Minimum Volume Topic Modeling

A Algorithm Analysis

A.1 ADMM update derivation

For completeness, we derive the ADMM steps of the
problem in (12). Given current iterates Vi, ~*, and
At
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can rewrite the unconstrained y-subproblem as
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where Gr = {X € R F|op,;,(X) > £} and
Projg,, is the projection onto the set Gg.
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where we have that
A=C 'BT =UD,VT
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We can derive the update for 4**!, as it is a convex
problem with a linear constraint. First, consider the

K
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~=UDVT pat

where E = UTCU and F = UTCUD,. Then we
can solve the above problem element by element.
Looking at the i-th entry, we can take the derivative
and set it to zero. That is

aD,, (log | Dii| + gEn'D?i - PFiiDiz‘) =0

leading to the following quadratic formula
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which has the solution
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Then, using these diagonal elements D;;, it follows
that

: p
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We make the final adjustment to satisfy the linear
constraint. Thus, the v update is

YD =y, — (1 —a)afCc )T
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A.2 Proof of Proposition 3.2

Proof. The first order conditions of the updates in
Algorithm 1 give us

0 € D)l [ln (Vi) = p(Wr' = V1) — AL
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(17)
Note that the first order condition for v**! is different

as it is a equality constrained convex problem. Also,

by the definitions of A{*' and ALH
AT =AWy -V
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Then, combining these two sets of equations, we have
that
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Then, let us define (y%, VI, VE AL AL, be
a sequence of iterates with a limit point
(v*, V", V5, AT, AS). Then, by the last two equations

of (19), we have that W = WV; = Vi*. Therefore,
the first two equations give us that
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Lastly, using the third equation in (19), it follows
that
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Noting that the optimality condition for
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0=—-2(v")" +1x ()" +2(")7" —1x(v*)"
=27 )+ 1 (W) + WTAT + A5 € 9f(7")

and we have that v*1 = a by the formulation of
our update for ‘. This shows that v* satisfies the
optimality condition of (10) and thus a stationary
point for f. O

B Simulations

We demonstrate the computational benefit as well as
the accuracy of our model in terms of perplexity. The
experiments are based on the simulated data from
the LDA model, and we focus on the comparison to
the variational EM (VEM) and Gibbs sampling to
illustrate the advantages of our method. As part of
the future work, we plan to compare the stochastic
implementation of MVTM with GDM (Yurochkin
and Nguyen, 2016) and the imporved implementa-
tions of the Gibbs sampling presented in Li et al.
(2014) and Yuan et al. (2015) at a much larger scale.
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Figure 7: Perplexity of the held-out data and the cor-
responding time complexity of each method at varying
values of the number of documents M with N,, = 1000,
K =5V =1200,7=0.1 and o = 0.1

We first look at the behavior of the algorithms
as M increases when N,, = 1000 (Figure 8). At
N,, = 1000, we are working with the setting that is
close to the asymptotic regime, and MVTM has the
computational speed comparable to VEM and the
statistical performance similar to the Gibbs sampling.

In a more challenging case with the shorter docu-
ments at N, = 100, MVTM continues to perform as
well as the Gibbs sampling with a little additional
computational cost. This performance comparison
would be of interest for the researchers who are work-
ing with shorter documents present in the modern
application. As discussed in Tang et al. (2014) and
Nguyen (2015), the limitation of LDA comes from
the document lengths. Our results show that MVTM
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Figure 8: Perplexity of the held-out data and the cor-
responding time complexity of each method at varying
values of the number of documents M with N, = 100,
K =5,V =1200,7=0.1 and o = 0.1

do not suffer from the short documents in terms of
statistical performance, when the regularization pa-
rameter p for the hinge loss is appropriately chosen.
The current batch implementation, however, suffers
from the number of documents present in the dataset,
as it has to soft-threshold every document. This com-
putational limitation, however, can be alleviated by
the stochastic implementation as demonstrated in the
stochastic implementation of the variational method
in Hoffman et al. (2013).

C NIPS dataset Topics

C.1 Computational Time

Figure 9 shows the time complexities of different
algorithms on the NIPS dataset as we increase the
number of topics. Compared to GDM, the proposed
MVTM improvement on performance comes at a
little computational cost. RecoverKL could achieve
similar computational speed if the anchor words are
provided. However, when we include the computa-
tional cost of finding the anchor words, GDM and
MVTM show computational advantages over Recov-
erKL.
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Figure 9: The computational performance of different
algorithms as a function of the number of topics. NIPS
dataset includes 1491 documents and 4492 unique words.

C.2 Top 10 topics
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Topic 1  Topic 2  Topic 3 Topic 4  Topic 5 Topic 6  Topic 7 Topic 8 Topic 9 Topic 10
neuron  input word data image network  model cell learning learning
network  output speech set images unit data visual algorithm control
spike weight recognition training  object neural parameter motion function model
synaptic neural system error point weight likelihood direction problem system
input network training function features hidden = mixture response action task
pattern  net character vector graph training  distribution orientation policy movement
firing chip hmm method  representation output algorithm neuron optimal controller
model layer speaker clagsifier feature input set model gradient motor
activity  analog context kernel information error gaussian frequency  convergence dynamic
neural bit network gaussian  recognition function variables field step reinforcement

Table 4: Top 10 GDM topic for NIPS dataset



