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Abstract

We are motivated by large scale submodular
optimization problems, where standard
algorithms that treat the submodular
functions in the value oracle model do not
scale. In this paper, we present a model
called the precomputational complexity model,
along with a unifying memoization based
framework, which looks at the specific form
of the given submodular function. A key
ingredient in this framework is the notion of
a precomputed statistic, which is maintained
in the course of the algorithms. We show that
we can easily integrate this idea into a large
class of submodular optimization problems
including constrained and unconstrained
submodular maximization, minimization,
difference of submodular optimization, opti-
mization with submodular constraints and
several other related optimization problems.
Moreover, memoization can be integrated
in both discrete and continuous relaxation
flavors of algorithms for these problems. We
demonstrate this idea for several commonly
occurring submodular functions, and show
how the precomputational model provides sig-
nificant speedups compared to the value oracle
model. Finally, we empirically demonstrate
this for large scale machine learning problems
of data subset selection and summarization.

1 Introduction

Submodular functions provide a rich class of express-
ible models for a variety of machine learning prob-
lems. Submodular functions occur naturally in two
flavors. In minimization problems, they model notions
of cooperation, attractive potentials and economies
of scale, while in maximization problems, they model
aspects of coverage, diversity and information. As a
result, they have repeatedly appeared in several real
world problems including document summarization [37],
image summarization [50], data subset selection and
active learning [35, 52], image segmentation and de-
noising [2, 26, 29] and many others. A set function
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f : 2V → R over a finite set V = {1, 2, . . . , n} is
submodular if for all subsets S, T ⊆ V , it holds that
f(S) +f(T ) ≥ f(S∪T ) +f(S∩T ). Given a set S ⊆ V ,
we define the gain of an element j /∈ S in the context
S as f(j|S) , f(S ∪ j)− f(S). A more intuitive char-
acterization is the diminishing returns characterization:
A function f is submodular if it satisfies diminish-
ing marginal returns, namely f(j|S) ≥ f(j|T ) for all
S ⊆ T, j /∈ T , and is monotone if f(j|S) ≥ 0 for all
j /∈ S, S ⊆ V .

While submodular functions naturally occur in a num-
ber of real world applications, they also admit nice
theoretical characterizations and algorithms. In partic-
ular, many simple iterative procedures like greedy [47],
local search [13] and majorization-minimization [27]
yield theoretical guarantees for these problems. These
algorithms are very efficient, scalable and easy to imple-
ment, and hence are being used more often in several
large scale machine learning problems. The scale of ma-
chine learning problems are often massive, with dataset
sizes of several hundreds of millions of examples. This
has led to significant research in providing distributive,
streaming, and multi-stage procedures for scaling these
problems [44, 51, 4].

Many existing submodular optimization algorithms,
treat the submodular function as a black box – a model,
called the value oracle model. While this yields a useful
way of quantifying the complexity of these algorithms,
it does not provide an efficient way of implementing
real world instances of submodular functions, which all
appear in succinct representation, and can be can be
stored in time and space, polynomial in the size of the
ground set. A few recent papers have attempted to go
beyond the value oracle model. For example, [21, 22, 48]
study submodular optimization with noisy oracles. Sim-
ilarly [30, 1, 45, 20] study scenarios where we don’t have
the closed form expression of the submodular functions,
but have a stochastic approximation (available for ex-
ample through simulations). Similarly [49, 5] study the
problem of maximizing submodular functions drawn
from specific probability distributions.

In this paper, we take an orthogonal direction by
introducing a new complexity model called the pre-
computational complexity model, along with a unifying
memoization framework. We define the notion of a
precomputed statistic, which is specific to a submodular
function, and can be integrated easily into a large class
of existing submodular optimization problems and al-
gorithms.We then show how to compute these statistics
for several real world submodular functions occurring
in applications, and theoretically demonstrate how the
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precomputational model reveals improved complexity
results in comparison to the value oracle model. Finally
we consider a real world application of speech corpus
summarization and data subset selection, and show
the scalability of our framework.

The idea of using precomputational statistics for speed-
ing up submodular optimization in itself is not new.
For example, [33, 32] introduce the idea of incremen-
tal evaluation for the greedy algorithms for specific
submodular functions such as entropy and mutual in-
formation. Similar ideas have also been discussed for
Determinantal Point Processes [34]. In this work, we
show that we can provide a unified framework via the
construct of a precomputed statistics and show how this
extends to both, a large class of submodular functions
as well as a large class of optimization algorithms.

2 Basic Ideas and Background

We first introduce several key concepts we shall use in
this paper. We start out by defining some fundamental
characteristics of submodular functions.

The Submodular Polyhedron and Lovász exten-
sion: For a submodular function f , the submodular
polyhedron Pf and the corresponding base polytope
Bf are respectively defined as:

Pf = {x : x(S) ≤ f(S),∀S ⊆ V } (1)

Bf = Pf ∩ {x : x(V ) = f(V )}. (2)

For a vector x ∈ RV and a set X ⊆ V , we write x(X) =∑
j∈X x(j). Though Pf is defined via 2n inequalities,

its extreme point can be easily characterized [16]. Given
any permutation σ of the ground set {1, 2, · · · , n}, and
an associated chain ∅ = Sσ0 ⊆ Sσ1 ⊆ · · · ⊆ Sσn = V with
Sσi = {σ(1), σ(2), . . . , σ(i)}, a vector hfσ satisfying,

hfσ(σ(i) = f(Sσi )− f(Sσi−1) = f(σ(i)|Sσi−1),

∀i = 1, · · · , n (3)

forms an extreme point of Pf . Moreover, a natural
convex extension of a submodular function, called the
Lovász extension [41] is closely related to the submodu-

lar polyhedron, and is defined as f̂(x) = maxh∈Pf 〈h, x〉.
Thanks to the properties of the polyhedron, f̂(x) can be
efficiently computed: Denote σx as an ordering induced
by x, such that x(σx(1)) ≥ x(σx(2)) ≥ · · ·x(σx(n)).

Then the Lovász extension is f̂(x) = 〈hfσ, x〉 [41].

Modular lower bounds (Subgradients): Akin to
convex functions, submodular functions have tight mod-
ular lower bounds. These bounds are related to the
subdifferential ∂f (Y ) of the submodular set function f
at a set Y ⊆ V , which is defined [16] as:

∂f (Y ) = {y ∈ Rn : f(X)− y(X) ≥ f(Y )− y(Y ),

for all X ⊆ V }

Denote a subgradient at Y by hY ∈ ∂f (Y ). The
extreme points of ∂f (Y ) may be computed in a manner
similar to those of the submodular polyhedron. Let
σY be a permutation of V that assigns the elements

in Y to the first |Y | positions (σY (i) ∈ Y if and only
if i ≤ |Y |). Then, hY = hfσY (where hfσY is as defined
in eqn. (3)) forms a lower bound of f , tight at Y

— i.e., hY (X) =
∑
j∈X hY (j) ≤ f(X),∀X ⊆ V and

hY (Y ) = f(Y ). Notice that the extreme points of a
subdifferential are a subset of the extreme points of
the submodular polyhedron.

Modular upper bounds (Supergradients): We
can also define superdifferentials ∂f (Y ) of a submodu-
lar function [29, 24] at Y :

∂f (Y ) = {y ∈ Rn : f(X)− y(X) ≤ f(Y )− y(Y );

for all X ⊆ V }

It is possible, moreover, to provide specific supergra-
dients [24, 27] that define the following two modular

upper bounds (when referring either one, we use mf
X):

mf
X,1(Y ) , f(X)−

∑
j∈X\Y

f(j|X\j) +
∑

j∈Y \X

f(j|∅),

mf
X,2(Y ) , f(X)−

∑
j∈X\Y

f(j|V \j) +
∑

j∈Y \X

f(j|X).

Then mf
X,1(Y ) ≥ f(Y ) and mf

X,2(Y ) ≥ f(Y ),∀Y ⊆ V
and mf

X,1(X) = mf
X,2(X) = f(X).

3 Precomputational Complexity
Model

Given a specific submodular function f , we denote the
precomputed statistics as pX . This data structure de-
pends on the specific submodular function, and stores
information about a given set X. The idea here is that
given pX , computing the gains f(j|X, pX) is often less
costly compared to computing f(j|X) by evaluating
f(X ∪ j) and f(X). This same idea holds for comput-
ing f(j|X\j, pX). The simplest precomputed statistic,
which applies to any submodular function in the oracle
model, is storing pX = f(X). Evaluating the gains
f(j|X, pX) just requires one oracle call as opposed to
two, when computing f(j|X). This simple trick can
matter a lot since many of the algorithms require com-
puting many gains (i.e., f(j|X) for many j ∈ V ). For
example, given the statistic pX , the modular upper
bounds can be easily computed since they depend on
f(j|X),∀j /∈ X and f(j|X\j),∀j ∈ X. Given a general
submodular function in the value oracle model, this
gives a factor 2 speedup. Many real world submodular
functions, however, have richer statistics, often enabling
speedups up to a factor of O(n) or even O(n2). The
same idea holds in computing modular lower bounds
and extreme points of the submodular polyhedron. In
this case, we are given a permutation σ, and we com-
pute a chain of gains f(σ(i)|Sσi−1),∀i ∈ V . Often it is
also much easier to update the statistic when adding an
element to a set – i.e., given a set X and its statistic pX ,
one can easily compute pX∪j using pX (i.e., without
needing to compute it from scratch). Similarly, we can
“downdate” the statistics, i.e., given the statistics pX ,
we would like to compute the statistics for pX\j .
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Name f(X) pX T o
f /T p

f Tu
f /T g

f

Facility Location
∑

i∈V maxk∈X sik [maxk∈X sik, i ∈ V ] O(n2) O(n)

Saturated Coverage
∑

i∈V min{
∑

j∈X sij , αi} [
∑

j∈X sij , i ∈ V ] O(n2) O(n)

Graph Cut λ
∑

i∈V

∑
j∈X sij −

∑
i,j∈X sij [

∑
j∈X sij , i ∈ V ] O(n2) O(n)

Feature Based
∑

i∈F ψ(wi(X)) [wi(X), i ∈ F ] O(n|F|) O(|F|)
Set Cover w(∪i∈XUi) ∪i∈XUi O(n|U | |U |

Clustered Set Cover
∑k

i=1 w(Γ(X) ∩ Ci) [Γ(X) ∩ Cj , j ∈ 1, · · · , k] O(n|U | |U |
Prob. Set Cover

∑
i∈U wi[1−

∏
k∈X(1− pik)] [

∏
k∈X(1− pik), i ∈ U ] O(n|U|) O(|U|)

Spectral Functions
∑|X|

i=1 ψ(λi(SX)) SVD(SX) O(|X|3) O(|X|2)
DPP log det(SX)) SVD(SX) O(|X|3) O(|X|2)

Dispersion Min mink,l∈X,k 6=l dkl mink,l∈X,k 6=l dkl O(|X|2) O(|X|)
Dispersion Sum

∑
k,l∈X dkl [

∑
k∈X dkl, l ∈ X] O(|X|2) O(|X|)

Dispersion Min-Sum
∑

k∈X minl∈X dkl [mink∈X dkl, l ∈ X] O(|X|2) O(|X|)

Table 1: List of Functions used, with the precompute statistics pX , gain evaluated using the precomputed statistics
pX and finally T fo = T fp as the cost of evaluation of the function without memoization and T fu = T fg as the cost
with memoization. It is easy to see that memoization saves an order of magnitude in computation.

Most submodular function optimization algorithms ei-
ther use the modular upper bounds (in which case,
they compute f(j|X) repeatedly), or they compute
extreme points of the submodular polyhedron (in the
form of subgradients, or via the Lovász extension), or
they greedily add or remove elements. These algorithms
easily admit our memoization framework.

Denote To
f as the oracle complexity of the submodular

function, a quantity which most existing algorithms
use for their analysis. Define Tg

f as the complexity of
evaluating the gains, given the precomputed statistics.
This depends in general on whether we are adding or
removing the item (i.e., for f(j|X, pX) or f(j|X\j, pX)).
For submodular functions we consider here, however,
both complexities are the same. Also denote Tu

f as
the complexity of updating the precomputed statistics.
Again, the complexity of updating or downdating could
be different in general, but they are the same for the
submodular functions we consider here. Finally, denote
Tp

f as the complexity of computing the precomputed
statistic for a set X from scratch.

Under the value oracle model, the complexity of eval-
uating the modular upper bounds is O(nT of ), since
the modular upper bound requires n oracle queries.
In the precomputational model, the complexity is
O(nT gf + T pf ), since we would need to compute the pre-

computed statistic pX (in the worst case) from scratch,
and then compute f(j|X, pX). For most submodular
functions, T pf is roughly the same order as T of , but

T gf is often at least a factor n cheaper. Similarly, the
complexity of computing the modular lower bound is
O(nT of ) in the value oracle model, but is O(n[T gf +Tuf ])
in the precomputational model. Again for almost all
submodular functions, T gf and Tuf are at least a factor
n cheaper than T of . Hence the precomputational model
provides significant speedups to the algorithms, which
can be very important in large scale machine learning
problems.

We make the ideas above more concrete in the following
sections, by first explicitly defining pX and the proce-
dure for updating pX , for several classes of submodular

functions which occur in applications. Table 1 summa-
rizes the precompute statistics pf (X), the complexity
T of /T pf and Tuf /T gf for different functions f .

3.1 Graph Based Submodular Functions

Facility Location Functions: Given a similarity
matrix {sij}i,j∈V the facility location function is
f(X) =

∑
i∈V maxj∈X sij . This function has success-

fully been used in summarization and data subset se-
lection [36, 39]. It is easy to check that the oracle
complexity T of = O(n2). The precomputed statistics

in this case is pX [i] is the pair of the largest and sec-
ond largest value of sij : i ∈ V, j ∈ X. Given these
statistics however computing the gains are much easier,
since f(k|X, pX) =

∑
i∈V max{0, sik − maxj∈X sij},

and hence T gf = O(n). We can similarly efficiently com-

pute the gains f(k|X\k, pX) in O(n). Moreover, up-
dating the statistics is also easy, since maxj∈X∪k sij =
max{sik,maxj∈X sij} – we can similarly update the
second largest. Hence Tuf = O(n). Moreover, comput-
ing pX is the same complexity of computing f , and
T pf = T of . We can easily extend this idea to the top-
k facility location function, where instead of taking
the max, we can take the top k similarities. In that
case, the precomputed statistics would be a matrix
pX [i, l], i ∈ V, l ∈ {1, · · · , k} as the lth largest value of
sij for a given i. It is easy to see that we obtain an
O(n) speedup in this case as well.

Saturated Coverage functions: The saturated
coverage function, f(X) =

∑
i∈V min{

∑
j∈X sij , αi},

has successfully been used in document summariza-
tion [37]. The oracle complexity of this function is also
T of = O(n2). A natural choice of the precomputed

statistics in this case is pX [i] =
∑
j∈X sij , i ∈ V . Given

this, it is easy to compute f(j|X, pX) in O(n) time.
Moreover, updating pX can also be done directly in
O(n), since pX∪k[i] = pX [i] + sik. Hence in this case
also, T gf = Tuf = O(n) and T pf = O(n2).

Graph Cut like functions: This class of functions
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have been used extensively in both summarization prob-
lems, while modeling coverage and diversity [39, 36], as
well in image segmentation and denoising, by capturing
cooperation [2]. We can denote the general class as
f(X) = λ

∑
i∈V

∑
j∈X sij −

∑
i,j∈X sij . Setting λ = 1

is the standard graph cut, while λ = 0 gives the
redundancy penalty [39]. Again, the natural choice of
pX [i] =

∑
j∈X sij . Though T of = O(n2), T gf = Tuf are

both O(n). Similarly, T pf = O(n2).

3.2 Coverage Functions

Set Covers and Neighborhood Functions: This
is another important function, capturing the notion of
coverage [35] in maximization problems. This function
also captures notions of complexity (like the size of
the vocabulary in a speech corpus) in minimization
problems [38]. Given a set of sets {S1, · · · , Sn} and the
universe U = ∪iSi, define f(X) = w(∪i∈XSi), where
wj denotes the weight of item j ∈ U . This setup can
alternatively be expressed via a neighborhood function
Γ : 2V → 2U such that Γ(X) = ∪i∈XSi. The oracle com-
plexity of the function in this case is T of = O(|U|). The

precomputed statistics here is a vector pX ∈ RU which
stores the number of times u ∈ U appears in the sets
{Si}i∈X . Then, f(j|X, pX) = |{u ∈ Sj : pX [u] = 0}|,
and f(j|X\j, pX) = |{u ∈ Sj : pX [u] = 1}|. Simi-
larly, pX∪j can be updated as pX∪j [u] = pX [u] + 1, for
u ∈ Sj . It is easy to see that both Tuf = T gf = O(1),

and T pf = Tuf (assuming |Sj | is a constant, which is

often the case).

Clustered Set Cover: We can generalize this idea to
clustered set cover functions, often used as confusability
functions in corpus selection [38]. This is defined as

f(X) =
∑k
i=1 w(Γ(X) ∩ Ci), where C1, C2, · · ·Ck ⊆ U

are clusters. The precomputed statistics here is a vector
of sets. For each j = 1, · · · , k, pX [j] = Γ(X) ∩ Cj .
Probabilistic Coverage Functions: Another gen-
eralization of the set cover function, which has been
used in a number of models for summarization prob-
lems [12]. This provides a probabilistic notion to
the set cover function, and is defined as f(X) =∑
i∈U wi[1 −

∏
j∈X(1 − pij)]. The complexity of eval-

uating this function T of = O(n|U|). The precomputed

statistics in this case is pX [i] =
∏
j∈X(1 − pij). Note

that here, both Tuf = T gf = O(|U|), thereby providing

a factor n speedup. Similarly, T pf = Tuf .

3.3 Feature Based Functions and Clustered
Concave over Modular Functions

Another class of submodular functions are sums of
concave over modular functions. They appear in max-
imization problems as feature based functions, defined
as f(X) =

∑
e∈F ψ(me(X)), and have been used in

data subset selection applications [53]. me(j) captures
how much item j covers feature e ∈ F . Another related

function is f(X) =
∑k
j=1 ψ(mj(X ∩ Cj)), where

C1, C2, · · · , Ck are clusters of similar items in the
ground set V . This function simultaneously captures

diversity in maximization problems [37], and notions
of cooperation in minimization problems [29, 23]. The
complexity of evaluating these functions is O(n|F|)
and O(nk) respectively. A natural choice of the
precomputed statistics is pX [e] = me(X), in the case
of feature based functions, and pX [j] = mj(X ∩ Cj)
for clustered concave over modular functions. Again,
it is easy to see that Tuf = T gf are O(|F|) and O(k)
respectively, thus saving a factor of n. Moreover, in
this case we also have that T pf = T of .

3.4 Spectral Submodular Functions

Another rich class of submodular functions, defined as

f(X) =
∑|X|
i=1 ψ(λi(SX)), where S is a PSD matrix, SX

represents the principal submatrix formed by the rows
and columns corresponding to X, and ψ is a concave
function. This function is submodular for a large class
of concave functions [15]. This class of spectral regu-
larizers has been shown to promote diversity [10], and
includes as special cases the log det function, which oc-
curs in the context of determinantal point processes [34],

since f(X) = log det(SX) =
∑|X|
i=1 log λi(SX). Another

example of this function is f(X) =
∑|X|
i=1

√
λi(SX).

Evaluating this class of functions is T of = O(n3), since
we need to perform the eigenvalue decomposition. A
natural choice of the precomputed pX statistic here
is the eigenvalue decomposition of SX . Using the
result from [19], it is possible to update (or downdate)
the eigenvalue decomposition of SX to SX∪j (or
SX\J) in O(n2) computations given the eigenvalue
decomposition of SX (note that the result of [19] is in
terms adding a single row and column to SX . However,
converting SX to SX∪j is the same as adding a row,
followed by a column, and hence two updates.)

3.5 Dispersion Functions

Denote dij as a distance measure between objects i
and j. Define the ‘Dispersion Min function as f(X) =
mini,j∈X dij . This function is not submodular, but can
be efficiently optimized via a greedy algorithm [11]. It
is easy to see that maximizing this function involves
obtaining a subset with maximal minimum pairwise
distance, thereby ensuring a diverse subset. Similarly,
we can define two more variants. One is the supermod-
ular Dispersion Sum, defined as f(X) =

∑
i,j∈X dij .

Another is Dispersion Min-Sum, a combination of two
forms, defined as f(X) =

∑
i∈X minj∈X dij . This func-

tion is submodular [9].

3.6 Mutual Information and Entropy

This is another class of functions, used often for
feature subset selection [23]. The entropy function
f(A) = H(XA) is submodular, and while mutual in-
formation f(A) = I(XA;C) is always a difference of
submodular functions [46, 23], it is also sometimes sub-
modular under some assumptions. While both these
functions require exponential complexity to evaluate,
they can be estimated easily from data via a single
sweep, and using techniques like Laplacian smooth-
ing [23] – the computational complexity being O(n|D|),
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where |D| is the size of the training data. The mutual
information and entropy estimates also amenable to
precomputation, since we precompute the data tables
for the given set of feature XA. Adding and removing
features to this corresponds to further dividing tables,
which can be done in O(|D|) complexity.

3.7 Influence Maximization

A number of models for influence maximization have
been shown to be related to submodular maximiza-
tion [31]. Evaluating the objective function, however,
requires MCMC simulations, which is quite expensive.
We can define precomputed statistics however, which
can significantly speedup the greedy algorithms [18].
In particular, they avoid the expensive MCMC by enu-
merating simple paths, and relying on memoization
and look ahead optimization [18].

3.8 Mixtures of Submodular Functions

Often it is desirable to consider not just one submod-
ular function, but a mixture of many submodular
bases functions [35]. In particular, we often ex-
press f(X) =

∑m
i=1 wifi(X), where fi’s are bases

submodular functions (like one of the submodular
functions above), and wi’s are weights. Assuming the
submodular functions fi’s have precomputed statistics,

pfiX , the gain f(j|X, pfX) is exactly
∑m
i=1 wifi(j|X, p

fi
X).

Moreover, to update the statistics pfX , we simply

update the individual pfiX .

3.9 Deep Submodular Functions

Almost all of the above classes of submodular functions
are subsumed by Deep Submodular Functions [6], de-
fined as nested sums of concave over fewer-layer deep
submodular functions. The general form of Deep SFs
are:

f(X) =
∑
i1∈F1

w1
i1ψ1(· · ·ψk−1(

∑
ik−1∈Fk

wkikψk(mk
ik

(X))))

For simplicity we consider the case with k = 2, i.e.,
a two layer function. The complexity of evaluating f
is |F1||F2|n. Similar to a feature based function, the
precomputed statistics here is pX = m2

i2
(X),∀i2 ∈ F2.

The complexity of updating the precomputed statistics
is Tuf = |F2| while the complexity of computing the

gain T gf = |F1||F2|. Both these quantities are a factor
n less expensive compared to T of .

4 Algorithms for Submodular
Optimization

We now investigate several known algorithms for
submodular optimization problems, and show how
we can easily integrate the precomputation idea
into them. In almost all cases, we shall see that this
entails only a few additional lines of code, while
providing significant speedups in applications. Table
2 summarizes the complexity of various submodular
optimization algorithms with the precomputational
model and value oracle model.

4.1 Computing Subgradients,
Supergradients, and extreme points of
Submodular Polyhedron

Most submodular optimization algorithms either rely
on computing subgradients, supergradients or some
extreme points of the submodular polyhedron. So we
first compare the complexity of computing these quanti-
ties under the Precomputational Model and the Value
Oracle Model. Recall that computing a supergradi-
ent of X requires computing f(j|X) for every j /∈ X
(or equivalently computing f(j|X\j) for j ∈ X). The
complexity of doing this in the Value Oracle Model
is O(nT of ). Under the Precomputational Model, the

complexity if O(T pf + nT gf ) since we can compute the
precompute statistics pX and using that, evaluate the
gains f(j|X, pX). This is a factor n speedup since in
all cases, T gf is a factor n cheaper compared to T 0

f

(see Table 1). Similarly, computing a subgradient (or
equivalently computing an extreme point of the sub-
modular polyhedron) requires forming a chain of sets
∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = V , and computing
f(xi|Xi) where xi = Xi+1\Xi. Computing the subgra-
dient (or extreme point) using the Value Oracle Model
is O(nT of ). Using the precompute statistics, we can at
every step use the precompute statistics from Xi to
compute f(xi|Xi) and then update the precompute
statistics. Since this is a greedy algorithm, the com-
plexity of this is O(n[T gf + Tuf ]. Again, from Table 1, it
is evident that we can achieve a speedup at least of a
factor of n.

4.2 Submodular Maximization

Submodular maximization is particularly important in
applications like summarization [37, 36], data subset
selection [53] etc. where we want to find diverse and
relevant subsets. A large class of existing submodu-
lar maximization algorithms can be expressed via a
common minorization-maximization framework [27] –
an iterative procedure which optimizes the modular

lower bound hfσt(X) (which is tight at Xt). This algo-
rithm essentially chooses a sequence of orderings σt,
each of which is tight with respect to the set Xt, and
different known algorithms use different orderings. The
simplest algorithm is to just choose a random subgra-
dient (or ordering) σt at every iteration. We can com-

pute the subgradients hfσt using memoization – start

with the empty set, and compute f(σt(i)|Sσti−1, pSσti−1
),

and update p
Sσ

t
i

, for i = 1, 2, · · · , n. The complexity

of this algorithm using the precompute statistics is
Õ(n[T gf + Tuf ]) – where Õ hides the complexity of the

outer loop which is weakly polynomial [27] (in prac-
tice, it is a constant). With the value oracle model, the

complexity of minorize-maximize is Õ(n[T of ]).

While this simple algorithm provides guarantees, one
gets much tighter bounds with more intelligent choices
of subgradients. Below we look at a few such algorithms
for various variants of submodular maximization.

Greedy and Lazy Greedy Algorithm: This is a
common algorithmic idea, which provides constant fac-
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Algorithm Value Oracle Model Precomputational Model

Computing Supergradients 2nT o
f nT g

f + T p
f

Computing Subgradients/Extreme Points nT o
f n(T g

f + Tu
f )

Min-Max Alg. Framework Õ(nT o
f ) Õ(n(T g

f + Tu
f ))

Greedy Algorithm O(nkT o
f ) O(nk(T g

f + Tu
f ))

Lazy Greedy Algorithm O(knRT
o
f ) O(knR(T g

f + Tu
f ))

Lazier than Lazy Greedy Algorithm O(n log(1/ε)T o
f ) O(n log(1/ε)(T g

f + Tu
f ))

Sieve Streaming Algorithm O(n log(k/ε)T o
f ) O(n log(k/ε)(T g

f + Tu
f ))

Distributed Greedy Algorithm O([nk/m+mk2]T o
f ) O([nk/m+mk](T g

f + Tu
f ))

Local Search Algorithm O(n3 lognT o
f /ε) O(n3 logn(T g

f + Tu
f )/ε)

Bi-directional Greedy Algorithm O(nT o
f ) O(n(T g

f + Tu
f ))

Randomized Greedy Algorithm O(nkT o
f ) O(nk(T g

f + Tu
f ))

Minimum Point Algorithm O([n5T o
f + n7]F 2) O([n5(T g

f + Tu
f ) + n7]F 2)

Lovasz Extension based Algorithm O(T o
f /ε

2) O((T g
f + Tu

f )/ε2)

Minorization-Maximization Algorithm Õ(nT o
f ) Õ(T p

f + nT g
f )

Table 2: List of Submodular Optimization Algorithms, and their complexity under the value oracle model and the
Precomputational Model. See text for more details on the quantities in this Table

tor guarantees for a large class of monotone submodular
maximization problems, under cardinality, knapsack
and matroid constraints [47]. Starting with X0 = ∅,
we sequentially update Xt+1 = argmaxj∈V \Xt f(j|Xt).

The complexity of this algorithm is O(nkT of ). We can
easily integrate precomputation into this, by setting
the update rule to Xt+1 = argmaxj∈V \Xt f(j|Xt, pXt),
and updating pXt+1 . The complexity then is essentially
O(nk[Tuf + T gf ]). Thanks to submodularity, however,
we can significantly accelerate this algorithm, to what
is known as the lazy greedy algorithm [42]. The idea

is that instead of recomputing f(j|Xt),∀j /∈t, we
maintain a priority queue of sorted gains ρ(j),∀j ∈ V .
Initially ρ(j) is set to f(j),∀j ∈ V . The algorithm
selects an element j /∈ Xt, if ρ(j) ≥ f(j|Xt), we add
j to Xt (thank to submodularity). If ρ(j) ≤ f(j|Xt),
we update ρ(j) to f(j|Xt) and resort the priority
queue. The complexity of this algorithm is roughly
O(knRT

o
f ), where nR is the average number of resorts

in each iteration. Note that nR ≤ n, while in practice,
it is a constant thus offering almost a factor n speedup
compared to the simple greedy algorithm. We can
use the notion of precompute here too, and use
f(j|Xt, pXt) in place of the gain f(j|Xt). Note that
additionally, whenever we add an element j to Xt, we
also need to update the precomputed statistic. The
resulting complexity in precomputational model is
O(knR[T gf + Tuf ]), again providing a factor n speedup.

Lazier than Lazy greedy Algorithm: While the
lazy greedy algorithm above runs much faster in prac-
tice, in the worst case, the complexity is the same as the
näıve greedy algorithm. The Lazier than Lazy greedy
algorithm [43] attempts to obtain an approximation
guarantee of 1− 1/e− ε in O(n log(1/ε) function eval-
uations rather than O(nk) from the greedy (or lazy
greedy) algorithm. The idea is to select a random set
R of size n/k log(1/ε) at select the element with the
largest gain of adding the element to the current set.
We run this until our chosen subset has k elements (in
the cardinality constrained case). Since we evaluate the

gains f(j|X), j ∈ R ⊆ V \X. We start with the X = ∅,
and at every step we can compute f(j|X, pX) using
the precompute statistics, and after choosing the best
element, add that element to X and update pX . The
complexity of this algorithm under the precompute
model is O(n log(1/ε)[T gf + Tuf ]), while using the value

oracle model, the complexity is O[n log(1/ε)T of ].

Distributed Greedy Algorithm: The Distributed
Greedy algorithm [44] attempts to extend the Greedy
algorithm to a setting where all the data cannot fit into
memory. The basic idea is we have m machines, where
we equally partition the data into, i.e., V1, · · · , Vm.
The distributed greedy algorithm then runs a greedy
algorithm on each of the partitions to obtain k ele-
ments, followed by a second round of greedy on the
mk elements to obtain k elements. It is easy to see
that the complexity of this in the value oracle model
is O([nk/m+mk2]T of ). Moreover, since we run a two-
stage greedy algorithm, the memoization can be used
exactly like the memoization discussed above.

Sieve Streaming Algorithm: The Sieve streaming
algorithm basically performs submodular maximiza-
tion in the streaming setting [3]. The idea of the al-
gorithm is to maintain a set of thresholds in a set O,
and corresponding to each threshold, maintain a set
S. It simultaneously grows these sets depending on
constraints (see [3] for details on the algorithm). The
way we can incorporate memoization is by storing |O|
copies of submodular functions, with their own precom-
pute statistics, which are updated through the process
of the algorithm. Given these precompute statistics,
we can easily compute the gains f(ei|Si) for each of
the sets maintained by the algorithms, and once the
elements are added to the sets, we can update the pre-
compute statistics. The complexity analysis (shown in
Table 1) follows directly from the results in [3] and the
precompute statistics (note that each subset is simul-
taneously updated through the course of the algorithm
in a greedy manner).

Local Search Algorithm: This algorithm for uncon-
strained submodular maximization (USM), essentially
runs multiple rounds of the greedy algorithm [13], and



Rishabh Iyer, Jeff Bilmes

provides a 1/3 approximation for USM. In particular,
we start with X0 = ∅, and run the forward greedy
algorithm until we can no longer add elements, fol-
lowed by the reverse greedy of removing elements. We
continue this procedure until we converge to a local op-
timum. The forward greedy algorithm is essentially the
same algorithm as above, while in the reverse greedy
case, we remove elements with the smallest value of
f(j|Xt\j). We can use the precompute ideas and use
f(j|Xt\j, pXt) (in this case, we downdate the statistics
after removing the elements). The complexity of the al-
gorithm follows from the complexity of the local search
from [13] – see Table 2 for the complete expression.
Again, we simply need to update and downdate the
precompute statistics, and given these statistics, com-
pute the gains of adding and removing the elements.
For all the functions we consider, the complexity of
adding/removing elements (correspondingly updating
the downdating the precompute statistics) is the same,
the complexity analysis follows.

Bidirectional Greedy Algorithm: The bidirec-
tional greedy algorithm [7] provides the tight 1/2 ap-
proximation for USM. Surprisingly, this is a very simple
linear time algorithm. This algorithm maintains two
sets A and B (initially set to A = ∅ and B = V ) which
increases and decreases respectively in the course of the
algorithm, and depends on an initial ordering π. Then
from i = 1, 2, · · · , n, we either add π(i) to A or remove
π(i) from B, depending on which of the gains is larger.
The complexity of this algorithm is O(nT of ). We can use
precomputation here, by storing two sets of statistics
(one for the set A, and another for B) – in practice, we
can achieve this by maintaining two submodular func-
tions which each store their statistics. As A grows, we
update its statistics and similarly downdate B’s statis-
tics as it shrinks. The complexity with precomputation
is O(n[T gf + Tuf ]), which is in practice a factor n faster.

Randomized Greedy Algorithm: The randomized
greedy algorithm provides an efficient algorithmic
framework for cardinality constrained non-monotone
submodular functions. The idea of this algorithm is
very similar to the bidirectional greedy above, except
that instead of choosing the best gain f(j|Xt), we
choose at random, one of the top k gains (where k
is the given cardinality constraint). The complexity
of this algorithm is O(nkT of ). Similar to the greedy
algorithm, we can incorporate the precomputation by
using f(j|Xt, pXt), and updating pXt when we add the
new element. The complexity of this is O(nk[Tuf +T gf ]).

4.3 Submodular Minimization

Submodular minimization comes up in applications
where we want to minimize cooperative costs and com-
plexity measures, like image segmentation [2, 29], and
limited vocabulary corpus selection [38]. We investigate
three important submodular minimization algorithms,
and show how the notions of precomputation yields
significant computational gains.

The minimum norm point algorithm: This is one
of the most practical algorithm available for general
purpose submodular minimization [17, 2, 35]. This algo-
rithm solves quadratic programming problem, which is
equivalent to of the discrete minimization problem [16],

and uses the Wolfe algorithm [14]. One of the most
important step in this algorithm (and the only step
which requires oracle access to the submodular func-
tion) is the greedy algorithm for solving a linear pro-
gramming problem maxx∈Pf 〈x, x̂〉. As discussed in sec-
tion 2, solving this problem requires computing the
subgradient according to the ordering σx̂, and we can
use precomputations to efficiently find these subgradi-
ents, thereby providing significant speedups in practice.
While in practice the Minimum Norm Point algorithm
is the fastest (compared to the other combinatorial
algorithms), the worst case complexity is still high or-
der polynomial [8]. The worst case complexity with
and without memoization is in Table 2. Having said
that, we demonstrate in our experimental section, that
memoization can provide significant compute gains.

Lovász extension based: Another class of algo-
rithms [2, 28], is based on relaxing the discrete op-
timization problem to a continuous one, via the Lovász
extension. This procedure, moreover, works for a large
class of constrained problems, and uses convex opti-
mization techniques [2]. The precomputational ideas
apply in these cases too, since we can both compute
the Lovász extension (which requires solving the linear
program over the submodular polyhedron) and its sub-
gradient (which is the same as the subgradient of the
submodular function) very efficiently.

Majorization-Minimization: This is a discrete
gradient based framework which applies to a large
class of constrained submodular minimization prob-
lems [46, 23, 27]. This is an iterative procedure, which
starts with X0 = ∅, and minimizes the modular upper

bounds mf
Xt as a proxy to f . Each step of this algo-

rithm is a linear cost problem, which is easy for many
combinatorial constraints. Thanks to the nature of this
algorithm, we are guaranteed improvement at every
iteration. Moreover, this algorithm also admits guaran-
tees, and works very well in practice [27]. Moreover, as
we saw earlier, we can efficiently compute the modular
upper bounds using precomputations. The complexity
under this model is O(nT gf + T pf ), which is in general

a factor n faster than the oracle model O(nT of ).

4.4 Optimization with Submodular
Constraints

Another class of optimization problems related to
submodular functions, are ones where submodular
functions appear as upper or lower bound con-
straints. Two general problem classes here are [25]
(a) SCSC: min{f(X)|g(X) ≥ c}, and (b) SCSK:
max{g(X)|f(X) ≤ b}. This class of problems comes in
applications where we simultaneously want to maximize
one submodular function, while minimizing another.
This generalizes a number of useful problems, includ-
ing for example, the submodular set cover [55] and
the submodular knapsack [47], which are instances of
SCSC and SCSK respectively, when f(X) = w(X) is
a modular function and g(X) is submodular function.
The same lazy greedy algorithm actually works for the
submodular set cover and the submodular knapsack
problem, and hence precomputation directly applies in
this case. The general case of SCSC and SCSK, can be
handled by replacing f by its modular upper bound
and iteratively solving submodular set cover and sub-
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Subgrad Supergrad
Function VO PM VO PM
Fac Loc 433.4 0.39 505.7 0.49

Feat Based 3.78 0.019 14.8 0.021
Complexity 28.9 0.02 48.2 0.03

Table 3: Computation of Sub and Super gradients under
the VO and PM models

modular knapsack respectively [25]. Moreover, since
the modular upper bound computation and the greedy
algorithm can be both done efficiently via precompu-
tations, we can obtain significant speedups for these
problems in large scale problems.

4.5 Difference of Submodular Functions

A very common and general optimization problem
involves minimizing the difference between submod-
ular functions minX⊆V f(X) − g(X), and comes up
in several machine learning applications including
feature subset selection, and graphical model infer-
ence [46]. A common class of heuristics for this prob-
lem is the submodular-supermodular procedure, and
its variants [46, 23]. They are essentially majorization-
minimization based iterative procedures starting with
X0 = ∅, and iteratively to replace either f by its mod-

ular upper bound mf
Xt , and g by its modular lower

bound hgXt , or both. At every iteration, the resulting
problem is either submodular minimization, maximiza-
tion or modular minimization [46, 23]. Since both the
upper and lower bounds can be efficiently computed,
and the algorithms for submodular minimization and
maximization are efficient, thanks to precomputations,
we can achieve substantial speedups in applications.

5 Experiments

In this section, we compare the performance of different
submodular optimization problems (functions and algo-
rithms). We study two specific applications: 1) speech
data subset selection [54], and 2) low complexity speech
corpus creation [40]. We divide the sections below by
the different submodular optimization problems. We
denote the precompute model as PM and the value
oracle model as VO.

Computing Sub- and Super-gradients: We first
compare the running time of computing the sub and
super gradients for the speech data subset selection
problem [54] on TIMIT. In this case, n = 4620. We
compare the running time of three classes of submodu-
lar functions: Facility Location, Feature Based, and the
Complexity function from [40] (which is a set cover func-
tion). The Results (Table 3) shows substantial gains
using memoization compared to the VO model for all
three classes of functions. We also compute the sub and
supergradients for large scale problems (|V | = 200000
from Switchboard [40]. In this case, the subgradient
computation takes 2.8 seconds for the Feature based
function and 0.7 seconds for the Complexity function,
while the supergradient compute takes 3.09 seconds
for the Feat based and 1.14 sec for the Complexity
Function (under the PM model). With the VO models,
it would have taken around 7 days to compute these.

PreCompute Model Value Oracle Model
Function 5% 15% 30% 5% 15% 30%
Fac Loc 0.34 0.4 0.71 48 168 270
Sat Cov 0.36 0.64 0.92 55 177 301
Gr Cut 0.39 0.52 0.82 41 161 355
Feat B 0.16 0.21 0.32 9 16 21
Set Cov 0.21 0.31 0.41 5 16 31
PSC 0.11 0.37 0.42 7 19 35
DM 0.11 0.61 0.82 21 125 221
DS 0.21 0.63 0.89 41 134 246

Table 4: Timing results in seconds submodular maxi-
mization

Submodular Maximization Next we compare the
different functions on submodular maximization with
the lazy greedy algorithm. Again, we see substantial
speedups using the precompute model across the board
for different submodular functions (Table 4). We also
compare the Feature Based and Set Cover function
for large scale submodular optimization |V | = 200000.
The FB function takes 16 seconds, while the Set Cover
function takes about 27 seconds for running the Lazy
greedy algorithm.

Submodular Minimization We next compare the
complexity of unconstrained and constrained submod-
ular minimization. We define f(X) = c(X) − λ|X|,
where c(X) is the complexity function from [40]. We
use the TIMIT dataset (|V | = 4620. For unconstrained
minimization, the minimum norm point algorithm
takes about 7.2 seconds with PM, while under the
VO Model, it takes around 2000 seconds. For larger
scale problem (n = 200000), the MN algorithm takes
around 88 seconds under the PM Model (the VO
model will take several days to complete). Consider
next the problem of constrained submodular mini-
mization under cardinality constraints (minimizing
c(X) subject to a cardinality constraint). We use the
Majorization-Minimization algorithm here [27]. Under
PM, majorization-minimization takes around 0.13 sec-
onds for a budget of 10%, while the value oracle model,
the time is 163 seconds. For the large scale version of
this problem with Switchboard (n = 200000), MMin
takes around 23 seconds with the PM Model.

6 Conclusions and Acknowledgements

This paper introduces the idea of precompute Statis-
tics and Memoization for Submodular Optimization.
We show how several real world submodular functions
admit natural precompute statistics, and how we can
integrate this idea into a large family of algorithms
for submodular maximization, minimization and other
forms of constrained submodular programs. We em-
pirically demonstrate the utility of our Memoization
framework on several large scale problems.

This material is based upon work supported by the
National Science Foundation under Grant No. (IIS-
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work was supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by
DARPA.
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J. Vondrák, and A. Krause. Lazier than lazy greedy.
In AAAI, pages 1812–1818, 2015.

[44] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and
A. Krause. Distributed submodular maximiza-
tion: Identifying representative elements in mas-
sive data. In NIPS, 2013.

[45] A. Mokhtari, H. Hassani, and A. Karbasi. Condi-
tional gradient method for stochastic submodular
maximization: Closing the gap. arXiv preprint
arXiv:1711.01660, 2017.

[46] M. Narasimhan and J. Bilmes. A submodular-
supermodular procedure with applications to dis-
criminative structure learning. In UAI, 2005.

[47] G. Nemhauser, L. Wolsey, and M. Fisher. An anal-
ysis of approximations for maximizing submodu-
lar set functions—i. Mathematical Programming,
14(1):265–294, 1978.

[48] A. Singla, S. Tschiatschek, and A. Krause. Noisy
submodular maximization via adaptive sampling
with applications to crowdsourced image collection
summarization. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[49] S. Stan, M. Zadimoghaddam, A. Krause, and
A. Karbasi. Probabilistic submodular maximiza-
tion in sub-linear time. In Proceedings of the 34th
International Conference on Machine Learning-
Volume 70, pages 3241–3250. JMLR. org, 2017.

[50] S. Tschiatschek, R. K. Iyer, H. Wei, and J. A.
Bilmes. Learning mixtures of submodular func-
tions for image collection summarization. In Ad-
vances in neural information processing systems,
pages 1413–1421, 2014.

[51] K. Wei, R. Iyer, and J. Bilmes. Fast multi-stage
submodular maximization. In ICML, 2014.

[52] K. Wei, R. Iyer, and J. Bilmes. Submodularity
in data subset selection and active learning. In
International Conference on Machine Learning,
pages 1954–1963, 2015.

[53] K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and
J. Bilmes. Submodular subset selection for large-
scale speech training data. Proceedings of ICASSP,
Florence, Italy, 2014.

[54] K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Using
document summarization techniques for speech
data subset selection. In NAACL-HLT, 2013.

[55] L. A. Wolsey. An analysis of the greedy algo-
rithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.


	Introduction
	Basic Ideas and Background
	Precomputational Complexity Model
	Graph Based Submodular Functions
	Coverage Functions
	Feature Based Functions and Clustered Concave over Modular Functions
	Spectral Submodular Functions
	Dispersion Functions
	Mutual Information and Entropy
	Influence Maximization
	Mixtures of Submodular Functions
	Deep Submodular Functions

	Algorithms for Submodular Optimization
	Computing Subgradients, Supergradients, and extreme points of Submodular Polyhedron
	Submodular Maximization
	Submodular Minimization
	Optimization with Submodular Constraints
	Difference of Submodular Functions

	Experiments
	Conclusions and Acknowledgements

