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“Deep Neural Networks Learn Non-Smooth Functions Effectively.”

A Additional definitions

The Ho6lder Space

Let © be an open subset of RP and 8 > 0 a constant. The Hélder space H:B (€2), where Q is the closure of €, is
the set of functions f : Q@ — R such that f is continuously differentiable on Q up to the order | 3], and the |3]-the
derivatives of f are Holder continuous with exponent § — | 3], namely,

0% f(z) — o f(a')]
|z — 2'|F- 1A

sup <

z,x'eQ, £’

for any multi-index a with |a| = |8], where ¢* denotes a partial derivative.. The norm of the Holder space is
defined by

0 f(z) — 0 f(a')]
:= max sup |0 f(x)| + max su .
I lae = s, sop10° /(@) i T L P ER ]

Basis Pieces defined by Continuous Embeddings

We redefine a piece as an intersection of J embeddings of D-dimensional balls. we first introduce an extended
notion of a boundary fragment class which is developed by Dudley (1974) and Mammen et al. (1999).

Preliminarily, let SP~! := {z € R” : |z], = 1} is the D — 1 dimensional sphere, and let (Vj, F;)5_, be its
coordinate system as a C®-differentiable manifold such that Fj : V; — BP~1 := {x e RP~1 | |z < 1} is a
diffeomorphism. A function g : SP~! — R is said to be in the Hélder class H*(SP~1) with o > 0 if g o Fj_1 is in
H*(B).

Let BP = {z e RP | ||z|| < 1}. A subset R < I” is called a basic piece if it satisfies two conditions: (i) there
is a continuous embedding g : BP — RP such that its restriction to the boundary SP~1 is in H*(SP~1) and
R = IP ~Image(g), (ii) there is 1 <i < D and h € H*(IP~1) such that the indicator function of R is given by
the graph

1p = \I/d(ﬂjl,. o, Ti—1,24 + h(ﬂjl,. R A ,ID),I,'+1,...,1‘D),

where ¥ is the Heaviside function. The condition (i) tells that a basic piece belongs to the boundary fragment
class which is developed by Dudley]| (1974) and [Mammen et al.| (1999), while (ii) means R is a set defined by a
horizon function discussed in [Petersen and Voigtlaender| (2018).

B Proof of Theorem [1]

We first provide additional notations. A\ denotes the Lebesgue measure. For a function f : I? — R, ||f|r» =
sup,eo | f(2)| is a supremum norm. | f|z2 := | f|r2(;p,y is an abbreviation for L?(I%; X)-norm.

Given a set of observations {X7i,...,X,}, let || - |, be an empirical norm defined by
LI =n™" 20 (X%,
i=1

The empirical norm of a random variable is also defined by
1/2 1/2

[Y]ne={n™t X Y2 | and €= {n"" ) &

i€[n] i€[n]

The empirical norms are in fact seminorms, which do not satisfy the strong positivity.
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Let F be a vector space with a norm || - |. For € > 0, the covering number of F with | - || for radius ¢ is defined by

N@Jﬂwm:=m%NﬂmmemUHﬁm]CfsmhmmHffﬁﬂégief}

By the definition of the least square estimator , we obtain the following basic inequality
v =2 <y - £I2
for all f e Enn,(S, B, L). It follows from Y; = f*(X;) + & that
I£* + &= FHI5 < If* + €= £

A simple calculation yields
~ 2 ~
175 = FE < I = AR+ = D0 &P (XG) = f(X)). (7
i=1

In the following, we will fix f € Exn,,(S, B, L) and evaluate each of the three terms in the RHS of . In the
first subsection, we provide a result for approximating f* € Fas 7,8 by DNNs. In the second subsection, we

evaluate the variance of fF . In the last subsection, we combine the results and derive an overall rate.

B.1 Approximate piecewise functions by DNNs

The purpose of this part is to bound the following error

If = ¥l

for properly selected f € Enn,,(S, B, L). To this end, we consider an existing © with properly selected S, B and
L. Our proof is obtained by extending techniques by [Yarotsky| (2017) and |Petersen and Voigtlaender| (2018)).

Fix f* € Fu,ja,p such that f* = Zme[M] Jodgx with f € HP? and R, € R,.; for m € [M]. To approximate
f*, we introduce neural networks Oy, and O, ,, for each m € [M], where the number of layers L and non-zero
parameters S will be specified later.

For approximation, we introduce some specific architectures of DNNs as building blocks. The DNN ©, :=
(4,b) = ((1,..,1)7,0) works as summation: G,[O4](z1,...,zp) = 2ae[p] Td» and the DNN ©y plays a role
for multiplication: G,[©](z1,...,zp) ~ HdE[D] xq. A network ©3 approximates the inner product, i.e.,
GylOs)(@1, .y wnr, @5 -, Tyy) X Xne(ar) Tmy,- The existence and their approximation errors of G;;[©] and
G,[©3] will be shown in Lemma |1| and

We construct a network given by G,[03](G,[01](:), Gy[O2](:)), where ©; and O, consist of M-dimensional
outputs (©f1,...,0¢ ) and (©,.1,...,0, 1), respectively. We evaluate the distance between f* and the
combined neural network :

1f* = GylO3)(Gy[Oa](), s GulOf.m](-), GylOral(-), ooy Gy[Or ar] () | 22

=1 D g = GylO3)(Gy[O741(), s GylO5,](-), GylOr1](-); ooy Gy[Or14]())

me[M] 12

N

Z f;I:L ® 1R§‘n - Z GylOf,m] ® Gy[Orm]

me[M] me[M]

L2
+ Z Gn[@f,nz] ® Gn[@r,m] - Gn[@?»](G??[@f,l](')v ad) Gn[(af,M](')a Gn[@r,l](')a et Gn[@r,M]('))
me[M]

< 2 ”f:; ® 1R:’; - Gn[Gf,m] ® Gn[@nm]”p

me[M]

L2
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+ Z Gn[@f,m] ® Gn[gnm] - Gn[@3](Gn[@f,1](')a i) Gn[(af,M](')a Gn[@T,l](')a S Gn[@r,M]('))
me[M] L2
< X U = GalOrm]) @ GulOrmll e+ D) i ® (s — GulOrm))]
me[M] me[M]
| Y Gal®rm] ® GylOrm] = Gy[O31(Cy[O441(); -y GylO£,211(-), Gy[Or1](); vy Gy [Orar1()
me[M] L2
Z By + Z By, + Bs. (8)
me[M] me[M]

We will bound B,y 1, By, 2 for m € [M] and Bs.

Bound of B; ,,. The Hoélder inequality gives

H (fm = Gul®pm]) ® 1px | 1o <1/ — GulOmll 2 |GyOrm]l o -

Theorem 1 in |Yarotsky (2017) and Theorem A.9 in [Petersen and Voigtlaender| (2018) guarantee that there exists a
neural network ¢, such that 10 4.m| < cy(1+1oga[(1+8)]-(1+B/D), [©fmlo < CreP/P0, |0 f.m[ 0 < €25 ,and
I fre = Gyl©fmll;> < €, where c1,c},s1 > 0 are constants depending only on f*. The neural network ©,. ,, is
given by Lemma 3.4 in [Petersen and Voigtlaender (2018), for which |G, [0, ]| = < 1. Combining these results,
we obtain

Bl,m < €.

Bound of B;,,. We have
|3 ® (1gs = Gol®rm])| o < I Fillee | 1rs — GolOrml| . -

From f¥* e HP(IP), there exists a constant C > 0 such that |f¥ |z < Chx.

Recall that each R¥, € R, s takes the form R} = m _ R}, with RJ, € R, 1 for some B, and thus lpi € HFap.B
defined in |Petersen and Voigtlaender (2018). Then from Lemma 3.4 in |Petersen and Voigtlacnder (2018), there
are some constants ¢, ¢, and s > 0 depending on «, D, and B such that for any ¢ > 0 a neural network ©,, ; can
be found with

e, = GulOmsl]| , <.

O] < (1 +a/D)log(2 + a), [Om.llo < c2e™2P=D/@ and |O,, ;] < e72%2. Note that ca, ch, s2 depend only
on f* for our purpose.

Define a neural network ©,.,,, by

G[Orm] := G[Ox s/ (Gy[Oma](), .., GnlOm s]()),

where ©y ; is given in Lemma [1| below. It follows that

H IRj‘n - GTI [®r,m] HLQ

— &) Gy[Om,]

® Gn[@m,j] - Gn[@r,m]

JjelJ] L2 JjelJ] L2
The first term of the last line of @ is bounded by
® IR, ; — ® Gyl®
jelJ] jelJ] 2
= X [tr, =GOl H 1r. |G (O 7] 12

jelJ] J”G[J]\[J]
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< 2 trn; = GalOmsll e

JelJ]

where |G,[Or,m]|c < 1 is used in the last line. From Lemma E, the second term of @D is upper bounded by
(J — 1)e. We finally obtain

H 'rn Rﬂfl - Gn[e'r‘,m])HLg < CH(QJ - 1)8

Lemma 1. Fiz 0 > 0 arbitrary. There are absolute constants Cx > 0 and sx > 0 such that for any € € (0,1/2),
D' € N there exists a neural network ©y pr of D’-dimensional input with at most (1 + logy, D')/0 layers,
10u.rlo < Cx D', @] < 2, and

[] #a—Gul®x.0(21, ... 20) < (D' —1)e
de[D’] Lw([il’l]Dl)

Proof. We employ the neural network for multiplication © p as Proposition 3 in|Yarotsky| (2017) and Lemma
A.3 in [Petersen and Voigtlaender (2018), and consider a tree-shaped multiplication network. There are D' — 1
multiplication networks and the tree has 1 + log, D’ depth. O

Bound of B;. Take O3 as the neural network in Lemma[2} Then we obtain
Bg < Me.

Lemma 2. Let 0 > 0 be arbitrary. Then, with the constants Cx,s > 0 in Lemma |Z, for each e € (0,1/2) and
D’ e N, there exists a neural network O3 for a 2D’-dimensional input with at most 1 + L layers where L > 1/6
and D' + Cyx D'e=% non-zero parameters such that O3] < e~ and

Gy[Os](x1,...,2p, Xprg1,...,Tapr) — Z TaTp+d| < D'e.
de[D’]
Proof. Let O3 be a neural network defined by
Gn[Os](x) = GylO41(Gy[Ox (21, 2D 1), -, Gy[Ox](xDrs 22D1)),
where Oy is given by Lemmal|l} and ©, is the sammation network given by
O, :=(A,0) = ((1,...,1)T,0).

Then, we evaluate the difference as

Gy[O3](w1, ..., x2pr) — Z TaT2d| = Z GylOx](za, 2D 1a) — Z TATD/1d

de[D'] de[D'] de[D']
< D) Gy O0x(2a, 2prsa) = Tazprral < D'e,
de[D']
where the last inequality uses Lemma O

Combined bound We combine the results about By ., B2, and Bs, then define f € Enn,y(S,B,L) for
approximating f*.
For O,

01] < ¢ (1+ [logy(1+ B)] - (L + 8/D)), [01lo < Mere; ™, 010 < 721,

For O,

1+ logy J

s [0alo < M (e ey BPTAY ey, Ol < e
2

|02 < c’2(1 + [logy(2 + @)] - (1 + /D)) +
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For O3,
|@3‘ <1+ 1/93, |@3|0 <M+ CXM€_03, ”@3”00 < 53?283.

To balance the approximation error and estimation error, the latter of which will be discussed later, we choose
the g; (i =1,2,3) and 6; (i = 2,3) as follows:
1= an /@D oy i /G0 oy g max{—B/(26 + D),n~/Ga¥2D=D} (1)
0o := (2D — 2)/«, 03 := min{(2D — 2)/a, D/B}, (11)
where a1, a2, a3 are arbitrary positive constants.

The total network © to give f := G,[03](G,[01], G,[O2]). With the above choice of &; and 6;, the maximum
numbers of layers, non-zero parameters, and maximum absolute value of parameters in are bounded by

|0] < CL(1 + logy (max{l + 3,2 + a,1 + log, J}))(1 + max{3/D,a/(2D — 2)}),
100 < Merer /P 4+ M (265 P77/ 4 M+ ¢, Me™0
< CSM{l + J max{nP/28+D) nQ(D_l)/(Qa“D—?)}}’

0] < Cpmax{n?528+D)/B p2s(2a+2D=2)/ay

where s > 0 is a positive constant depending only on f*. The approximation error is given by

1 = fllee
< dyMn=P/CPED) o Opaly M(2J — 1)n~o/2e+2D=2) 4 N max{n=F/(26+D) =a/(2a+2D=2)}
< Cupr(2J + 1) M max{n =%/ (F+D) j—a/(2at+2D=2)y (12)

where Cypr > 0 is a constant.

B.2 Evaluate an entropy bound of the estimators by DNNs

Here, we evaluate a variance term of || fL — f*|n in @ through evaluating the term
2 N
-~ DT GHX) = F(X)]
i€[n]

To bound the term, we employ the technique by the empirical process technique Koltchinskii (2006); |Giné and
Nickl (2015)); |Suzuki (2018).

We consider an expectation of the term. Let us define a subset ]T'NN’(; c Enng(S, B, L) by
Frws =1 =711 f = F¥ln <0, f € Enny(S, B, L)}.

Here, we mention that f € F NN, is bounded by providing the following lemma.

Lemma 3. For any f € Enn,,y(S, B, L) with an activation function n satisfying Lipschitz continuity with a
constant 1, we obtain

|flz < Br,

where Br > 0 is a finite constant.

Proof. For each ¢ € [L], consider a transformation
fg(x) = n(Ag$ + bg).
When |z = B, and | vec(Ay)]loo, [|be]c < B, we obtain

| fellLe < |Aez + bellow < DBy B + B.
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Let D := maxge(r] Do, when iteratively we have

Iflee < > [ (DB) <,

te[L]0{0} ee[L)\[4]

by applying that ||, < 1 for an input. O

Due to Lemma with given {X;};c[n], we can apply the chaining (Theorem 2.3.6 in |Giné and Nickl| (2015)) and
obtain

/2

1 o
2E¢ | sup |- Z Gif (X)) | < 8\/517/2
frefyns | ie[n] n 0

\/log 2N (¢ ,Ennm (S, B, L), | - |n)de".

Here, to apply Theorem 2.3.6 in (Giné and Nickl (2015), we set n~ /2 Zie[n] & f(X;) as the stochastic process and
0 as X (tg) in the theorem. Then, to bound the entropy term, we apply an inequality

log N'(e, Enn (9, B, L), | - |n) < log N(e,Enny(S, B, L), | - | =)
2(L + 1)N2>

<(5+1)10g< Be

the last inequality holds by Theorem 14.5 in |Anthony and Bartlett (2009) and Lemma 12 in [Schmidt-Hieber
(2017), and the constant N is defined by

N:= [ @ +1),

Le[L]

where N, be a number of nodes in the /-th layer, and we can obtain N = O((S/L)¥). Then, we obtain

(13)

1 oS+ 16 L+1)N?
2E, sup - 2 GI(X)|| < 42 ni/2 (log( B5) * 1>.

f'eFnn,s i€[n]

With the bound for the expectation term, we apply the Gaussian concentration inequality (Theorem 2.5.8 in
Giné and Nickl (2015)) by setting n~! Die[n) §if'(Xi) as the stochastic process and 52 = | f|? be B? (in Theorem
2.5.8,|Giné and Nickl| (2015)), and obtain

1 — exp(—nu?/20%5?) (14)
1 1 &
<Pre (4 sup |- Z &' (Xy)| < 4E¢ l sup | — Zgif’(Xi) ] +u
freFans | ie[n] frefuns | iz

(15)

VS + 10 L+1)N?
<Pre (4 sup |- Zfif’(X,») < 8v27 nl/er (log( JFB(S) +1)+u ,

~ n
J'€FNNs | ie[n]

for any u > 0. Let us introduce the following notation for simplicity:

v, = 8\/507VSH_

ni/2

To evaluate the variance term, we reform the basic inequality as
2 & ~ ~
- DG = F(Xa) + 15 = FEI% < 17 = 113
i=1
: o LIFL _ £y2 _ %2 * _ 7L|2
and apply an inequality 2| F% — F|2 < |f — 7|2 + |/ — F¥[2, then we have

2 S G (P — FX) + 5IFF — FI ~ 1F = £ 1 < g% - 712,
i=1
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then we have

=2 S G(FH) — 06 + 51T - 712 <205 - I3 (16)
i=1

Consider a lower bound for —%Zie[n] §i(fL(Xi) — f(X3)). To make the bound be valid for all f €
Enng(S,B,L), we let 6 = maX{HfL — fln, Va}. Then, we obtain the bound

23 &(FHX) — £(X0)
]

i€[n

< maX{HfL = flns Vi {V" <log(_;‘1/z - 1)} o

~ 2 2 2
< i (maX{HfL = fln, Vn}> +2 {Vn (logw + 1)} + u,

by using zy < ixg + 2y%. Using this result to , we obtain

N 2 L+1)N? ? 5
- 3 (x5 = i) 2 v (los S e )b i

<2f* = fI2.
If HJ?L — f|n = V5 holds, we obtain

(L+1)N?

2
1 A
T )| 51 - 2 <28 - AR

1 -
17 = 112 = 2{ v (1o
Then, simple calculation yields

(L+1)

. N2 2
17~ 112 < afvi (o E R ) ol - g (1)

If | X — f|» < Vi, the same result holds.
We additionally apply an inequality %H]?L =R < fF =12+ IFE = FI2 to (I7), we obtain

N L+1)N? 2
17~ ez < 01 = 12+ 84 (1og EE 4 ) (18)

with probability at least 1 — exp(—nu?/20262) for all u > 0.

B.3 Combine the results

We combine the results in Sections and and evaluate HfL — [*|lL2(py)- Wwe apply the inequality (I) in

the proof of Lemma 10 of [Schmidt-Hieber| (2017)), we obtain
~ ~ T2 —
175 = ¥y < (1+2)° {Ex 172 = £%12] + (1 + €)= (81og N0, Exv (S, B, D), | - |10) + 18) + 195T} :

for all £,6 € (0,1). Combining the basis inequality (7)), the entropy bound (18), and Lemma 12 in [Schmidt-Hieber
(2017), we obtain

BV,
317 2n(L + 1)N? 19T
+ 2 (8(S + Dlog (L= ) + 18 +T}’

2
7= 1 < 3108 [1F - 1] w8 i (s ) 1) |

B
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by setting e = 0.5 and § = 1/n.
About the first term of the RHS, we have
. . . dP
B[l ] = [ Gerrare= [ G- et <ii- s px@) (9)

[0,1]P [0,1]P z€[0,1]P

by the Holder’s inequality. Here, px is a density of Px and SUDPge[0,1]2 PX (z) < Bp is finite by the assumption.
Also, it follows from Bernstein’s inequality that for any u > 0

2
. . nu
Pr(Hf - n<If- f*||2L2(Px) + u) >1- eXp(*m» (20)

where A is a constant with | f]. < A and | f*], < A, and s, = E|f(X) — f*(X)[2.

In , by the choice f = f, we see that 62 < Cmax{n 2#/(28+D) p=20/(2a4+2D=2)} with some constant
C > 0, and thus exp(—nu?/(20%6%)) converges to zero for u = C,/n with a constant C,, > 0. Additionally,
in (20), since s, < Cmax{n=2A/(28+D) p=22/(2a+2D=2} with some constant C > 0, for u = C,/n, we have
exp(—nu?/(A?s,, + Au)) goes to zero. It follows then

I = 122y

' L+ 1)N? ?
< 30Bp|f — f*|3. + 24{Vn <log(;;v) - 1>} i

T2 on(L + 1)N? 27T
L (8(S+1)log (”(’L)> +18> e
n B n

< C2(2J + 1) M? max{n=20/(26+D) p=20a/2a+2D=2)

1 L+ 1)N? 2 on(L + 1) N2 12C,, + 27T + 18272
Mk, {12802<log(+)+1) +72T210g<n(+)>}+ Cu + 27T + 18217

n BV, B n

with probability converging to one, where C,, Cp > 0 is a constant. Using the bound of the number of non-zero
parameters S < CSM{I + J max{nP/(#+D) p2(D- 1)/(20‘”0’2)}, we obtain

15 = Ly

L+ 1)N? 2 2n(L + 1)N?
< {C§(2J +1)2M2 4 10240%Cs M (1 + J) (log % + 1) 4 72T log <"(;>>}

102402 + 12C,, + 27T + 18272
- .

% max{n725/(2B+D),nfa/(aJerl)} +

Since V,,, V, L, B, N are polynomial to n, this completes the proof of Theorem

C Proof of Theorem [2

We follow a technique developed by [van der Vaart and van Zanten (2011) and evaluate contraction of the posterior
distribution, and show that

Epa |17 (£ 1f = F*32(py) = rCip max{n28/@540) =a/(@D-D}(log n)2(D, ) |
< eXp( r2cy max{n?/(25+D), (D—l)/(aw—l)})’ (21)

for all » > 0. By the contraction, we can immediately obtain the statement of Theorem [2. To this end, we
consider the following two steps. At the first step, we consider a bound for the distribution with an empirical
norm | - ||,,. Secondly, we derive a bound with an expectation with respect to the L?(Px) norm.

In this section, we reuse f € EnnN,y(S, B, L) by the neural network © which is defined in Section E By

employing f , we can use the bounds for an approximation error |f* — f |2, a number of layers in ©, and a
number of non-zero parameters |O|o.
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C.1 Bound with an empirical norm

Step 1. Preparation
To evaluate the convergence, we provide some notions for preparation.

We use addition notation for the dataset 7., := (Y1, ...,Y},) and X;., := (X1, ..., X,,) and a probability distribution
of Y., given Xi., such as

Poy= [ N(f(X:),0?),
i€[n]

with some function f. Let p, s be a density function of P, ;.

Firstly, we provide an event which characterizes a distribution of a likelihood ratio. We apply Lemma 14 in
van der Vaart and van Zanten| (2011) we obtain that

Dn, Y:n
Prge ([ 2283 i1y () = exp(-r (715 = 1710 <)) = 1= expl-nr?9),
Dn, f* (Yln)
for any f and r > 0. To employ the entropy bound, we will update II;(f : |f — f*|ln < r) of this bound as
Iy (f: |f — floe <r). To this end, we apply Lemma {4 then it yields the following bound such for |[f — f*],, as
1 exp(-nr?/B3) < Prx (If = f* < 1f = flos + Bylf = flu +7).

for any r and a parameter By > 0. Using the inequality for | f — f*| .2, we define €, as

en = |f = f*]1a,

and also substitute r = Bj€,, then we have
1= exp(—nB2¢2/B3) < Prx (If = f*ln < If = flue +2Byen)

Then, we consider an event &, as follows and obtain that

n Y:n ;
Pope (€)= Pope ( | mmm > exp(—r)I(f 5 If - flie < Bpen>)

>1- exp(—n9B§ei/8) - exp(—nte%/BJ%), (22)

by substituting r» = 3B,€,,.

Secondly, we provide a test function ¢ : Y;., — z € R which can identify the distribution with f* asymptotically.
Let E,, ¢[-] be an expectation with respect to P, ;. By Lemma 13 in [van der Vaart and van Zanten (2011), there
exists a test ¢ satisfying

B, px[¢r] SON(r/2,ZEnn0(S, B, L), || - [n) exp(—=12/8),
and

sup E, ¢[1—¢,] < exp(fr2/8),
FEENN (S, B, L):|| f—f*|n=r

for any r > 0 and j € N. By the entropy bound for N'(r,Exn,(S, B, L), || - [|n) S N(r,Exny,(S,B,L),| - |L»),
we have

E, rx[é:] <r '8(L + 1)N?exp(—r?/8 + S + 1).

Step 2. Bound an error with fixed design.

To evaluate contraction of the posterior distribution, we decompose the expected posterior distribution as

Eps [Ty (f 2 |f = ¥l = der|Dn)]
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SEps (@] + Eps [E7] + Eps [T (f 2 [ f — ¥l > der|Dy) (1 = 67) 1, ]
=: A, + B, +0C,.

Here, note that a support of Il is included in Eyn (S, B, L) due to the setting of II.
About A,,, we use the bound about ¢, substitute \/ner into r, then obtain

A, < 18(v/ner) N (L 4+ 1)N? exp(—ne*r? /8 + S + 1).

About B, by using the result of &, as and substitute y/ner into r, then we have
B, < exp(—n9Bje. /8) + exp(—nBje. /B7).

p €n

About C,,, we decompose the term as

= Tgp_rx n>4der pn,f(Yl:n)dHf(f)
o By [En,f* [S_NNMS,B,L) (1f =%l >4er} 1 6)

SENN ,(8,B,L) Pn S (Y1 )dILg (f)

(Yin)
§7 L5 p#ter) 5 5wty AT (F)

=Ex |E, s« ; (1—¢r)1s
S]: ppnfik(;flnn dHf(f)
n. £ (Y,
<IEX ]E’mf* J wdﬂ (f)
FEEN N (S, BLY:| f— | >v/Zer P, f (Y1)

x exp(ne*r* )Ty (f = | f = floe < Byen) (1 - ¢r)1aH

_Ex [Ef [ L 2ot an). gy )

€ENN,7(S,B,L):|f—f*|n>v2er Pr, f* (Y1:n)

x exp(ne®r? —logIp(f < |f — = < Bpen))(1 - @)%H

by the definition of £,. Here, we evaluate —logII¢(f : | f — fllze < Bpe,,) as
—logIl;(f : |f = flz= < Byen) < —loglle(0: [|© = Olloe < LyBpen) < Slog((ByLyen) ™),

where © is the parameter which constitute f and L; is a Lipschitz constant of Gy[-]. Thus, the bound for C), is
rewritten as

pn,f(i/l:n)
¢, <Bx|| PotCan) g 10— 6,) 16, 1 dTTs ()
l FEEN N (S, B,LY: | f— ¥ n>/er P fx (Y1) ! !

x exp(ne*r? + Slog((Bfoen)_l))]

2
< exp <TL627‘2 + Slog((ByLyen) ™) — 7"8> )

here, we introduce 1’ is a r for defining ¢, to identify r for &,.. Here, we substitute 7’ = 4y/ner, then we have

Cp < exp (Slog((ByLysen)™ ") — 2ne’r?)

Combining the results about A,,, B,,C, and D,,, we obtain

Eps [T (f 2 [f = f*|n = der|Dy)]
< exp(—ne®r?/8 + S + 1 + log 18(y/ner) ' (L + 1)N?)
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+ exp(—n9BJe; /8) + exp(—nBﬁei/B;) +exp (Slog((BfLyen)™") — 2ne’r?)
< 2exp (— maX{QBZ/& Bf,/B]%}nei)

+ 2exp (277,627“ — 2+ C%max{n~P/F+D) =2D=2/2a+2D=21) |49y 4 1) .

by substituting the order or S as as S = C% max{n~P/(2#+D) ;,=2D=2/(2a+2D=2)}) where C% = CsM(1 +
J(2P + Q) and C% is a constant as C% = Cglogmax{—D/(28 + D),—2D — 2/(2a + 2D — 2)})/(B;L;). By
substituting » = 1 and

€= ey logn = 2JM (2P + Q — 1/2) max{n=#/(28+D) p=a/(a+2D=2)1 |49y
then we obtain
Epe [y (£ 1 1f = £1n > Comax{n=?/@94D) p=e/(02D=2 1og D, ) | - 0,

as n — oo with a constant C. > 0

C.2 The bound with a L?(Px) norm

We evaluate an expectation of the posterior distribution with respect to the | - |2(py) norm. The term is
decomposed as

Eps [T (f 2 [f = f* |2 (py) > 7€l Dn)]
S Eps [Lee] + Eps [16, 107 (f 2 = f*[ln > r€|Dn)]

+ Epx [1e, T (f 2 2| f = f*|L2(pyy > 7€ > [ f = [¥[[n]Dn)]
=i I, + I1, + IT1,.

for all e > 0 and r > 0. Since we already bound I, and I, in step 2, we will bound I11,.

To bound the empirical norm, we provide the following lemma.

Lemma 4. Let a finite constant By > 0 satisfy By = Hf — f*|Lw. Then, for any r >0 and f € Enn (S, B, L),
we have

1 —exp(—nr?/B}) < Prx (If = f*ln < |f = floe + Byllf = f*s2 +1)

Proof. We note that the finite B exists. We know that f € Ennp(S, B, L) is bounded by Lemma E Also,
f* € Far,7.0,8 is bounded since it is a finite sum of continuous functions with compact supports.

We evaluate | f — f*, as
1f = F¥lln < 1F = o+ 1F = £¥ln < [ = Flo= + 1f = £l
To bound the term | f — f*|,, we apply the Hoeffding’s inequality and obtain
1 exp(-2mr2/283) < Prx (1F — £ < If — o) +7)
Using the inequality , we have
Prx (I = fln < IF = Flaaee) +7) < Prx (I = f¥ln < Byllf = F¥luz +7),

then obtain the desired result.

By Lemma [d] we know the bound

1 —exp(—2nmr"?/2B7) < Prx (If = f*ln < If = f* ey +77)
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for all f such as | f||r> < B. WE set 7' = || f — f*|L2(py), hence

nllf — £
o (=

BQ

) <Prx (If = F*n < 21f = f¥l12(py)) -
f

Using this result, we obtain

11T, <Ex l]En,f* U Wdﬂf(fﬂ&”
P )

€2 (SBLYI ¥ 2 g, >re>2l 5 =1 Prg (Vim
x exp (ner"2 —log Iy (/ + |f = flle < Byen))

Prx (If = f*lz2cpx) > 21f = f*]n) dILs(f)

< J‘
fEENN,n(S,B,L):Hfff*|\L2(px)>re

x exp (ne’r® + Slog((ByLyen) ™))

2 o 1 nrie?
< exp | ne’r" + Slog((ByLyse,)™ ) — - |
f

where 7" is a parameter for defining &£,. We substitute r” = r/+/2B, then we have
1 onr?e?
IIT, <exp | Slog((BfLfen) ) — =55
QBf
Following the same discussion in Section we combine the result and obtain
I, +1I,+1II,
< 3exp (— max{9B./8, Bg/BJQc}nei) +exp (Slog((ByLye,)™ ") — nrQGQ/QB?)
+ 3exp (2ne2r — 2+ C%max{n~D/(26+D) =2D=2/2a+2D=2)) |y 4 1) ,
and setting
€ = ey logn = 2JM (2P + Q — 1/2) max{n=#/(28+D) p=a/(@t2D=2)4 149y

yields the same results. Then, we obtain the inequality , hence we show the result.

D Proof of Theorem |3

We discuss minimax optimality of the estimator. We apply the techniques developed by [Yang and Barron (1999)
and utilized by Raskutti et al.| (2012).

Let ﬁM,J7a75(6) C Fu,j.a,p be a packing set of Far,jo g With respect to || - |12, namely, each pair of elements
f. ' € Fuyap satisfies |f — f'|z2 = . Following the discussion by [Yang and Barron| (1999), the minimax
estimation error is lower bounded as

dn

B 5 B
min max Pr — f* > 2 ) > min max Pr — f* > — .
in e Prgs (1= Pl > 5 ) 2in s P (17 Pl > 5 )

Let f' := argming, z s If — f| be a projected estimator f onto ]"\;M’J’Q,B((S). Then, the value is lower
bounded as
min max Prs« (|f— 2y = 6")
I f*eFa 50,800 * 2

>min _max  Pry(f # f)
I feFum,g,0,8(8)
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> minPry (f’;éf),
f/

where f is uniformly generated from F. M, J,0,3(0) and Pry denotes a probability with respect to the uniform
distribution.

We apply the Fano’s inequality (summarized as Theorem 2.10.1 in [Cover and Thomas| (2012))), we obtain
I(Fy; Dy) + log2

log | Fas,a,6(0)]

Pry  (F#f)=1-

where I(Fy;Y.,) is a mutual information between a uniform random variable Fy; on F M. J,0,8(0) and Y7.,,. The
mutual information is evaluated as

I<FU; Yl:n)

1 J Dn, f Yl n) )
B — log ( dPn,f(len)
|]:M,,]7a,g(5 ) fej__ng (5 EFU Pn,Fy (Yl n)]

< max Jlog ( p”,f(len) ) dPn’f(len)

FEF, 10,8(8") EFU [p",FU (ern)]

n Y'n
< max _max Jlog - Pn.s (Viin) APy 5 (Y1:n)
feFn,5,0,8(8") f'€F M, 5,0,6(8") | Ft, 7,08 ()| 0,1 (Vi)

~ Pr.f (Y1)
= max log | Far,g,a.8(0")| + Jlog (
f,fle]:j\/[_"]’ay/j((S/) pn,f’ (Yl:n)

) dP, (Y1)

Here, we know that

10g | Far, 7,0,6(8)] < 1og N (8 /2, Far.ga8, | - |12),

and

og (Lot Win) 2,
J1g<pnf,(y )>dpnf<m)\ xS - 73] < 50

since f, f' € ﬁM,J,a,ﬁ((s/)'

We will provide a bound for log N'(8'/2, Fas, g.0.8: || - [|2). Since Far,s.q,5 is a sum of M functions in Fi 4,3, we
have

log N(8, Fas,g,0,85 | - l22) < Mlog N (&', Fi g | - l22)-

To bound log N (8, F1 jap, | - |12), we define Z,, j := {1g : I” — {0,1}|R € R4 s}. We know that Fi ja 5 =
HP(IP) ® .., hence we obtain

log (8", F10.6: | - 122) < log (8, HP(IP), || - [ 12) + log N (8", Lo, | - | 12)-

By the entropy bound for smooth functions (e.g. Theorem 2.7.1 in [van der Vaart and Wellner| (1996)), we use the
bound

log N'(8', H*(IP), || - | 12) < Cud'= P17,
with a constant C'y > 0. Furthermore, about the covering number of Z,_ ;, we use the relation
1~ Ll = [(1a(o) = 1(0)ds = [(1a(o) - 1 ()i
= J 1R(X)(1 — 1R/(x))dx = dl(R, R/),
xelP
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where R, R’ € R, ; and d; is a difference distance with a Lebesgue measure for sets by Dudley| (1974). By
Theorem 3.1 in Dudley (1974)), we have

log N (8", Ry, d1) < Cr6'~ P~/
with a constant C'y > 0. Then, we bound the entropy of Z, ; as
og (8", Zas, | - |12) = 10g (872, R, ). (23)

To bound the term, we provide the following Lemma.

Lemma 5. We obtain

logJ\f((S, Ra,.hdl) < JN((S/J, Ra717d1).

Proof. Fix § > 0 arbitrary. Let R Ra,1 be a centers of the d-covering balls, and |7~2| = R. Also define that
R := {nje(n)R; | Rj € R}. Obviously, we have R/  Rq ; and |R7| = R”.

Consider R € R4, ;. By its definition, there exist ﬁh e RJ € Ra,1 and satisfy R = e[ ﬁj. Since R is a set of
centers of the covering balls, there exist Rl, e Rjye R and dy (Rj, éj) < ¢ holds.

Here, we define ReR’ as R = mje[J]Rj. Now, we have

di(R,R) < > di(R;,R;) < J5.

jelJ]

Hence, for arbitrary R € R, s, there exists R in R” and their distance is bounded by Jd. Now, we can say that
R7 is a set of centers for covering balls for R, ; with radius J§. Since |[R”| = R, the statement holds. O

Applying Lemma, [5] we obtain
1Og/\/(5/2,Ra7,],d1) < C)\J(a+D—1)/a5/—2(D—1)/a.
Substituting the results yields
log N (8" /2, Far. g, | - |22) < MCyd' =P8 4 MOy §'—2P~ Ve,
We provide a lower bound for log .7?M Ja.s(0)]. Let D(S, Far. g8, - ||2) be a notation for a packing number
Jya,B e, B
|Fa,J.0,8(0)|. Now, we have

log D(6, Fat,s,0,8, || - |22) = 10g D(6, F1, 50,6, | - [ 22)
> max{log D(5, H*(IP), | - |£2),10g D(3,Za,s, | - | 22)}-

Similar to (23)),
IOgD((SvIOc,Ja “ : HLZ) = logD(527Ra,Ja dl) = IOgD(62aRa,17d1)'

About log D(6, H?(IP), | - |12), we apply Lemma 3.5 in Dudley (1974) then
log D(8, H(I), || - | 12) = log N'(8, HP(I7), | - | 12) = cund™P/",

with some constant ¢;;, > 0. About log D(62, R 1, d1), since the definition of R, 1 follows the boundary fragmented
class by restricting sets as a image of smooth embeddings, we apply Theorem 3.1 in |Dudley (1974) and obtain

logD(527Ra,17dl) = IOgN((SQ,RaJ, dl) > clrdfz(D*U/a’

with some constant ¢, > 0.
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Then, we provide a lower bound of PrfNU(f’ # f) as

5 A CyM§' =P8 + C\M§'—2P-D/e 4 262 4 Jog2
max{clh(S_D/fB,clr(S—Q(D—l)/a}

By selecting § and ¢’ as having an order max{n~2#/(28+D) p=a/(a+2D=2)1 and satisfying

| _ CuMy—P 4+ C\M§207D/% 4 352 + log 2
max{c;, 6~ P/8 ¢ 6-2D-1)/a} =

DN =

Then, we finally obtain the statement of Theorem

E Proof of Corollary

Let us introduce a specific form of a piecewise smooth function f : RP? — R as

f((E) = f()(.’b) ® 1x1>g1(w71)(x) + fl(‘r)lavl)gz(wfl)(x)»

where fo, fi € HP(IP) such that sup,c;p fo(z) < infyerp fi(z) and g1, 92 € H*(IP). According to Corollary
6.4.2 in [Korostelev and Tsybakov (2012), all linear estimators do not attain the minimax optimal rate for
estimating function with a form of f. Then, combining the results in Theorem and |3] the statement holds.

F Specific Examples of Other Inefficient Methods

Orthogonal series methods estimate functions using an orthonormal basis. It is one of the most fundamental
methods for nonparametric regression (For an introduction, see Section 1.7 in Tsybakov| (2009)). Let ¢,(x) for
j € N be an orthonormal basis function in L?(Pyx). An estimator for f* by the orthogonal series method is
defined as

)= 3565(x),
JelJ]

where J € N is a hyper-parameter and 4; is a coefficient calculated as 7; := %Zie[n] Y;¢;(X;). When the true

function is smooth, i.e. f* € H?, fs is known to be optimal in the minimax sense [Tsybakov| (2009). About
estimation for f* € Far s, g, Wwe can obtain the following proposition.

Proposition 2. Fix D e N\{1},M,JeN,a > 2 and 8 > 1 arbitrary. Let fs be the estimator by the orthogonal
series method. Suppose ¢;,7 € N are the trigonometric basis or the Fourier basis. Then, with sufficient large n,
there exist f* € Farja.8, Px, a constant Cp > 0, and a parameter

—k > max{—28/(28 + D), —a/(a+ D — 1)},
such that
Eps |IFF = ¥ Ba(pyy | > Con ™.
Proof. We will specify f* € Far ja,5 and distribution of X, and derive an rate of convergence by the estimator
by the Fourier method.

For preparation, we consider D = 1 case. Let X be generated by a distribution which realize a specific case
X; =i/n. Also, we specify f* € Fir ja,5 as

f*(’l}) = 1{1120.5}3
with o = (x1,25) € I2. We consider a decomposition of f* by the trigonometric basis such as
1 if j =0,
¢;(z) = { V2cos(2mkx) if j = 2k,
V2sin(2nkz) if j =2k + 1,
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for k € N. Then, we obtain

fr= > 0k,

jeNuU{0}
Here, 0;‘ is a true coeflicient.

For the estimator, we review its definition as follows. The estimator is written as

jel7]w{0}
where gjth is a coeflicient which is defined as
~ 1
0; =~ D, Yi;(Xa).
i€[n]

Also, J € N are hyper-parameters. Since ¢; is an orthogonal basis in L? and the Parseval’s identity, an expected
loss by the estimator is decomposed as

Epe [IF7 = B | =Epe | 2 (6 -6
| jeNU{0}

=Ep | Y (0,092 + ) (07)?

7je[J]u{0} 3>J
= 2 B |- 002+ Y00
jel[J]w{0} J>J

Here, we apply Proposition 1.16 in [Tsybakov| (2009)) and obtain

A~ 0’2
Eps I = F*1a| = 2 (n+p?>+2<9;*>2
g
2 St O
jelJ]u{0} Jj>J

_ o%(J +1) N 2(9*)27

A\

n = J
where pj :=n"! Dien) [ (Xi)9;(Xi) — (f, ¢;) is a residual.
Considering the Fourier transform of step functions, we obtain 9;‘ = 1_2(;].1)j , hence

1 1 1 1
;J(QW U= keNZU]{O} Tr11k2° (112

where V¥ is the digamma function.
Combining the results, we obtain

o?J+1 1

B px [HfF - f*H2L2(PX)] = n + An2(J +1)2°

We set J = |cyn'/? — 1] with a constant c¢; > 0, then we finally obtain

~ _ 1
Efx [HfF _ f*\|%2(PX)] >n=2/3 <o’2 + 4772> .
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Then, we obtain the lower bound for the D = 1 case.

For general D € N, we set a true function as

f* = ® 1{~>0.5}~

de[D]

Due to the tensor structure, we obtain the decomposed form

fr= Z Z Vit,ip ® bia>

j1eNuU{0} jpeNuU{0} de[D]

where 7, ... j, is a coeflicient such as

JJD

Yirsesip = H 04>

de[D]

using ¢;, in the preceding part. Following the same discussion, we obtain the following lower bound as

Bpe [IFF = Pl | > Z D Y 02

j>J

Then, we set J — 1 = [nY/(*P)| we obtain that the bound is written as

~ _ D
By (177 = P ] 5 0700 (224 525 ).

Then, we obtain the claim of the proposition for any D € Nxo.

O

Proposition E shows that fs can estimate f* € Fys 4,5 consistently since the orthogonal basis in L?(Px) can
reveal all square integrable functions. Its order is, however, strictly worse than the optimal order. Intuitively, the
method requires many basis functions to express the non-smooth structure of f* € Fas 7« 5, and a large number

of bases increases variance of the estimator, hence they lose efficiency.



