i.e. q̃1 = λ1 in
the current notation. The second assumption was that
there is a rather strong kind of temporal dependency
between the time points, which was called uniform de-
pendency. Here, we need no such latter condition,
essentially because here we constrain h to be invert-
ible, which was not done in (Hyvärinen and Morioka,
2017a), but seems to have a somewhat similar effect.

G Additional discussion to Section 5.3

One might ask whether it would better to randomize
t and x(t − 1) separately, by using two independent
random indices t∗ and x(t∗∗ − 1). The choice between
these two should be made based on how to modulate
the conditional distribution p(si|t,x(t−1)) as strongly
as possible. In practice, we would intuitively assume
it is usually best to use a single time index as above,
because then the dependency in t∗ and x(t∗ − 1) will
make the modulation stronger. Moreover, the Theo-
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rems above would not apply directly to a case where
we have two different random indices, although the re-
sults might be easy to reformulate for such a case as
well.
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