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Abstract

We elucidate a theoretical reason that deep
neural networks (DNNs) perform better than
other models in some cases from the view-
point of their statistical properties for non-
smooth functions. While DNNs have empir-
ically shown higher performance than other
standard methods, understanding its mecha-
nism is still a challenging problem. From an
aspect of the statistical theory, it is known
many standard methods attain the optimal
rate of generalization errors for smooth func-
tions in large sample asymptotics, and thus
it has not been straightforward to find theo-
retical advantages of DNNs. This paper fills
this gap by considering learning of a certain
class of non-smooth functions, which was not
covered by the previous theory. We derive the
generalization error of estimators by DNNs
with a ReLU activation, and show that conver-
gence rates of the generalization by DNNs are
almost optimal to estimate the non-smooth
functions, while some of the popular models
do not attain the optimal rate. In addition,
our theoretical result provides guidelines for
selecting an appropriate number of layers and
edges of DNNs. We provide numerical experi-
ments to support the theoretical results.

1 Introduction

Deep neural networks (DNNs) have shown outstanding
performance on various tasks of data analysis Schmid-
huber (2015); LeCun et al. (2015). Enjoying their
flexible modeling by a multi-layer structure and many
elaborate computational and optimization techniques,
DNNs empirically achieve higher accuracy than many
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other machine learning methods such as kernel methods
Hinton et al. (2006); Le et al. (2011); Kingma and Ba
(2014). Hence, DNNs are employed in many successful
applications, such as image analysis He et al. (2016),
medical data analysis Fakoor et al. (2013), natural lan-
guage processing Collobert and Weston (2008), and
others.

Despite such outstanding performance of DNNs, little
is yet known why DNNs outperform the other meth-
ods. Without sufficient understanding, practical use
of DNNs could be inefficient or unreliable. To reveal
the mechanism, numerous studies have investigated
theoretical properties of neural networks from various
aspects. The approximation theory has analyzed the
expressive power of neural networks Cybenko (1989);
Barron (1993); Bengio and Delalleau (2011); Montufar
et al. (2014); Yarotsky (2017); Petersen and Voigt-
laender (2018); Bölcskei et al. (2017), the statistical
learning theory elucidated generalization errors Bar-
ron (1994); Neyshabur et al. (2015); Schmidt-Hieber
(2017); Zhang et al. (2017); Suzuki (2018), and the
optimization theory has discussed the landscape of the
objective function and dynamics of learning Baldi and
Hornik (1989); Fukumizu and Amari (2000); Dauphin
et al. (2014); Kawaguchi (2016); Soudry and Carmon
(2016).

Existing statistical analysis does not explain the em-
pirical success of DNNs, since it is already proved that
the standard machine learning methods are statisti-
cally optimal with a smoothness assumption for data
generating processes. Specifically, it is usually assumed
that data tpYi, Xiqun

i“1 are given i.i.d. by

Yi “ fpXiq ` ⇠i, ⇠i „ N p0,�2q,
where f is a �-times differentiable function with D-
dimensional input Tsybakov (2009); Wasserman (2006).
With this setting, many popular methods such as kernel
methods, Gaussian processes, series methods, and so
on, as well as DNNs, achieve a bound for generalization
errors as

O
´
n´2�{p2�`Dq

¯
, pn Ñ 8q.

This is known to be a minimax optimal rate of gener-
alization with respect to sample size n Stone (1982);
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Tsybakov (2009); Giné and Nickl (2015), and hence, as
long as we employ the smoothness assumption, it is not
easy to show a theoretical evidence for the empirical
advantage of DNNs.

To break the difficulty, this paper develops a statisti-
cal theory for estimation of non-smooth functions for
the data generating processes. Rigorously, we discuss
a nonparametric regression problem with a class of
piecewise smooth functions, which may be non-smooth,
and even discontinuous, on the boundaries of pieces in
their domains. Then, we derive a rate of generalization
errors with the least square and Bayes estimators by
DNNs of the ReLU activation as

O
´
max

!
n´2�{p2�`Dq, n´↵{p↵`D´1q

)¯
, pn Ñ 8q

up to log factors (Theorems 1, 2). Here, ↵ and � denote
the smoothness degree of functions on the boundary
and interior of the domain, and D is the dimensionality
of inputs. We prove also that this rate of generalizations
by DNNs is optimal in the minimax sense (Theorem
3). In addition, we show that some of other standard
methods, such as kernel methods and orthogonal series
methods, are not able to achieve this optimal rate.
Our results thus show that DNNs certainly have a
theoretical advantage under the non-smooth setting.
We will provide some numerical examples supporting
our results.

The contributions of this paper are as follows:

• We derive a rate of convergence of the generalza-
tion errros in the estimators by DNNs for the class
of piecewise smooth functions. Our convergence re-
sults are more general than existing studies, since
the class contains the smooth functions.

• We prove that DNNs theoretically outperform
other standard methods for data from non-smooth
generating processes, as a consequence of the
proved convergence rate of generalization error.

• We provide a practical guideline on the structure
of DNNs; namely, we show a necessary number of
layers and parameters of DNNs to achieve the rate
of convergence. It is shown in Table 1.

All proofs are deferred to the supplementary material.

Element Number

# of layers Op1 ` maxt�{D,↵{2pD ´ 1quq
# of parameters ⇥pnmaxtD{p2�`Dq,pD´1q{p↵`D´1quq

Table 1: Architecture for DNNs which are necessary to
achieve the optimal rate of generalization errors.

1.1 Notation

We use notations I :“ r0, 1s and N for natural numbers.
The j-th element of vector b is denoted by bj , and
} ¨ }q :“ p∞

j
bq
j
q1{q is the q-norm (q P r0,8s). vecp¨q

is a vectorization operator for matrices. For z P N,
rzs :“ t1, 2, . . . , zu is the set of positive integers no
more than z. For a measure P on I and a function
f : I Ñ R, }f}L2pP q :“ p≥

I
|fpxq|2dP pxqq1{2 denotes

the L2pP q norm. b denotes a tensor product, andÂ
jPrJs xj :“ x1 b¨ ¨ ¨bxJ for a sequence txjujPrJs. For

a set R Ä ID, let 1R : ID Ñ t0, 1u denote the indicator
function of R; i.e., 1Rpxq “ 1 if x P R, and 1Rpxq “ 0
otherwise. Let H�p⌦q be the Hölder space on ⌦ wifh a
set ⌦, which is the space of functions f : ⌦ Ñ R such
that they are t�u-times continuously differentiableand
the derivatives is � ´ t�u-Hölder continuous. For a
vector x P RD

1
, x´d :“ px1, . . . , xd´1, xd`1, . . . , xDq.

2 Preparation for Regression with

DNNs

2.1 Regression Problem

Let the D-dimensional cube ID (D • 2) be a space
for input variables Xi. Suppose we have a set of ob-
servations pXi, Yiq P ID ˆ R for i P rns which is in-
dependently and identically distributed with the data
generating process

Yi “ f˚pXiq ` ⇠i, (1)

where f˚ : ID Ñ R is an unknown true function and ⇠i
is Gaussian noise with mean 0 and variance �2 ° 0 for
i P rns. We assume that the marginal distribution of
X on ID has a positive and bounded density function
PXpxq.
The goal of the regression problem is to estimate f˚

from the set of observations Dn :“ tpXi, YiquiPrns.
With an estimator pf , its performance is measured by
the L2pPXq norm: } pf ´ f˚}2

L2pPXq “ EX„PX rp pfpXq ´
f˚pXqq2s. There are various methods to estimate f˚

and their statistical properties are extensively investi-
gated (For summary, see Wasserman (2006) and Tsy-
bakov (2009)).

2.2 Deep Neural Network Models

Let L P N be the number of layers in DNNs. For
` P rL`1s, let D` P N be the dimensionality of variables
in the `-th layer. For brevity, we set DL`1 “ 1, i.e., the
output is one-dimensional. We define A` P RD``1ˆD`

and b` P RD` be matrix and vector parameters to give
the transform of `-th layer. The architecture ⇥ of DNN
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is a set of L pairs of pA`, b`q:

⇥ :“ ppA1, b1q, ..., pAL, bLqq.

We define |⇥| :“ L be a number of lay-
ers in ⇥, }⇥}0 :“ ∞

`PrLs } vecpA`q}0 ` }b`}0
as a number of non-zero elements in ⇥, and
}⇥}8 :“ maxtmax`PrLs } vecpA`q}8,max`PrLs }b`}8u
be the largest absolute value of the parameters in ⇥.

For an activation function ⌘ : RD
1 Ñ RD

1
for each D1 P

N, this paper considers the ReLU activation ⌘pxq “
pmaxtxd, 0uqdPrD1s.

The model of neural networks with architecture ⇥ and
activation ⌘ is the function G⌘r⇥s : RD1 Ñ R, which
is defined inductively as

G⌘r⇥spxq “ xpL`1q,

and it is inductively defined as

xp1q :“ x, xp``1q :“ ⌘pA`x
p`q ` b`q, for ` P rLs,

where L “ |⇥| is the number of layers. The set of
model functions by DNNs is thus given by

⌅NN,⌘pS,B, L1q
:“

!
G⌘r⇥s : ID Ñ R | }⇥}0 § S, }⇥}8 § B, |⇥| § L1

)
,

with S P N, B ° 0, and L1 P N. Here, S bounds the
number of non-zero parameters of DNNs by ⇥, namely,
the number of edges of an architecture in the networks.
This also describes sparseness of DNNs. B is a bound
for scales of parameters.

2.3 Two Estimators with DNNs

A Least Square Estimator

We define a least square estimator by empirical risk
minimization, using the model of DNNs. Using the
observations Dn, we consider the minimization problem
with respect to parameters of DNNs as

pfL P argmin
f̄ :fP⌅NN,⌘pS,B,Lq

1

n

ÿ

iPrns
pYi ´ f̄pXiqq2, (2)

where f̄ :“ maxtmintf,´T u, T u is a clipping opera-
tion for f P ⌅NN,⌘pS,B, Lq with a sufficiently large
threshold T ° 0. We use pfL as an estimator of f˚.

Note that the problem (2) has at least one minimizer
since the parameter set ⇥ is compact and ⌘ is continu-
ous. If necessary, we can add a regularization term for
the problem (2), because it is not difficult to extend
our results to an estimator with regularization. Fur-
thermore, we can apply the early stopping techniques,

since they play a role as the regularization LeCun et al.
(2015). However, for simplicity, we confine our argu-
ments of this paper in the least square.

A Bayes Estimator

We also define a Bayes estimator for DNNs which can
avoid the non-convexity problem in optimization. Fix
architecture ⇥ and ⌅NN,⌘pS,B, Lq with given S,B and
L. Then, a prior distribution for ⌅NN,⌘pS,B, Lq is
defined through providing distributions for the parame-
ters contained in ⇥. Let ⇧pAq

`
and ⇧pbq

`
be distributions

of A` and b` as

A` „ ⇧pAq
`

and b` „ ⇧pbq
`

,

for ` P rLs. We set ⇧pAq
`

and ⇧pbq
`

such that each of the
S parameters of ⇥ is uniformly distributed on r´B,Bs,
and the other parameters degenerate at 0. Using these
distributions, we define a prior distribution ⇧⇥ on ⇥ by
⇧⇥ :“ Â

`PrLs⇧
pAq
`

b⇧pbq
`

. Then, a prior distribution
for f P ⌅NN,⌘pS,B, Lq is defined by

⇧f pfq :“ ⇧⇥p⇥ : G⌘r⇥s “ fq.

Then, we can obtain the posterior distribution for f .
Since the noise ⇠i in (1) is Gaussian with its variance
�2, the posterior distribution is given by

d⇧f pf |Dnq “
expp´∞

iPrnspYi ´ fpXiqq2{�2qd⇧f pfq
≥
expp´∞

iPrnspYi ´ f 1pXiqq2{�2qd⇧f pf 1q .

Finally, we define a Bayes estimator as a posterior mean

pfB :“
ª
fd⇧f pf |Dnq,

by the Bochner integral in L8pIDq.
Note that we do not discuss computational issues of
the Bayesian approach since the main focus is a theo-
retical aspect. To solve the computational problems,
see Hernández-Lobato and Adams (2015) and others.

3 Specification for Non-Smooth

Functions

We specify a formulation of non-smooth functions to
prove a theoretical advantage of DNNs, as motivated
in the introduction of this paper. To describe non-
smoothness of functions, we introduce a notion of piece-

wise smooth functions which have a support divided
into several pieces and smooth only within each of the
pieces. On boundaries of the pieces, piecewise smooth
functions are non-smooth, i.e. non-differentiable and
even discontinuous. Figure 1 shows an example of
piecewise smooth functions.
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Figure 1: An example of piecewise smooth functions
with a 2-dimensional support. The support is divided
into three pieces and the function is discontinuous on
their boundaries.

3.1 Preparation: Pieces in Supports

Preliminarily, we describe a notion of pieces in the
domain ID. Here, we use the class of horizon functions

Petersen and Voigtlaender (2018).

Let us consider a smooth function h P H↵pID´1q.
Then, we define a horizon function  h,d : ID Ñ t0, 1u
as

 h,d :“  dpx1, . . . , xd´1, xd ˘ hpx´dq, xd`1, ..., xDq,

for some d P rDs, where  d : ID Ñ t0, 1u is the
Heaviside function such that  dpxq “ 1txPID|xd•0u.

For each horizon function, we define a basis piece A Ä
ID such that there exist  h,d such that

A “
 
x P ID |  h,dpxq “ 1

(
.

A basis piece is regarded as one side of surfaces by
h. Additionally, we introduce a restrict for A as a
transformed sphere, namely, we consider  h,d such
that there exists an ↵-smooth embedding e : tx P RD |
}x}2 § 1u Ñ RD satisfying A “ ID X Imagepeq (detail
is provided in Appendix A). The notion of basis pieces
is an extended version of the boundary fragment class
Dudley (1974); Mammen et al. (1999) which is dense
in a class of all convex sets in ID when ↵ “ 2.

We define a piece by the intersection of J basis pieces;
namely, the set of pieces is defined by

R↵,J :“
#
R Ä r0, 1sD | R “

J£

j“1

Aj

+
,

where A1, ..., AJ are basic pieces.

Intuitively, R P R↵,J is a set with piecewise ↵-smooth
boundaries. Also, by considering intersections of J ba-
sis pieces, R↵,J contains a set with non-smooth bound-
aries. In Figure 1, there are three pieces from R↵,J in
the support of the function.

3.2 Piecewise Smooth Functions

We define piecewise smooth functions, using H�pIDq
and R↵,J . Let M P N be a finite number of pieces
of the support ID. We introduce the set of piecewise
smooth functions by

FM,J,↵,�

:“
#

Mÿ

m“1

fm b 1Rm : fm P H�pIDq, Rm P R↵,J

+
.

Since fmpxq realizes only when x P Rm, the notion of
FM,J,↵,� can express a combination of smooth functions
on each piece Rm. Hence, functions in FM,J,↵,� are
non-smooth (and even discontinuous) on boundaries
of Rm. Obviously, H�pIDq Ä FM,J,↵,� with M “ 1
and R1 “ ID, hence the notion of piecewise smooth
functions can describe a wider class of functions.

4 Main Results

We provide theoretical results about performances of
DNNs for estimating piecewise smooth functions.

4.1 Generalization Errors by DNNs

The Least Square Estimator pfL

We investigate theoretical aspects of convergence prop-
erties of pfL.
Theorem 1. (Convergence Rate of pfL

)

Suppose f˚ P FM,J,↵,�Then, there exist constants

c1, c1
1, CL ° 0, s P Nzt1u, T • }f˚}L8 , and a tuple

pS,B, Lq satisfying

(i) S “ c1
1 maxtnD{p2�`Dq, npD´1q{p↵`D´1qu,

(ii) B • c1ns
,

(iii) L § c1p1 ` maxt�{D,↵{2pD ´ 1quq,

such that pfL P ⌅NN,⌘pS,B, Lq provides

} pfL ´ f˚}2
L2pPXq (3)

§ CL maxtn´2�{p2�`Dq, n´↵{p↵`D´1quplog nq2,

with probability at least 1 ´ c1n´2
.

The rate of convergence in Theorem 1 is simply inter-
preted as follows. The first term n´2�{p2�`Dq describes
an effect of estimating fm P H�pIDq for m P rM s. The
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rate corresponds to the minimax optimal convergence
rate of generalization errors for estimating smooth func-
tions in H�pIDq (For a summary, see Tsybakov (2009)).
The second term n´↵{p↵`D´1q reveals an effect from
estimation of 1Rm for m P rM s through estimating the
boundaries of Rm P R↵,J . The same rate of conver-
gence appears in a problem for estimating sets with
smooth boundaries Mammen and Tsybakov (1995).

We remark that a larger number of layers decreases B.
Considering the result by Bartlett (1998), which shows
that large values of parameters make the performance
of DNNs worse, the above theoretical result suggests
that a deep structure can avoid the performance loss
caused by large parameters.

We can consider an error from optimization indepen-
dent to the statistical generalization. The following
proposition provides the statement.

Proposition 1. (Effect of Optimization)

If a learning algorithm outputs qfL P ⌅NN,⌘pS,B, Lq
such that

n´1
ÿ

iPrns
pYi ´ qfLpXiqq2 ´ pYi ´ pfLpXiqq2 § �n,

with a positive parameter �n, then the following holds:

Ef˚

”
} qfL ´ f˚}2

L2pPXq
ı

§ CL maxtn´2�{p2�`Dq, n´↵{p↵`D´1quplog nq2 `�n.

Here, Ef˚ r¨s denotes an expectation with respect to
the true distribution of pX,Y q. Applying results on
the magnitude of � (e.g. Kawaguchi (2016)), we can
evaluate generalization including optimization errors.

The Bayes Estimator pfB

We provide theoretical analysis of the speed of conver-
gence for the Bayes estimator.

Theorem 2. (Convergence Rate of pfB
)

Suppose f˚ P FM,J,↵,�. Then, there exist constants

c2, c1
2, CB ° 0, s P Nzt1u, architecture ⇥ : }⇥}0 §

S, }⇥}8 § B, |⇥| § L satisfying following conditions:

(i) S “ c1
2 maxtnD{p2�`Dq, np2D´2q{p2↵`2D´2qu,

(ii) B • c2ns
,

(iii) L § c2p1 ` maxt�{D,↵{2pD ´ 1quq,

and a prior distribution ⇧f which provides the Bayes

estimator pfB
such that

Ef˚

”
} pfB ´ f˚}2

L2pPXq
ı

§ CB maxtn´2�{p2�`Dq, n´↵{p↵`D´1quplog nq2.

To provide proof of Theorem 2, we additionally apply
studies for statistical analysis for Bayesian nonpara-
metrics van der Vaart and van Zanten (2008, 2011).

This result states that the Bayes estimator can achieve
the same rate as the least square estimator shown in
Theorem 1. Since the Bayes estimator does not use
optimization, we can avoid the non-convex optimization
problem, while the computation of the posterior and
mean are not straightforward.

4.2 Optimality of the DNN Estimators

We show optimality of the rate of convergence by the
DNN estimators in Theorem 1 and 2. We employ a
theory of minimax optimal rate which is known in the
field of mathematical statistics Giné and Nickl (2015).
The theory derives a lower bound of a convergence
rate with arbitrary estimators, thus we can obtain a
theoretical limitation of convergence rates.

The following theorem shows the minimax optimal
rate of convergence for the class of piecewise smooth
functions FM,J,↵,� .

Theorem 3. (Minimax Rate for FM,J,↵,�)

Consider f̄ is an arbitrary estimator for f˚ P FM,J,↵,�.

Then, there exists a constant Cmm ° 0 such that

inf
f̄

sup
f˚PFM,J,↵,�

Ef˚

”
}f̄ ´ f˚}2

L2pPXq
ı

• Cmm max
!
n´2�{p2�`Dq, n´↵{p↵`D´1q

)
.

Proof of Theorem 3 is deferred to the appendix, and it
employs techniques in the minimax theory developed
by Yang and Barron (1999) and Raskutti et al. (2012),
and entropy analysis for a family of sets Dudley (1974);
Mammen and Tsybakov (1995).

We show that the rate of convergence by the estimators
with DNNs are optimal in the minimax sense, since
the rates in Theorems 1 and 2 correspond to the lower
bound of Theorem 3 up to a log factor. In other words,
for estimating f˚ P FM,J,↵,� , no other methods could
achieve a better rate than the estimators by DNNs.

5 Discussion: Why DNNs work

better?

5.1 Non-Optimality of Other Methods

We discuss non-optimality of some of other standard
methods to estimate piecewise smooth functions. To
this end, we consider a class of linear estimators. The
class contains any estimators with the following formu-
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lation:
pf linpxq “

ÿ

iPrns
⌥ipx;X1, ..., XnqYi, (4)

where ⌥i is an arbitrary function which depends on
X1, ..., Xn. Various estimators are regarded as linear
estimators, for examples, kernel methods, Fourier esti-
mators, splines, Gaussian process, and others.

A study for nonparametric statistics (Section 6 in Ko-
rostelev and Tsybakov (2012)) proves inefficiency of
linear estimators with non-smooth functions. Based on
the result, the following corollary holds:
Corollary 1. (Theoretical Advantage of DNNs)

Suppose ↵D{p2↵ ` 2D ´ 2q § � holds. Then, there

exist f˚ P FM,J,↵,� such that pf P t pfL, pfBu and any

pf lin
, large n provides

Ef˚

”
} pf ´ f˚}2

L2pPXq
ı

† Ef˚

”
} pf lin ´ f˚}2

L2pPXq
ı
.

This result shows that a wide range of the other meth-
ods has larger generalization errors, hence the estima-
tors by DNNs can overcome the other methods. Some
specific methods are analyzed in the supplementary
material.

According to the results, we can see that the estima-
tors by DNNs have the theoretical advantage than the
others for estimating f˚ P FM,J,↵,� , since the estima-
tors by DNNs achieve the optimal convergence rate
of generalization errors and the others do not. About
the inefficiency of the other methods, we do not claim
that every statistical method except DNNs misses the
optimality for estimating piecewise smooth functions.
Our argument is the advantage of DNNs against linear
estimators.

5.2 Intuition for the performance of DNNs

We provide some intuitions on why DNNs are optimal
and the others are not.

Firstly, DNNs can easily approximate indicator func-
tions 1R, R P R↵,J with a small number of parameters,
due to activation functions and a composition structure.
A difference of two ReLU functions can approximate
step functions, and a composition of the step functions
in a combination of other parts of the network can easily
express smooth functions restricted to pieces. Rigor-
ously, for x P R, a step function 1tx•0u is approximated
by

1tx•0u « ⌘paxq ´ ⌘pax ´ 1{aq “: ⇣pxq, (5)

with sufficiently large a ° 0, and for some R P R↵,J ,
we can approximate 1R as

1R « ⇣ ˝ G,

where G P ⌅pSf , Bf , Lf q with some network such that
G « f P H�pIq. Substantially, we need only Sf ` 4
parameters to approximate 1R, hence DNNs can ap-
proximate a non-smooth indicator function with less
additional parameters. In contrast, about the other
methods without activation functions and composition,
they require a larger number of parameters to approx-
imate non-smooth structures, even though the other
methods have the universal approximation property.
A larger number of parameters increases the variance
of estimators and worsens the performance, hence the
other methods lose the optimality.

Secondly, composition of functions by multi-layer struc-
tures of DNNs can divide the difficulty of estimation for
piecewise smooth functions. Namely, each sub-network
of DNNs represent elements of piecewise smooth func-
tions such as f P H� and 1R with R P R↵,J . Specif-
ically, in the proof of Theorem 1, we provide an ex-
plicit DNN which is organized by small sub-networks
for approximating piecewise smooth functions. To esti-
mate f˚ “ ∞

mPrMs f
˚
m

b1
Rm̊

, we consider small DNNs
Gf,m, Gr,m, G3 P ⌅pS1, B1, L1q with some S1, B1, L1 and
all m P rM s, which satisfy f˚

m
« Gf,m, 1

Rm̊
« Gr,m,

and
`
x fiÑ ⌃mPrMsxmxM`m

˘
« G3 for x P R2M . Then,

we construct a specific DNN 9f P ⌅NN,⌘pS,B, Lq such
that

9f “ G3pGf,1p¨q, ..., Gf,M p¨q, Gr,1p¨q, ..., Gr,M p¨qq,

and show that 9f can effectively approximate piecewise
smooth functions. This result is obtained due to the
multi-layer structure of DNNs.

We note that our result for estimating non-smooth
functions does not depend on non-smoothness of the
ReLU activation function itself. Some smooth activa-
tion functions, such as a sigmoid function, may obtain
the similar result, since such the activation function
can provide the same approximation for a step function
as (5).

5.3 Related Studies for Non-Smoothness

Several studies investigate approximation and estima-
tion for non-smooth structures. Harmonic analysis
provides several methods for non-smooth structures,
such as curvelets Candes and Donoho (2002); Candès
and Donoho (2004) and shearlets Kutyniok and Lim
(2011). While the studies provide an optimality for
piecewise smooth functions on pieces with C2 bound-
aries, pieces in the boundary fragment class considered
in our study is more general and the harmonic-based
methods cannot be optimal with the pieces (studied
in Korostelev and Tsybakov (2012)). Also, a conver-
gence rate of generalization error is not known for these
methods. Studies from nonparametric statistics inves-
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tigated non-smooth estimation van Eeden (1985); Wu
and Chu (1993); Wolpert et al. (2011); Imaizumi et al.
(2018). These works focus on different settings such as
density estimation or univariate data analysis, hence
their setting does not fit problems discussed here.

6 Experiments

6.1 Non-smooth Realization by DNNs

We show how the estimators by DNNs can estimate
non-smooth functions. To this end, we consider the fol-
lowing data generating process with a piecewise linear
function. Let D “ 2, ⇠ be an independent Gaussian
variable with a scale � “ 0.5, and X be a uniform
random variable on I2. Then, we generate n pairs of
pX,Y q from (1) with a true function f˚ as piecewise
smooth function such that

f˚pxq “ 1R1pxqp0.2 ` x2
1 ` 0.1x2q

` 1R2pxqp0.7 ` 0.01|4x1 ` 10x2 ´ 9|1.5q, (6)

with a set R1 “ tpx1, x2q P I2 : x2 • ´0.6x1 ` 0.75u
and R1 “ I2zR1. A plot of f in figure 2 shows its
non-smooth structure.

Figure 2: A plot for f˚px1, x2q for px1, x2q P I2.

About the estimation by DNNs, we employ the least
square estimator (2). For the architecture ⇥ of DNNs,
we set |⇥| “ 4 and dimensionality of each of the lay-
ers as D1 “ 2, D` “ 3 for ` P t2, 3, 4u, and D5 “ 1.
We use a ReLU activation. To mitigate an effect of
the non-convex optimization problem, we employ 100
initial points which are generated from the Gaussian
distribution with an adjusted mean. We employ Adam
Kingma and Ba (2014) for optimization.

Figure 3: A plot for the estimator pfL.

We generate data with a sample size n “ 100 f and
obtain the least square estimator pfL for f˚. Then, we
plot pfL in Figure 3 which minimize an error from the
100 trials with different initial points. We can observe
that pfL succeeds in approximating the non-smooth
structure of f˚.

6.2 Comparison with the Other Methods

We compare performances of the estimator by DNNs,
the orthogonal series method, and the kernel meth-
ods. About the estimator by DNNs, we inherit the
setting in Section 6.1. About the kernel methods, we
employ estimators by the Gaussian kernel and the
polynomial kernel. A bandwidth of the Gaussian ker-
nel is selected from t0.01, 0.1, 0.2, ..., 2.0u and a degree
of the polynomial kernel is selected from r5s. Reg-
ularization coefficients of the estimators are selected
from t0.01, 0.4, 0.8, ..., 2.0u. About the orthogonal se-
ries method, we employ the trigonometric basis which
is a variation of the Fourier basis. All of the parameters
are selected by a cross-validation.

We generate data from the process (1) with (6) with
a sample size n P t100, 200, ..., 1500u and measure the
expected loss of the methods. In figure 4, we report
a mean and standard deviation of a logarithm of the
loss by 100 replications. By the result, the estimator
by DNNs always outperforms the other estimators.
The other methods cannot estimate the non-smooth
structure of f˚, although some of the other methods
have the universal approximation property.
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Figure 4: Comparison of errors by the methods.

7 Conclusion and Future Work

In this paper, we have derived theoretical results that
explain why DNNs outperform other methods. To this
goal, we considered a regression problem under the sit-
uation where the true function is piecewise smooth. We
focused on the least square and Bayes estimators, and
derived convergence rates of the estimators. Notably,
we showed that the rates are optimal in the minimax
sense. Furthermore, we proved that the commonly
used orthogonal series methods and kernel methods
are inefficient to estimate piecewise smooth functions,
hence we show that the estimators by DNNs work bet-
ter than the other methods for non-smooth functions.
We also provided a guideline for selecting a number of
layers and parameters of DNNs based on the theoretical
results.

Investigating selection for architecture of DNNs has
remained as a future work. While our results show the
existence of an architecture of DNNs that achieves the
optimal rate, we did not discuss how to learn the opti-
mal architecture from data effectively. Practically and
theoretically, this is obviously an important problem
for analyzing a mechanism of DNNs.
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