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A Additional definitions

The Hölder Space

Let ⌦ be an open subset of RD and � ° 0 a constant. The Hölder space H�p⌦̄q, where ⌦̄ is the closure of ⌦, is
the set of functions f : ⌦̄ Ñ R such that f is continuously differentiable on ⌦̄ up to the order t�u, and the t�u-the
derivatives of f are Hölder continuous with exponent � ´ t�u, namely,

sup
x,x1P⌦̄,x‰x1

|Bafpxq ´ Bafpx1q|
|x ´ x1|�´t�u † 8

for any multi-index a with |a| “ t�u, where Ba denotes a partial derivative.. The norm of the Hölder space is
defined by

}f}H� :“ max
|a|§t�u

sup
xP⌦

|Bafpxq| ` max
|a|“t�u

sup
x,x1P⌦,x‰x1

|Bafpxq ´ Bafpx1q|
|x ´ x1|�´t�u .

Basis Pieces defined by Continuous Embeddings

We redefine a piece as an intersection of J embeddings of D-dimensional balls. we first introduce an extended
notion of a boundary fragment class which is developed by Dudley (1974) and Mammen et al. (1999).

Preliminarily, let SD´1 :“ tx P RD : }x}2 “ 1u is the D ´ 1 dimensional sphere, and let pVj , Fjq`
j“1 be its

coordinate system as a C8-differentiable manifold such that Fj : Vj Ñ B̊D´1 :“ tx P RD´1 | }x} † 1u is a
diffeomorphism. A function g : SD´1 Ñ R is said to be in the Hölder class H↵pSD´1q with ↵ ° 0 if g ˝ F´1

j
is in

H↵pB̊q.
Let BD “ tx P RD | }x} § 1u. A subset R Ä ID is called a basic piece if it satisfies two conditions: (i) there
is a continuous embedding g : BD Ñ RD such that its restriction to the boundary SD´1 is in H↵pSD´1q and
R “ ID X Imagepgq, (ii) there is 1 § i § D and h P H↵pID´1q such that the indicator function of R is given by
the graph

1R “  dpx1, . . . , xi´1, xi ` hpx1, . . . , qxi, . . . , xDq, xi`1, ..., xDq,
where  is the Heaviside function. The condition (i) tells that a basic piece belongs to the boundary fragment

class which is developed by Dudley (1974) and Mammen et al. (1999), while (ii) means R is a set defined by a
horizon function discussed in Petersen and Voigtlaender (2018).

B Proof of Theorem 1

We first provide additional notations. � denotes the Lebesgue measure. For a function f : ID Ñ R, }f}L8 “
sup

xPID |fpxq| is a supremum norm. }f}L2 :“ }f}L2pID;�q is an abbreviation for L2pId;�q-norm.

Given a set of observations tX1, . . . , Xnu, let } ¨ }n be an empirical norm defined by

}f}2
n

“ n´1
nÿ

i“1

fpXiq2.

The empirical norm of a random variable is also defined by

}Y }n :“
¨

˝n´1
ÿ

iPrns
Y 2
i

˛

‚
1{2

and }⇠}n :“
¨

˝n´1
ÿ

iPrns
⇠2
i

˛

‚
1{2

.

The empirical norms are in fact seminorms, which do not satisfy the strong positivity.
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Let F be a vector space with a norm } ¨ }. For ✏ ° 0, the covering number of F with } ¨ } for radius � is defined by

N p✏,F , } ¨ }q :“ inf
!
N | there is tfjujPrNs Ä F such that }f ´ fj} § ✏,@f P F

)
.

By the definition of the least square estimator (2), we obtain the following basic inequality

}Y ´ pfL}2
n

§ }Y ´ f}2
n

for all f P ⌅NN,⌘pS,B, Lq. It follows from Yi “ f˚pXiq ` ⇠i that

}f˚ ` ⇠ ´ pfL}2
n

§ }f˚ ` ⇠ ´ f}2
n
.

A simple calculation yields

}f˚ ´ pfL}2
n

§ }f˚ ´ f}2
n

` 2

n

nÿ

i“1

⇠ip pfLpXiq ´ fpXiqq. (7)

In the following, we will fix f P ⌅NN,⌘pS,B, Lq and evaluate each of the three terms in the RHS of (7). In the
first subsection, we provide a result for approximating f˚ P FM,J,↵,� by DNNs. In the second subsection, we
evaluate the variance of pfF . In the last subsection, we combine the results and derive an overall rate.

B.1 Approximate piecewise functions by DNNs

The purpose of this part is to bound the following error

}f ´ f˚}L2pPXq

for properly selected f P ⌅NN,⌘pS,B, Lq. To this end, we consider an existing ⇥ with properly selected S,B and
L. Our proof is obtained by extending techniques by Yarotsky (2017) and Petersen and Voigtlaender (2018).

Fix f˚ P FM,J,↵,� such that f˚ “ ∞
mPrMs f

˚
m
1
Rm̊

with f˚
m

P H� and R˚
m

P R↵,J for m P rM s. To approximate
f˚, we introduce neural networks ⇥f,m and ⇥r,m for each m P rM s, where the number of layers L and non-zero
parameters S will be specified later.

For approximation, we introduce some specific architectures of DNNs as building blocks. The DNN ⇥` :“
pA, bq “ pp1, ..., 1qJ, 0q works as summation: G⌘r⇥`spx1, ..., xDq “ ∞

dPrDs xd, and the DNN ⇥ˆ plays a role
for multiplication: G⌘r⇥ˆspx1, ..., xDq « ±

dPrDs xd. A network ⇥3 approximates the inner product, i.e.,
G⌘r⇥3spx1, ..., xM , x1

1, ..., x
1
M

q « ∞
mPrMs xmx1

m
. The existence and their approximation errors of G⌘r⇥ˆs and

G⌘r⇥3s will be shown in Lemma 1 and 2.

We construct a network given by G⌘r⇥3spG⌘r⇥1sp¨q, G⌘r⇥2sp¨qq, where ⇥1 and ⇥2 consist of M -dimensional
outputs p⇥f,1, . . . ,⇥f,M q and p⇥r,1, . . . ,⇥r,M q, respectively. We evaluate the distance between f˚ and the
combined neural network :

}f˚ ´ G⌘r⇥3spG⌘r⇥f,1sp¨q, ..., G⌘r⇥f,M sp¨q, G⌘r⇥r,1sp¨q, ..., G⌘r⇥r,M sp¨qq}L2

“

››››››

ÿ

mPrMs
f˚
m
1
Rm̊

´ G⌘r⇥3spG⌘r⇥f,1sp¨q, ..., G⌘r⇥f,M sp¨q, G⌘r⇥r,1sp¨q, ..., G⌘r⇥r,M sp¨qq

››››››
L2

§

››››››

ÿ

mPrMs
f˚
m

b 1
Rm̊

´
ÿ

mPrMs
G⌘r⇥f,ms b G⌘r⇥r,ms

››››››
L2

`

››››››

ÿ

mPrMs
G⌘r⇥f,ms b G⌘r⇥r,ms ´ G⌘r⇥3spG⌘r⇥f,1sp¨q, ..., G⌘r⇥f,M sp¨q, G⌘r⇥r,1sp¨q, ..., G⌘r⇥r,M sp¨qq

››››››
L2

§
ÿ

mPrMs

››f˚
m

b 1
Rm̊

´ G⌘r⇥f,ms b G⌘r⇥r,ms
››
L2



Masaaki Imaizumi, Kenji Fukumizu

`

››››››

ÿ

mPrMs
G⌘r⇥f,ms b G⌘r⇥r,ms ´ G⌘r⇥3spG⌘r⇥f,1sp¨q, ..., G⌘r⇥f,M sp¨q, G⌘r⇥r,1sp¨q, ..., G⌘r⇥r,M sp¨qq

››››››
L2

§
ÿ

mPrMs
}pf˚

m
´ G⌘r⇥f,msq b G⌘r⇥r,ms}

L2 `
ÿ

mPrMs

››f˚
m

b p1
Rm̊

´ G⌘r⇥r,msq
››
L2

`

››››››

ÿ

mPrMs
G⌘r⇥f,ms b G⌘r⇥r,ms ´ G⌘r⇥3spG⌘r⇥f,1sp¨q, ..., G⌘r⇥f,M sp¨q, G⌘r⇥r,1sp¨q, ..., G⌘r⇥r,M sp¨qq

››››››
L2

“:
ÿ

mPrMs
B1,m `

ÿ

mPrMs
B2,m ` B3. (8)

We will bound Bm,1, Bm,2 for m P rM s and B3.

Bound of B1,m. The Hölder inequality gives
››pf˚

m
´ G⌘r⇥f,msq b 1

Rm̊

››
L2 § }f˚

m
´ G⌘r⇥f,ms}

L2 }G⌘r⇥r,ms}
L8 .

Theorem 1 in Yarotsky (2017) and Theorem A.9 in Petersen and Voigtlaender (2018) guarantee that there exists a
neural network ⇥f,m such that |⇥f,m| § c1

1p1`log2rp1`�qs¨p1`�{Dq, }⇥f,m}0 § C 1
1✏

´D{�0, }⇥f,m}8 § ✏´2s1 ,and
}f˚

m
´ G⌘r⇥f,ms}

L2 † ✏, where c1, c1
1, s1 ° 0 are constants depending only on f˚. The neural network ⇥r,m is

given by Lemma 3.4 in Petersen and Voigtlaender (2018), for which }G⌘r⇥r,ms}L8 § 1. Combining these results,
we obtain

B1,m † ✏.

Bound of B2,m. We have
››f˚

m
b p1

Rm̊
´ G⌘r⇥r,msq

››
L2 § }f˚

m
}
L8

››1
Rm̊

´ G⌘r⇥r,ms
››
L2 .

From f˚
m

P H�pIDq, there exists a constant CH ° 0 such that }f˚
m

}L2 § CH .

Recall that each R˚
m

P R↵,J takes the form R˚
m

“ XJ

j“1R
j

m
with Rj

m
P R↵,1 for some B, and thus 1

R
j
m

P HF↵,D,B

defined in Petersen and Voigtlaender (2018). Then, from Lemma 3.4 in Petersen and Voigtlaender (2018), there
are some constants c1, c, and s ° 0 depending on ↵, D, and B such that for any " ° 0 a neural network ⇥m,j can
be found with ›››1

R
j
m

´ G⌘r⇥m,js
›››
L2

§ ",

|⇥m,j | § c1
2p1 ` ↵{Dq logp2 ` ↵q, }⇥m,j}0 § c2"´2pD´1q{↵, and }⇥m,j}8 § "´2s2 . Note that c2, c1

2, s2 depend only
on f˚ for our purpose.

Define a neural network ⇥r,m by

Gr⇥r,ms :“ Gr⇥ˆ,J spG⌘r⇥m,1sp¨q, . . . , G⌘r⇥m,J sp¨qq,

where ⇥ˆ,J is given in Lemma 1 below. It follows that
››1

Rm̊
´ G⌘r⇥r,ms

››
L2

§
›››››1Rm̊

´
â

jPrJs
G⌘r⇥m,js

›››››
L2

`
›››››

â

jPrJs
G⌘r⇥m,js ´ G⌘r⇥r,ms

›››››
L2

(9)

The first term of the last line of (9) is bounded by
›››››

â

jPrJs
1Rm,j ´

â

jPrJs
G⌘r⇥m,js

›››››
L2

“
ÿ

jPrJs

››1Rm,j ´ G⌘r⇥m,js
››
L2

jπ

j1“1

›››1Rm,j1

›››
L2

π

j2PrJszrjs
}G⌘r⇥m,j2 s}L2
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§
ÿ

jPrJs

››1Rm,j ´ G⌘r⇥m,js
››
L2 ,

where }G⌘r⇥r,ms}8 § 1 is used in the last line. From Lemma 1, the second term of (9) is upper bounded by
pJ ´ 1q". We finally obtain

B2,m :“
››f˚

m
b p1

Rm̊
´ G⌘r⇥r,msq

››
L2 § CHp2J ´ 1q".

Lemma 1. Fix ✓ ° 0 arbitrary. There are absolute constants Cˆ ° 0 and sˆ ° 0 such that for any ✏ P p0, 1{2q,
D1 P N there exists a neural network ⇥ˆ,D1 of D1

-dimensional input with at most p1 ` log2 D
1q{✓ layers,

}⇥ˆ,D1 }0 § CˆD1✏´✓
, }⇥1

2}8 § ✏´2s
, and

››››››

π

dPrD1s
xd ´ G⌘r⇥ˆ,D1 spx1, ..., xD1 q

››››››
L8pr´1,1sD1 q

§ pD1 ´ 1q✏.

Proof. We employ the neural network for multiplication ⇥ˆ,D1 as Proposition 3 in Yarotsky (2017) and Lemma
A.3 in Petersen and Voigtlaender (2018), and consider a tree-shaped multiplication network. There are D1 ´ 1
multiplication networks and the tree has 1 ` log2 D

1 depth.

Bound of B3. Take ⇥3 as the neural network in Lemma 2. Then we obtain

B3 § M✏.

Lemma 2. Let ✓ ° 0 be arbitrary. Then, with the constants Cˆ, s ° 0 in Lemma 1, for each ✏ P p0, 1{2q and

D1 P N, there exists a neural network ⇥3 for a 2D1
-dimensional input with at most 1 ` L layers where L ° 1{✓

and D1 ` CˆD1✏´✓
non-zero parameters such that }⇥3}8 § ✏´s

and

ˇ̌
ˇ̌
ˇ̌G⌘r⇥3spx1, . . . , xD1 , XD1`1, . . . , x2D1 q ´

ÿ

dPrD1s
xdxD1`d

ˇ̌
ˇ̌
ˇ̌ § D1✏.

Proof. Let ⇥3 be a neural network defined by

G⌘r⇥3spxq “ G⌘r⇥`spG⌘r⇥ˆspx1, xD1`1q, ..., G⌘r⇥ˆspxD1 , x2D1 qq,

where ⇥ˆ is given by Lemma 1, and ⇥` is the sammation network given by

⇥` :“ pA, bq “ pp1, . . . , 1qJ, 0q.

Then, we evaluate the difference as
ˇ̌
ˇ̌
ˇ̌G⌘r⇥3spx1, ..., x2D1 q ´

ÿ

dPrD1s
xdx2d

ˇ̌
ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ̌

ÿ

dPrD1s
G⌘r⇥ˆspxd, xD1`dq ´

ÿ

dPrD1s
xdxD1`d

ˇ̌
ˇ̌
ˇ̌

§
ÿ

dPrD1s
|G⌘r⇥ˆspxd, xD1`dq ´ xdxD1`d| § D1✏,

where the last inequality uses Lemma 1.

Combined bound We combine the results about B1,m, B2,m and B3, then define 9f P ⌅NN,⌘pS,B, Lq for
approximating f˚.

For ⇥1

|⇥1| § c1
1

`
1 ` rlog2p1 ` �qs ¨ p1 ` �{Dq

˘
, |⇥1|0 § Mc1"

´D{�
1 , }⇥1}8 § "´2s1 .

For ⇥2,

|⇥2| § c1
2

`
1 ` rlog2p2 ` ↵qs ¨ p1 ` ↵{Dq

˘
` 1 ` log2 J

✓2
, |⇥2|0 § MJ

`
c2"

´p2D´2q{↵
2 ` cˆ"

´✓2
2

˘
, }⇥2}8 § "´2s2 .
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For ⇥3,
|⇥3| § 1 ` 1{✓3, |⇥3|0 § M ` cˆM"´✓3 , }⇥3}8 § "´2s3

3 .

To balance the approximation error and estimation error, the latter of which will be discussed later, we choose
the "i (i “ 1, 2, 3) and ✓i (i “ 2, 3) as follows:

"1 :“ a1n
´�{p2�`Dq, "2 :“ a2n

´↵{p2↵`2D´2q, "3 :“ a3 maxt´�{p2� ` Dq, n´↵{p2↵`2D´2qu, (10)
✓2 :“ p2D ´ 2q{↵, ✓3 :“ mintp2D ´ 2q{↵, D{�u, (11)

where a1, a2, a3 are arbitrary positive constants.

The total network 9⇥ to give 9f :“ G⌘r⇥3spG⌘r⇥1s, G⌘r⇥2sq. With the above choice of "i and ✓i, the maximum
numbers of layers, non-zero parameters, and maximum absolute value of parameters in are bounded by

|⇥| § CLp1 ` log2
`
maxt1 ` �, 2 ` ↵, 1 ` log2 Ju

˘
qp1 ` maxt�{D,↵{p2D ´ 2quq,

}⇥}0 § Mc1"
´D{�
1 ` MJ

`
c2"

´p2D´2q{↵
2

˘
` M ` cˆM"´✓3

§ CSM
!
1 ` J maxtnD{p2�`Dq, n2pD´1q{p2↵`2D´2qu

)
,

}⇥}8 § CB maxtn2sp2�`Dq{� , n2sp2↵`2D´2q{↵u,

where s ° 0 is a positive constant depending only on f˚. The approximation error is given by

}f˚ ´ 9f}L2

§ a1
1Mn´�{p2�`Dq ` CHa1

2Mp2J ´ 1qn´↵{p2↵`2D´2q ` M maxtn´�{p2�`Dq, n´↵{p2↵`2D´2qu
§ Caprp2J ` 1qM maxtn´�{p2�`Dq, n´↵{p2↵`2D´2qu, (12)

where Capr ° 0 is a constant.

B.2 Evaluate an entropy bound of the estimators by DNNs

Here, we evaluate a variance term of } pfL ´ f˚}n in (7) through evaluating the term
ˇ̌
ˇ̌
ˇ̌
2

n

ÿ

iPrns
⇠ip pfLpXiq ´ fpXiqq

ˇ̌
ˇ̌
ˇ̌ .

To bound the term, we employ the technique by the empirical process technique Koltchinskii (2006); Giné and
Nickl (2015); Suzuki (2018).

We consider an expectation of the term. Let us define a subset rFNN,� Ä ⌅NN,⌘pS,B, Lq by

rFNN,� :“ tf ´ pfL : }f ´ pfL}n § �, f P ⌅NN,⌘pS,B, Lqu.

Here, we mention that f P rFNN,� is bounded by providing the following lemma.
Lemma 3. For any f P ⌅NN,⌘pS,B, Lq with an activation function ⌘ satisfying Lipschitz continuity with a

constant 1, we obtain

}f}L8 § BF ,

where BF ° 0 is a finite constant.

Proof. For each ` P rLs, consider a transformation

f`pxq :“ ⌘pA`x ` b`q.

When }x}8 “ Bx and } vecpA`q}8, }b`}8 § B, we obtain

}f`}L8 § }A`x ` b`}8 § D`BxB ` B.



Deep Neural Networks Learn Non-Smooth Functions Effectively

Let D̄ :“ max`PrLs D`, when iteratively we have

}f}L8 §
ÿ

`PrLsYt0u

π

`1PrLszr`s
pD̄Bq`1 † 8,

by applying that }x}8 § 1 for an input.

Due to Lemma 3, with given tXiuiPrns, we can apply the chaining (Theorem 2.3.6 in Giné and Nickl (2015)) and
obtain

2E⇠

»

– sup
f 1P rFNN,�

ˇ̌
ˇ̌
ˇ̌
1

n

ÿ

iPrns
⇠if

1pXiq

ˇ̌
ˇ̌
ˇ̌

fi

fl § 8
?
2

�

n1{2

ª
�{2

0

b
log 2N p✏1,⌅NN,⌘pS,B, Lq, } ¨ }nqd✏1.

Here, to apply Theorem 2.3.6 in Giné and Nickl (2015), we set n´1{2 ∞
iPrns ⇠ifpXiq as the stochastic process and

0 as Xpt0q in the theorem. Then, to bound the entropy term, we apply an inequality

logN p✏,⌅NN,⌘pS,B, Lq, } ¨ }nq § logN p✏,⌅NN,⌘pS,B, Lq, } ¨ }L8 q

§ pS ` 1q log
ˆ
2pL ` 1qN2

B✏

˙
,

the last inequality holds by Theorem 14.5 in Anthony and Bartlett (2009) and Lemma 12 in Schmidt-Hieber
(2017), and the constant N is defined by

N :“
π

`PrLs
pN` ` 1q,

where N` be a number of nodes in the `-th layer, and we can obtain N “ OppS{LqLq. Then, we obtain

2E⇠

»

– sup
f 1P rFNN,�

ˇ̌
ˇ̌
ˇ̌
1

n

ÿ

iPrns
⇠if

1pXiq

ˇ̌
ˇ̌
ˇ̌

fi

fl § 4
?
2
�

?
S ` 1�

n1{2

ˆ
log

pL ` 1qN2

B�
` 1

˙
. (13)

With the bound (13) for the expectation term, we apply the Gaussian concentration inequality (Theorem 2.5.8 in
Giné and Nickl (2015)) by setting n´1

∞
iPrns ⇠if

1pXiq as the stochastic process and �2 • }f}2
n

be B2 (in Theorem
2.5.8, Giné and Nickl (2015)), and obtain

1 ´ expp´nu2{2�2�2q (14)

§ Pr⇠

¨

˝4 sup
f 1P rFNN,�

ˇ̌
ˇ̌
ˇ̌
1

n

ÿ

iPrns
⇠if

1pXiq

ˇ̌
ˇ̌
ˇ̌ § 4E⇠

«
sup

f 1P rFNN,�

ˇ̌
ˇ̌
ˇ
1

n

nÿ

i“1

⇠if
1pXiq

ˇ̌
ˇ̌
ˇ

�
` u

˛

‚

§ Pr⇠

¨

˝4 sup
f 1P rFNN,�

ˇ̌
ˇ̌
ˇ̌
1

n

ÿ

iPrns
⇠if

1pXiq

ˇ̌
ˇ̌
ˇ̌ § 8

?
2
�

?
S ` 1�

n1{2

ˆ
log

pL ` 1qN2

B�
` 1

˙
` u

˛

‚, (15)

for any u ° 0. Let us introduce the following notation for simplicity:

Vn :“ 8
?
2
�

?
S ` 1

n1{2 .

To evaluate the variance term, we reform the basic inequality (7) as

´ 2

n

nÿ

i“1

⇠ip pfLpXiq ´ fpXiqq ` }f˚ ´ pfL}2
n

§ }f˚ ´ f}2
n
,

and apply an inequality 1
2} pfL ´ f}2

n
§ }f ´ f˚}2

n
` }f˚ ´ pfL}2

n
, then we have

´ 2

n

nÿ

i“1

⇠ip pfLpXiq ´ fpXiqq ` 1

2
} pfL ´ f}2

n
´ }f ´ f˚}2

n
§ }f˚ ´ f}2

n
,
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then we have

´ 2

n

nÿ

i“1

⇠ip pfLpXiq ´ fpXiqq ` 1

2
} pfL ´ f}2

n
§ 2}f˚ ´ f}2

n
. (16)

Consider a lower bound for ´ 2
n

∞
iPrns ⇠ip pfLpXiq ´ fpXiqq. To make the bound (15) be valid for all f P

⌅NN,⌘pS,B, Lq, we let � “ maxt} pfL ´ f}n, Vnu. Then, we obtain the bound
ˇ̌
ˇ̌
ˇ̌
2

n

ÿ

iPrns
⇠ip pfLpXiq ´ fpXiqq

ˇ̌
ˇ̌
ˇ̌

§ maxt} pfL ´ f}n, Vnu
"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*
` u

§ 1

4

´
maxt} pfL ´ f}n, Vnu

¯2
` 2

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

` u,

by using xy § 1
4x

2 ` 2y2. Using this result to (16), we obtain

´ 1

4

´
maxt} pfL ´ f}n, Vnu

¯2
´ 2

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

´ u ` 1

2
} pfL ´ f}2

n

§ 2}f˚ ´ f}2
n
.

If } pfL ´ f}n • Vn holds, we obtain

´1

4
} pfL ´ f}2

n
´ 2

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

´ u ` 1

2
} pfL ´ f}2

n
§ 2}f˚ ´ f}2

n
.

Then, simple calculation yields

} pfL ´ f}2
n

§ 4

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

` 2u ` 4}f˚ ´ f}2
n
. (17)

If } pfL ´ f}n § Vn, the same result holds.

We additionally apply an inequality 1
2} pfL ´ f˚}2

L2 § }f˚ ´ f}2
n

` } pfL ´ f}2
n

to (17), we obtain

} pfL ´ f˚}2
n

§ 10}f˚ ´ f}2
n

` 8

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

` 4u, (18)

with probability at least 1 ´ expp´nu2{2�2�2q for all u ° 0.

B.3 Combine the results

We combine the results in Sections B.1 and B.2 and evaluate } pfL ´ f˚}L2pPXq. Wwe apply the inequality (I) in
the proof of Lemma 10 of Schmidt-Hieber (2017), we obtain

} pfL ´ f˚}2
L2pPXq § p1 ` "q2

"
EX

”
} pfL ´ f˚}2

n

ı
` p1 ` "qT

2

n"
p8 logN p�,⌅NN,⌘pS,B, Lq, } ¨ }8q ` 18q ` 19�T

*
,

for all ", � P p0, 1q. Combining the basis inequality (7), the entropy bound (18), and Lemma 12 in Schmidt-Hieber
(2017), we obtain

} pfL ´ f˚}2
L2pPXq § 3

!
10EX

”
} 9f ´ f˚}2

n

ı
` 8

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

` 4u

` 3T 2

n

ˆ
8pS ` 1q log

ˆ
2npL ` 1qN2

B

˙
` 18

˙
` 19T

n

)
,
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by setting " “ 0.5 and � “ 1{n.

About the first term of the RHS, we have

EX

”
} 9f ´ f˚}2

n

ı
“

ª

r0,1sD
p 9f ´ f˚q2dPX “

ª

r0,1sD
p 9f ´ f˚q2d�dPX

d�
§ } 9f ´ f˚}2

L2 sup
xPr0,1sD

pXpxq (19)

by the Hölder’s inequality. Here, pX is a density of PX and sup
xPr0,1sD pXpxq § BP is finite by the assumption.

Also, it follows from Bernstein’s inequality that for any u ° 0

Pr
´

} 9f ´ f˚}2
n

§ } 9f ´ f˚}2
L2pPXq ` u

¯
• 1 ´ exp

´
´ nu2

A2sn ` Au

¯
, (20)

where A is a constant with } 9f}8 § A and }f˚}8 § A, and sn “ E| 9fpXq ´ f˚pXq|2.
In (18), by the choice f “ 9f , we see that �2 § Cmaxtn´2�{p2�`Dq, n´2↵{p2↵`2D´2qu with some constant
C ° 0, and thus expp´nu2{p2�2�2qq converges to zero for u “ Cu{n with a constant Cn ° 0. Additionally,
in (20), since sn § Cmaxtn´2�{p2�`Dq, n´2↵{p2↵`2D´2qu with some constant C ° 0, for u “ Cu{n, we have
expp´nu2{pA2sn ` Auqq goes to zero. It follows then

} pfL ´ f˚}2
L2pPXq

§ 30BP } 9f ´ f˚}2
L2 ` 24

"
Vn

ˆ
log

pL ` 1qN2

BVn

` 1

˙*2

` 12u

` 9T 2

n

ˆ
8pS ` 1q log

ˆ
2npL ` 1qN2

B

˙
` 18

˙
` 27T

n

§ C2
a

p2J ` 1q2M2 maxtn´2�{p2�`Dq, n´2↵{p2↵`2D´2qu

` S ` 1

n

#
128�2

ˆ
log

pL ` 1qN2

BVn

` 1

˙2

` 72T 2 log

ˆ
2npL ` 1qN2

B

˙+
` 12Cu ` 27T ` 182T 2

n
,

with probability converging to one, where Ca, Cb ° 0 is a constant. Using the bound of the number of non-zero
parameters S § CSM

!
1 ` J maxtnD{p2�`Dq, n2pD´1q{p2↵`2D´2q

)
, we obtain

} pfL ´ f˚}2
L2pPXq

§
#
C2

a
p2J ` 1q2M2 ` 1024�2CSMp1 ` Jq

ˆ
log

pL ` 1qN2

BVn

` 1

˙2

` 72T 2 log

ˆ
2npL ` 1qN2

B

˙+

ˆ maxtn´2�{p2�`Dq, n´↵{p↵`D´1qu ` 1024�2 ` 12Cu ` 27T ` 182T 2

n
.

Since Vn, V, L,B,N are polynomial to n, this completes the proof of Theorem 1.

C Proof of Theorem 2

We follow a technique developed by van der Vaart and van Zanten (2011) and evaluate contraction of the posterior
distribution, and show that

Ef˚

”
⇧f

´
f : }f ´ f˚}2

L2pPXq • rCB maxtn´2�{p2�`Dq, n´↵{p↵`D´1quplog nq2|Dn

¯ı

§ exp
´

´r2c2 maxtnD{p2�`Dq, npD´1q{p↵`D´1qu
¯
, (21)

for all r ° 0. By the contraction, we can immediately obtain the statement of Theorem 2. To this end, we
consider the following two steps. At the first step, we consider a bound for the distribution with an empirical
norm } ¨ }n. Secondly, we derive a bound with an expectation with respect to the L2pPXq norm.

In this section, we reuse 9f P ⌅NN,⌘pS,B, Lq by the neural network 9⇥ which is defined in Section B.1. By
employing 9f , we can use the bounds for an approximation error }f˚ ´ 9f}L2 , a number of layers in 9⇥, and a
number of non-zero parameters } 9⇥}0.
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C.1 Bound with an empirical norm

Step 1. Preparation

To evaluate the convergence, we provide some notions for preparation.

We use addition notation for the dataset Y1:n :“ pY1, ..., Ynq and X1:n :“ pX1, ..., Xnq and a probability distribution
of Y1:n given X1:n such as

Pn,f “
π

iPrns
N pfpXiq,�2q,

with some function f . Let pn,f be a density function of Pn,f .

Firstly, we provide an event which characterizes a distribution of a likelihood ratio. We apply Lemma 14 in
van der Vaart and van Zanten (2011) we obtain that

Pn,f˚

ˆª
pn,f pY1:nq
pn,f˚ pY1:nqd⇧f pfq • expp´r2q⇧f pf : }f ´ f˚}n † rq

˙
• 1 ´ expp´nr2{8q,

for any f and r ° 0. To employ the entropy bound, we will update ⇧f pf : }f ´ f˚}n † rq of this bound as
⇧f pf : }f ´ 9f}L8 † rq. To this end, we apply Lemma 4 then it yields the following bound such for }f ´ f˚}n as

1 ´ expp´nr2{B2
f

q § PrX
´

}f ´ f˚}n § }f ´ 9f}L8 ` Bp} 9f ´ f˚}L2 ` r
¯
,

for any r and a parameter Bf ° 0. Using the inequality (12) for } 9f ´ f˚}L2 , we define ✏n as

✏n • } 9f ´ f˚}L2 ,

and also substitute r “ Bp✏n, then we have

1 ´ expp´nB2
p
✏2
n

{B2
f

q § PrX
´

}f ´ f˚}n § }f ´ 9f}L8 ` 2Bp✏n
¯
.

Then, we consider an event Er as follows and obtain that

Pn,f˚ pErq :“ Pn,f˚

ˆª
pn,f pY1:nq
pn,f˚ pY1:nqd⇧f pfq • expp´r2q⇧f pf : }f ´ 9f}L8 † Bp✏nq

˙

• 1 ´ expp´n9B2
p
✏2
n

{8q ´ expp´nB2
p
✏2
n

{B2
f

q, (22)

by substituting r “ 3Bp✏n.

Secondly, we provide a test function � : Y1:n fiÑ z P R which can identify the distribution with f˚ asymptotically.
Let En,f r¨s be an expectation with respect to Pn,f . By Lemma 13 in van der Vaart and van Zanten (2011), there
exists a test � satisfying

En,f˚ r�rs § 9N pr{2,⌅NN,⌘pS,B, Lq, } ¨ }nq expp´r2{8q,

and

sup
fP⌅NN,⌘pS,B,Lq:}f´f˚}n•r

En,f r1 ´ �rs § expp´r2{8q,

for any r ° 0 and j P N. By the entropy bound for N pr,⌅NN,⌘pS,B, Lq, } ¨ }nq § N pr,⌅NN,⌘pS,B, Lq, } ¨ }L8 q,
we have

En,f˚ r�rs § r´118pL ` 1qN2 expp´r2{8 ` S ` 1q.

Step 2. Bound an error with fixed design.

To evaluate contraction of the posterior distribution, we decompose the expected posterior distribution as

Ef˚ r⇧f pf : }f ´ f˚}n • 4✏r|Dnqs
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§ Ef˚ r�rs ` Ef˚ rEc

r
s ` Ef˚ r⇧f pf : }f ´ f˚}n ° 4✏r|Dnqp1 ´ �rq1Er s

“: An ` Bn ` Cn.

Here, note that a support of ⇧f is included in ⌅NN,⌘pS,B, Lq due to the setting of ⇧.

About An, we use the bound about �r substitute
?
n✏r into r, then obtain

An § 18p?
n✏rq´1pL ` 1qN2 expp´n✏2r2{8 ` S ` 1q.

About Bn, by using the result of Er as (22) and substitute
?
n✏r into r, then we have

Bn § expp´n9B2
p
✏2
n

{8q ` expp´nB2
p
✏2
n

{B2
f

q.

About Cn, we decompose the term as

Cn “ EX

«
En,f˚

« ≥
⌅NN,⌘pS,B,Lq 1t}f´f˚}n°4✏rupn,f pY1:nqd⇧f pfq

≥
⌅NN,⌘pS,B,Lq pn,f pY1:nqd⇧f pfq p1 ´ �rq1Er

��

“ EX

»

–En,f˚

»

–
≥
F 1t}f´f˚}n°4✏ru

pn,f pY1:nq
pn,f˚ pY1:nqd⇧f pfq

≥
F

pn,f pY1:nq
pn,f˚ pY1:nqd⇧f pfq

p1 ´ �rq1Er

fi

fl

fi

fl

§ EX

«
En,f˚

«ª

fP⌅NN,⌘pS,B,Lq:}f´f˚}n°?
2✏r

pn,f pYa:nq
pn,f˚ pY1:nqd⇧f pfq

ˆ exppn✏2r2q⇧f pf : }f ´ 9f}L8 † Bp✏nq´1p1 ´ �rq1Er

��

“ EX

«
En,f˚

«ª

fP⌅NN,⌘pS,B,Lq:}f´f˚}n°?
2✏r

pn,f pYa:nq
pn,f˚ pY1:nqd⇧f pfq

ˆ exppn✏2r2 ´ log⇧f pf : }f ´ 9f}L8 † Bp✏nqqp1 ´ �rq1Er

��

by the definition of Er. Here, we evaluate ´ log⇧f pf : }f ´ 9f}L8 † Bp✏nq as

´ log⇧f pf : }f ´ 9f}L8 † Bp✏nq § ´ log⇧⇥p⇥ : }⇥´ 9⇥}8 † LfBp✏nq § S logppBfLf ✏nq´1q,

where 9⇥ is the parameter which constitute 9f and Lf is a Lipschitz constant of G⌘r¨s. Thus, the bound for Cn is
rewritten as

Cn § EX

«ª

fP⌅NN,⌘pS,B,Lq:}f´f˚}n°?
2✏r

pn,f pY1:nq
pn,f˚ pY1:nqEn,f rp1 ´ �rq1Er s d⇧f pfq

ˆ exppn✏2r2 ` S logppBfLf ✏nq´1qq
�

§ exp

ˆ
n✏2r2 ` S logppBfLf ✏nq´1q ´ r12

8

˙
,

here, we introduce r1 is a r for defining �r to identify r for Er. Here, we substitute r1 “ 4
?
n✏r, then we have

Cn § exp
`
S logppBfLf ✏nq´1q ´ 2n✏2r2

˘

Combining the results about An, Bn, Cn and Dn, we obtain

Ef˚ r⇧f pf : }f ´ f˚}n • 4✏r|Dnqs
§ expp´n✏2r2{8 ` S ` 1 ` log 18p?

n✏rq´1pL ` 1qN2q
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` expp´n9B2
p
✏2
n

{8q ` expp´nB2
p
✏2
n

{B2
f

q ` exp
`
S logppBfLf ✏nq´1q ´ 2n✏2r2

˘

§ 2 exp
`
´maxt9B2

p
{8, B2

p
{B2

f
un✏2

n

˘

` 2 exp
´
2n✏2r ´ 2 ` C2

S
maxtn´D{p2�`Dq, n´2D´2{p2↵`2D´2quq log n ` 1

¯
.

by substituting the order or S as (11) as S “ C 1
S
maxtn´D{p2�`Dq, n´2D´2{p2↵`2D´2quq where C 1

S
“ CSMp1 `

Jp2D ` Qq and C2
S

is a constant as C2
S

“ C 1
S
logmaxt´D{p2� ` Dq,´2D ´ 2{p2↵ ` 2D ´ 2quq{pBfLf q. By

substituting r “ 1 and

✏ “ ✏n log n “ 2JMp2D ` Q ´ 1{2qmaxtn´�{p2�`Dq, n´↵{p↵`2D´2qu log n,

then we obtain

Ef˚

”
⇧f

´
f : }f ´ f˚}n • C✏ maxtn´�{p2�`Dq, n´↵{p↵`2D´2qu log n|Dn

¯ı
Ñ 0,

as n Ñ 8 with a constant C✏ ° 0

C.2 The bound with a L2pPXq norm

We evaluate an expectation of the posterior distribution with respect to the } ¨ }L2pPXq norm. The term is
decomposed as

Ef˚
“
⇧f pf : }f ´ f˚}L2pPXq ° r✏|Dnq

‰

§ Ef˚
“
1Ec

r

‰
` Ef˚ r1Er⇧f pf : 2}f ´ f˚}n ° r✏|Dnqs

` Ef˚
“
1Er⇧f pf : 2}f ´ f˚}L2pPXq ° r✏ ° }f ´ f˚}n|Dnq

‰

“: In ` IIn ` IIIn.

for all ✏ ° 0 and r ° 0. Since we already bound In and IIn in step 2, we will bound IIIn.

To bound the empirical norm, we provide the following lemma.
Lemma 4. Let a finite constant Bf ° 0 satisfy Bf • } 9f ´ f˚}L8 . Then, for any r ° 0 and f P ⌅NN,⌘pS,B, Lq,
we have

1 ´ expp´nr2{B2
f

q § PrX
´

}f ´ f˚}n § }f ´ 9f}L8 ` Bp} 9f ´ f˚}L2 ` r
¯
.

Proof. We note that the finite Bf exists. We know that 9f P ⌅NN,⌘pS,B, Lq is bounded by Lemma 3. Also,
f˚ P FM,J,↵,� is bounded since it is a finite sum of continuous functions with compact supports.

We evaluate }f ´ f˚}n as

}f ´ f˚}n § }f ´ 9f}n ` } 9f ´ f˚}n § }f ´ 9f}L8 ` } 9f ´ f˚}n.

To bound the term } 9f ´ f˚}n, we apply the Hoeffding’s inequality and obtain

1 ´ expp´2nr2{2B2
f

q § PrX
´

} 9f ´ f˚}n § } 9f ´ f˚}L2pPXq ` r
¯
.

Using the inequality (19), we have

PrX
´

} 9f ´ f˚}n § } 9f ´ f˚}L2pPXq ` r
¯

§ PrX
´

}f ´ f˚}n § Bp} 9f ´ f˚}L2 ` r
¯
,

then obtain the desired result.

By Lemma 4, we know the bound

1 ´ expp´2nr12{2B2
f

q § PrX
`
}f ´ f˚}n § }f ´ f˚}L2pPXq ` r1˘ ,
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for all f such as }f}L8 § B. WE set r1 “ }f ´ f˚}L2pPXq, hence

1 ´ exp

˜
´
n}f ´ f˚}2

L2pPXq
B2

f

¸
§ PrX

`
}f ´ f˚}n § 2}f ´ f˚}L2pPXq

˘
.

Using this result, we obtain

IIIn § EX

«
En,f˚

«ª

fP⌅NN,⌘pS,B,Lq:}f´f˚}L2pPX q°r✏°2}f´f˚}n

pn,f pY1:nq
pn,f˚ pY1:nqd⇧f pfq1Er

��

ˆ exp
´
n✏2r22 ´ log⇧f pf : }f ´ 9f}L8 † Bp✏nq

¯

§
ª

fP⌅NN,⌘pS,B,Lq:}f´f˚}L2pPX q°r✏

PrX
`
}f ´ f˚}L2pPXq ° 2}f ´ f˚}n

˘
d⇧f pfq

ˆ exp
`
n✏2r2 ` S logppBfLf ✏nq´1q

˘

§ exp

˜
n✏2r22 ` S logppBfLf ✏nq´1q ´ nr2✏2

B2
f

¸
,

where r2 is a parameter for defining Er. We substitute r2 “ r{
?
2B, then we have

IIIn § exp

˜
S logppBfLf ✏nq´1q ´ nr2✏2

2B2
f

¸

Following the same discussion in Section C.1, we combine the result and obtain

In ` IIn ` IIIn

§ 3 exp
`
´maxt9B2

p
{8, B2

p
{B2

f
un✏2

n

˘
` exp

`
S logppBfLf ✏nq´1q ´ nr2✏2{2B2

f

˘

` 3 exp
´
2n✏2r ´ 2 ` C2

S
maxtn´D{p2�`Dq, n´2D´2{p2↵`2D´2quq log n ` 1

¯
,

and setting

✏ “ ✏n log n “ 2JMp2D ` Q ´ 1{2qmaxtn´�{p2�`Dq, n´↵{p↵`2D´2qu log n,

yields the same results. Then, we obtain the inequality (21), hence we show the result.

D Proof of Theorem 3

We discuss minimax optimality of the estimator. We apply the techniques developed by Yang and Barron (1999)
and utilized by Raskutti et al. (2012).

Let rFM,J,↵,�p�q Ä FM,J,↵,� be a packing set of FM,J,↵,� with respect to } ¨ }L2 , namely, each pair of elements
f, f 1 P rFM,J,↵,� satisfies }f ´ f 1}L2 • �. Following the discussion by Yang and Barron (1999), the minimax
estimation error is lower bounded as

min
f̄

max
f˚PFM,J,↵,�

Prf˚

ˆ
}f̄ ´ f˚}L2pPXq • �n

2

˙
• min

f̄

max
f˚P rFM,J,↵,�p�q

Prf˚

ˆ
}f̄ ´ f˚}L2pPXq • �n

2

˙
.

Let rf 1 :“ argmin
f 1P rFM,J,↵,�p�q } rf ´ f̄} be a projected estimator f̄ onto rFM,J,↵,�p�q. Then, the value is lower

bounded as

min
f̄

max
f˚P rFM,J,↵,�p�q

Prf˚

ˆ
}f̄ ´ f˚}L2pPXq • �n

2

˙

• min
f̄ 1

max
fP rFM,J,↵,�p�q

Prf pf ‰ f̄ 1q
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• min
f̄ 1

Pr qf„U
pf̄ 1 ‰ qfq,

where qf is uniformly generated from rFM,J,↵,�p�q and PrU denotes a probability with respect to the uniform
distribution.

We apply the Fano’s inequality (summarized as Theorem 2.10.1 in Cover and Thomas (2012)), we obtain

Pr qf„U
pf̄ 1 ‰ qfq • 1 ´ IpFU ;Dnq ` log 2

log | rFM,J,↵,�p�q|
,

where IpFU ;Y1:nq is a mutual information between a uniform random variable FU on rFM,J,↵,�p�q and Y1:n. The
mutual information is evaluated as

IpFU ;Y1:nq

“ 1

| rFM,J,↵,�p�1q|
ÿ

fP rFM,J,↵,�p�1q

ª
log

ˆ
pn,f pY1:nq

EFU rpn,FU pY1:nqs

˙
dPn,f pY1:nq

§ max
fP rFM,J,↵,�p�1q

ª
log

ˆ
pn,f pY1:nq

EFU rpn,FU pY1:nqs

˙
dPn,f pY1:nq

§ max
fP rFM,J,↵,�p�1q

max
f 1P rFM,J,↵,�p�1q

ª
log

˜
pn,f pY1:nq

| rFM,J,↵,�p�1q|´1pn,f 1 pY1:nq

¸
dPn,f pY1:nq

“ max
f,f 1P rFM,J,↵,�p�1q

log | rFM,J,↵,�p�1q| `
ª
log

ˆ
pn,f pY1:nq
pn,f 1 pY1:nq

˙
dPn,f pY1:nq.

Here, we know that

log | rFM,J,↵,�p�1q| § logN p�1{2,FM,J,↵,� , } ¨ }L2q,

and
ª
log

ˆ
pn,f pY1:nq
pn,f 1 pY1:nq

˙
dPn,f pY1:nq § n

2
EX

“
}f ´ f 1}2

n

‰
§ n

8
�12,

since f, f 1 P rFM,J,↵,�p�1q.
We will provide a bound for logN p�1{2,FM,J,↵,� , } ¨ }L2q. Since FM,J,↵,� is a sum of M functions in F1,J,↵,� , we
have

logN p�,FM,J,↵,� , } ¨ }L2q § M logN p�1,F1,J,↵,� , } ¨ }L2q.

To bound logN p�1,F1,J,↵,� , } ¨ }L2q, we define I↵,J :“ t1R : ID Ñ t0, 1u|R P R↵,Ju. We know that F1,J,↵,� “
H�pIDq b I↵,J , hence we obtain

logN p�1,F1,J,↵,� , } ¨ }L2q § logN p�1, H�pIDq, } ¨ }L2q ` logN p�1, I↵,J , } ¨ }L2q.

By the entropy bound for smooth functions (e.g. Theorem 2.7.1 in van der Vaart and Wellner (1996)), we use the
bound

logN p�1, H�pIDq, } ¨ }L2q § CH�1´D{� ,

with a constant CH ° 0. Furthermore, about the covering number of I↵,J , we use the relation

}1R ´ 1R1 }2
L2 “

ª
p1Rpxq ´ 1R1 pxqq2dx “

ª
p1Rpxq ´ 1R1 pxqqdx

“
ª

xPID

1Rpxqp1 ´ 1R1 pxqqdx “: d1pR,R1q,
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where R,R1 P R↵,J and d1 is a difference distance with a Lebesgue measure for sets by Dudley (1974). By
Theorem 3.1 in Dudley (1974), we have

logN p�1,R↵,J , d1q § C��
1´pD´1q{↵,

with a constant C� ° 0. Then, we bound the entropy of I↵,J as

logN p�1, I↵,J , } ¨ }L2q “ logN p�12,R↵,J , d1q. (23)

To bound the term, we provide the following Lemma.
Lemma 5. We obtain

logN p�,R↵,J , d1q § JN p�{J,R↵,1, d1q.

Proof. Fix � ° 0 arbitrary. Let rR Ä R↵,1 be a centers of the �-covering balls, and | rR| “ R̄. Also define that
rRJ :“ tXjPrJsRj | Rj P rRu. Obviously, we have rRJ Ä R↵,J and | rRJ | “ R̄J .

Consider R P R↵,J . By its definition, there exist rR1, ..., rRJ P R↵,1 and satisfy R “ XjPrJs rRj . Since rR is a set of
centers of the covering balls, there exist 9R1, ..., 9RJ P rR and d1p 9Rj , rRjq § � holds.

Here, we define 9R P rRJ as 9R “ XjPrJs 9Rj . Now, we have

d1p 9R,Rq §
ÿ

jPrJs
d1p 9Rj , rRjq § J�.

Hence, for arbitrary R P R↵,J , there exists 9R in rRJ and their distance is bounded by J�. Now, we can say that
rRJ is a set of centers for covering balls for R↵,J with radius J�. Since | rRJ | “ R̄J , the statement holds.

Applying Lemma 5, we obtain

logN p�12,R↵,J , d1q § C�J
p↵`D´1q{↵�1´2pD´1q{↵.

Substituting the results yields

logN p�1{2,FM,J,↵,� , } ¨ }L2q § MCH�1´D{� ` MC��
1´2pD´1q{↵.

We provide a lower bound for log | rFM,J,↵,�p�q|. Let Dp�,FM,J,↵,� , } ¨ }L2q be a notation for a packing number
| rFM,J,↵,�p�q|. Now, we have

logDp�,FM,J,↵,� , } ¨ }L2q • logDp�,F1,J,↵,� , } ¨ }L2q
• maxtlogDp�, H�pIDq, } ¨ }L2q, logDp�, I↵,J , } ¨ }L2qu.

Similar to (23),

logDp�, I↵,J , } ¨ }L2q “ logDp�2,R↵,J , d1q • logDp�2,R↵,1, d1q.

About logDp�, H�pIDq, } ¨ }L2q, we apply Lemma 3.5 in Dudley (1974) then

logDp�, H�pIDq, } ¨ }L2q • logN p�, H�pIDq, } ¨ }L2q • clh�
´D{� ,

with some constant clh ° 0. About logDp�2,R↵,1, d1q, since the definition of R↵,1 follows the boundary fragmented
class by restricting sets as a image of smooth embeddings, we apply Theorem 3.1 in Dudley (1974) and obtain

logDp�2,R↵,1, d1q • logN p�2,R↵,1, d1q • clr�
´2pD´1q{↵,

with some constant clr ° 0.
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Then, we provide a lower bound of Pr qf„U
pf̄ 1 ‰ qfq as

Pr qf„U
pf̄ 1 ‰ qfq • 1 ´ CHM�1´D{� ` C�M�1´2pD´1q{↵ ` n

2 �
2 ` log 2

maxtclh�´D{� , clr�´2pD´1q{↵u .

By selecting � and �1 as having an order maxtn´2�{p2�`Dq, n´↵{p↵`2D´2qu and satisfying

1 ´ CHM�1´D{� ` C�M�1´2pD´1q{↵ ` n

2 �
2 ` log 2

maxtclh�´D{� , clr�´2pD´1q{↵u • 1

2
.

Then, we finally obtain the statement of Theorem 3.

E Proof of Corollary 4

Let us introduce a specific form of a piecewise smooth function f̄ : RD Ñ R as

f̄pxq :“ f0pxq b 1x1•g1px´1qpxq ` f1pxq1x1•g2px´1qpxq,

where f0, f1 P H�pIDq such that sup
xPID f0pxq † infxPID f1pxq and g1, g2 P H↵pIDq. According to Corollary

6.4.2 in Korostelev and Tsybakov (2012), all linear estimators (4) do not attain the minimax optimal rate for
estimating function with a form of f̄ . Then, combining the results in Theorem 1, 2 and 3, the statement holds.

F Specific Examples of Other Inefficient Methods

Orthogonal series methods estimate functions using an orthonormal basis. It is one of the most fundamental
methods for nonparametric regression (For an introduction, see Section 1.7 in Tsybakov (2009)). Let �jpxq for
j P N be an orthonormal basis function in L2pPXq. An estimator for f˚ by the orthogonal series method is
defined as

pfSpxq :“
ÿ

jPrJs
p�j�jpxq,

where J P N is a hyper-parameter and p�j is a coefficient calculated as p�j :“ 1
n

∞
iPrns Yi�jpXiq. When the true

function is smooth, i.e. f˚ P H� , pfS is known to be optimal in the minimax sense Tsybakov (2009). About
estimation for f˚ P FM,J,↵,� , we can obtain the following proposition.

Proposition 2. Fix D P Nzt1u,M, J P N,↵ ° 2 and � ° 1 arbitrary. Let pfS
be the estimator by the orthogonal

series method. Suppose �j , j P N are the trigonometric basis or the Fourier basis. Then, with sufficient large n,

there exist f˚ P FM,J,↵,�, PX , a constant CF ° 0, and a parameter

´ ° maxt´2�{p2� ` Dq,´↵{p↵ ` D ´ 1qu,
such that

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

° CFn
´.

Proof. We will specify f˚ P FM,J,↵,� and distribution of X, and derive an rate of convergence by the estimator
by the Fourier method.

For preparation, we consider D “ 1 case. Let X be generated by a distribution which realize a specific case
Xi “ i{n. Also, we specify f˚ P FM,J,↵,� as

f˚pxq “ 1tx1•0.5u,

with x “ px1, x2q P I2. We consider a decomposition of f˚ by the trigonometric basis such as

�jpxq “

$
’&

’%

1 if j “ 0,?
2 cosp2⇡kxq if j “ 2k,?
2 sinp2⇡kxq if j “ 2k ` 1,
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for k P N. Then, we obtain

f˚ “
ÿ

jPNYt0u
✓˚
j
�j .

Here, ✓˚
j

is a true coefficient.

For the estimator, we review its definition as follows. The estimator is written as

pfF “
ÿ

jPrJsYt0u
p✓j�j ,

where p✓j1,j2 is a coefficient which is defined as

p✓j “ 1

n

ÿ

iPrns
Yi�jpXiq.

Also, J P N are hyper-parameters. Since �j is an orthogonal basis in L2 and the Parseval’s identity, an expected
loss by the estimator is decomposed as

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

“ Ef˚

»

–
ÿ

jPNYt0u
pp✓j ´ ✓˚

j
q2

fi

fl

“ Ef˚

»

–
ÿ

jPrJsYt0u
pp✓j ´ ✓˚

j
q2 `

ÿ

j°J

p✓˚
j

q2
fi

fl

“
ÿ

jPrJsYt0u
Ef˚

”
pp✓j ´ ✓˚

j
q2

ı
`

ÿ

j°J

p✓˚
j

q2.

Here, we apply Proposition 1.16 in Tsybakov (2009) and obtain

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

“
ÿ

jPrJsYt0u

ˆ
�2

n
` ⇢2

j

˙
`

ÿ

j°J

p✓˚
j

q2

•
ÿ

jPrJsYt0u

�2

n
`

ÿ

j°J

p✓˚
j

q2

“ �2pJ ` 1q
n

`
ÿ

j°J

p✓˚
j

q2,

where ⇢j :“ n´1
∞

iPrns fpXiq�jpXiq ´ xf,�jy is a residual.

Considering the Fourier transform of step functions, we obtain ✓˚
j

“ 1´p´1qj
2⇡j , hence

ÿ

j°J

p✓˚
j

q2 “ 1

4⇡2
 pJ ` 1q “ 1

4⇡2

ÿ

kPNYt0u

1

pJ ` 1 ` kq2 • 1

4⇡2pJ ` 1q2 ,

where  is the digamma function.

Combining the results, we obtain

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

• �2J ` 1

n
` 1

4⇡2pJ ` 1q2 .

We set J “ tcJn1{3 ´ 1u with a constant cJ ° 0, then we finally obtain

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

• n´2{3
ˆ
�2 ` 1

4⇡2

˙
.
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Then, we obtain the lower bound for the D “ 1 case.

For general D P N, we set a true function as

f˚ “
â

dPrDs
1t¨•0.5u.

Due to the tensor structure, we obtain the decomposed form

f˚ “
ÿ

j1PNYt0u
¨ ¨ ¨

ÿ

jDPNYt0u
�j1,...,jD

â

dPrDs
�jd ,

where �j1,...,jD is a coefficient such as

�j1,...,jD “
π

dPrDs
✓jd ,

using ✓jd in the preceding part. Following the same discussion, we obtain the following lower bound as

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

• �2pJ ` 1qD
n

` D
ÿ

j°J

p✓˚
j

q2.

Then, we set J ´ 1 “ tn1{p2`Dqu, we obtain that the bound is written as

Ef˚

”
} pfF ´ f˚}2

L2pPXq
ı

• n´2{p2`Dq
ˆ
�2 ` D

2⇡2

˙
.

Then, we obtain the claim of the proposition for any D P N•2.

Proposition 2 shows that pfS can estimate f˚ P FM,J,↵,� consistently since the orthogonal basis in L2pPXq can
reveal all square integrable functions. Its order is, however, strictly worse than the optimal order. Intuitively, the
method requires many basis functions to express the non-smooth structure of f˚ P FM,J,↵,� , and a large number
of bases increases variance of the estimator, hence they lose efficiency.


