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A Supplementary Materials:
Overview

These supplementary materials are organized as follows.
In Sec. B we discuss general properties of pathwise gra-
dient estimators derived from the transport equation.
In Sec. [C we give further details on Adaptive Velocity
Fields. In Sec. [D] we give further details on our path-
wise gradient estimators for mixture distributions, in
particular describing velocity fields for four families of
Normal mixtures. Finally, in Sec. [E] we describe the
setup of the various experiments described in the main
text.

B Pathwise Gradient Estimators and
the Transport Equation

As discussed in the main text, a solution v? to the trans-
port equation allows us to form an unbiased pathwise
gradient estimator via

VoL =Eyy(z) [Vaf v’ (16)

In order for this to be a sensible Monte Carlo estimator,
we require that the variance is finite, i.e

V(VoL) = Egoz) [IIV=f - 0°IP] = [IVoLl® < 00 (17)

In order for the derivation given in the main text to
hold, we also require for v? to be everywhere con-
tinuously differentiable and that the surface integral
fs (qafv?) -1 dS go to zero as dS tends towards the
boundary at infinity. A natural way to ensure the latter
condition for a large class of test functions is to require
the boundary condition

[|z|] = oo (for all directions 2)

(18)
Note that this boundary condition is satisfied by all the
gradient estimators proposed in this work. Much of the
difficulty in using the transport equation to construct
pathwise gradient estimators is in finding velocity fields
that satisfy all these desiderata.

qev™ — 0 as

For example consider a mixture of products of univari-
ate distributions of the form:

K D
qe(2) = Z%‘qgj(z) with  gg,(2) = H qe;; (%)

(19)
Here j runs over the components and ¢ runs over the
dimensions of z. Note that a mixture of diagonal Nor-
mal distributions is a special case of Eqn. Suppose
each qg,, has a CDF Fp,, that we have analytic control
over. Then we can form the velocity field

qj,—i = H QOM (20)

ki

T _Feinj,fi

v’ = Do with

This is a solution to the transport equation for the
mixture weight 7;; however, it does not satisfy the
boundary condition Eqn. [I8 and so it is of limited
practical use for estimating gradients Intuitively,
the problem with Eqn. 20 is that v™ sends mass to
infinity.

C Adaptive Velocity Fields for the
Multivariate Normal Distribution

We show that the velocity field
Bhet = LAL™ (2 — p) (21)

given in the main text is a solution to the corresponding
null transport equation The transport equation can
be written in the form

0 o
logg+V-v4+v-Viogg=0 (22)
OL
Transforming to whitened coordinates Z = L~(z — ),
the null equation is given by

V.5=5 3 (23)
We let & = A*’%Z and compute

Ve 0=TrA"=0=> %A}z =0-2 (24

j

where we have used that A® is antisymmetric. Trans-
forming v back to the given coordinates z, we end up
with Eqn. [21] (the factor of L enters when we transform
the vector field).

For the ‘reference solution’ vé‘“’ we simply use the
velocity field furnished by the reparameterization trick,
which is given by

(v5™")s = Gia(L™"2)s (25)
Thus the complete specification of U,I:x"'b is
(va™)i = 0ia(L ™" 2)p + (LA™L™ (2 — p));  (26)

As mentioned in the main text, the computational
complexity of using AVF gradients with this class of
parameterized velocity fields (including the A update
equations) is

O(D? + M D?) (27)

4Note that since 7 is constrained to lie on the simplex,
the relevant velocity fields to consider are defined w.r.t. an
appropriate parameterization like softmax logits £. It is for
these velocity fields that the boundary condition needs to
hold and not for v™ itself. This is why Eqn. @ can be
used for D = 1, where the boundary condition does hold.

'5This derivation can also be found in reference [I8].



Pathwise Derivatives for Multivariate Distributions

This should be compared to the O(D?) cost of the repa-
rameterization trick gradient and the O(D3) cost of
the OMT gradient. However, the computational com-
plexity in Eqn. [27]is somewhat misleading in that the
O(D?) term arises from matrix multiplications, which
tend to be quite fast. By contrast the OMT gradient es-
timator involves a singular value decomposition, which
tends to be substantially more expensive than a matrix
multiplication on modern hardware. In cases where
computing the test function involves expensive opera-
tions like Cholesky factorizations, the additional cost
reflected in Eqn. 27 is limited (at least for M < D).
For example, as reported in the GP experiment in
Sec. in the main text where D = 468, the AVF
gradient estimator for M = 1 (M = 5) requires only
~6% (~11%) more time per iteration.

C.1 Adaptive Velocity Fields for the
Multivariate t-Distribution

We consider the multivariate t-distribution in D dimen-
sions with probability density

qo(2) :/ q(r|v)q(z|L,T)dT
0 (28)
1 _ u4D

x — (14 1zTx"12 2

where
1
q(tlv) = Ga(7|%,%) q(z|L,7) =N (20,7 2L)

We want to compute derivatives w.r.t Ly,. We compute

dlogqe(z) _
aLab
0 y _
o (~loglE| — 2 o 1+ 12757"2) =
— Ll;ll + # (1 + %zTZ_lz)i1 (Z712)o(L712),
(29)

Now suppose vﬁ‘“’ is given as in Eqn. [26, Then we
have

Vv =V ol =L} (30)
and
Vao(z) = —EL (14 1:T2 127 (5712) (31
It is easy to show that
vhet - Vae(z) = vi* - Vge(2) (32)

since the term containing A?" vanishes due to the anti-
symmetry of A%®. Thus one has

_ -1 _ _
vkt Vg = —EL (14 L2757 12) 7 (512), (L (33;

Gathering terms we see that 'uﬁ“b satisfies the relevant

transport equation, namely

logqe + V- v + vt . Viogge =0  (34)

0
OLap
Consequently we have shown that the velocity fields
given in Eqn. 26 can be used to a construct adaptive
gradient estimators for the cholesky matrix of the mul-
tivariate t-distribution.

Note that the only property of gg(z) that was used in
the derivation was the fact that
1 _
q6(z) mg(ZTE '2) (35)
for some scalar density g(-). Thus the velocity fields
in Eqn. 26 can in fact be used to construct adaptive

gradient estimators for all distributions of the form
given in Eqn. i.e. for all elliptical distributions.

D Mixture distributions

In Table B we summarize the four families of mixture
distributions for which we have found closed form so-
lutions to the transport equation. The first one was
presented in the main text; here we also present the
solutions for the three other families of mixture distri-
butions.

D.1 Pairwise Mass Transport

We begin with the transport equation for ;, which
reads

qo; +Vz-(qv™) =0 (36)
Introducing softmax logits ¢; given by
eli
and using the fact that
(97@;
a0, 75 (kg — k) (38)

we observe that the velocity field for ¢; satisfies the
following transport equation

) <qa]. - quek> + V. (gev) =0  (39)

k

We substitute Eqn. @ for v% and compute the diver-
gence term, which yields

C]97Tj§ ﬂkﬁjk =

k#j

7 > 7 (g0, — q0,) = —; <qej - thm)
k

=y

Ve - ((Jevej) =V,
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Distribution Name Component Distributions | Velocity Field | Computational Complexity
DiagNormalsShared Covariance N(z|p;, o) Eqn. |15 O(K*D)
ZeroMeanGSM N (z|0,\;0) Eqn. 40 O(KD)
GSM N (z|p;, Ajo) Eqn. [54 O(K?D)
DiagNormals N(z|pj,o;) Eqn. |51 O(KD)

Table 3: Four families of mixture distributions for which we can compute pathwise derivatives. The names are

those used in Fig. 1b in the main text.

Thus v% satisfies the relevant transport equation
Eqn.

D.2 Zero Mean Discrete Gaussian Scale
Mixture

Here each component distribution is specified by
ge,(2) = N(z|0,)\jo), where each A; is a positive
scalar. Defining Z = z ® ¢! and making use of radial
coordinates with r = ||Z|| we find that a solution of
the form in Eqn. [14] reduces to

v’ = 7;diag(o) (f;j - Zﬁkf)k> (40)
k
where
| b(L)
’l~Jj = ﬁr and
qo; [[iZi0 (41)

. ,1-D

(I)(z) = (2)[)/2/ 2D_1€_22/2d2
™ z

The ‘radial CDF’ ® in Eqn. @ can be computed ana-
lytically. In even dimensions we ﬁn

D
=21
= e /2 % (D=2! 511 p
*() = Goypre > EDI (42)
k=0
and in odd dimensions we find
, D-1
. e 2 G (D -2
D(z) = D73 Z A= Sl 2k-Dy

1—erf(%)
(D — 2)!1\@(%)]3/%

where erf(+) is the error function. Note that in contrast
to all the other solutions in Table 3] Eqn. 0] for D even

does not involve any error functions.

We show explicitly that Eqn. [40 is a solution of the
corresponding transport equation. The derivations for

16The notation k!l refers to the double factorial of k,
which occurs in this context through the identity (2n—1)!! =

2"T(n+ 3)/y/7.

the other families of mixture distributions are similar.
It is enough to show that

0 _j 0 é(i) )
5, \40Y )= 2 5\ poigb i) = —96;(%
; 821 (q@ Z) ; 0z; (}\]Dl Hil o qGJ( )
(44)
Using the identities
or  z 9 o sz
0z ro? Dz 0z Or =
(45)

2
which follow from the definition % = 3, 2, we have

By construction we have that

D
1 1 2,2
T\ _ —57 />\j _ D )
®'(37) = _(27T)D/2e 2 = </\j ¢I=|1 Uz) q0,(2)

(47)
Comparing terms, we see that ¥/ is indeed a solution
of the transport equation for m; as desired.

D.3 Mixture of Diagonal Normal
Distributions

Here each component distribution is given by

qge,(2) = N(z|p;,05) for j=1,2,.., K (48)
For i =1,..., D define
~ Zi — Hi _ Zi — M . _
%= T Zji = 750 =D Bt
Je @ k<i k>i
(49)
where ¥ is an arbitrary reference scale. We find that

if we defind!”]
i (D(2) — ©(Z5)) (17,
v = E

de Hk<i Ojk Hk>i ‘712

i

1"Here we take the empty products Ilic: and I],op to
be equal to unity.
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then we can construct a solution of the form specified
in Eqn. [14] that is given by

v =7 ('F)j - E ka:k)
k

Since the reference scale o is arbitrary, this is actually
a parameterized family of solutions. Thus this solution
is in principle amenable to the Adaptive Velocity Field
approach described in Sec. [3] in the main text. In
addition, the ordering of the dimensions i = 1,...,D
that occurs implicitly in the telescopic structure of
Eqn. |50]is also arbitrary. Thus Eqn. [50| corresponds to
a very large family of solutions. In practice we use the
fixed ordering given in Eqn. [50] and choose

(51)

o) = ; é?lig(] oji (52)
We find this works pretty well empirically.
D.4 Discrete GSM
Here each component distribution is given by
qe,(z) = N(z|pj, \jo) for j=1,2,..,K (53)

where each )\; is a positive scalar. We can solve the cor-
responding transport equation for the mixture weights
by superimposing the solutions in Eqn. [I5]and Eqn. [40]
In more detail, in this case the solution to Eqn. [I3 is
given by

b = pIMAFA Ll @t (54)
soln. from Eqn.
where
W = piN — gIiA=Ao (55)

—_——
solutions from Eqn.

Analogously to the reference scale o in Sec. Ao
is arbitrary. As such Eqn. [54]is a parametric family
of solutions that is amenable to the Adaptive Velocity
Field approach. Intuitively, we use the solutions from
Eqn. E to effect mass transport between component
means and solutions from Eqn. @ to shrink/dilate
covariances.

D.5 Mixture of Multivariate Normals with
Shared Diagonal Covariance

To finish specifying the solution Eqn. [I5 given in the
main text, we define the following coordinates:

~j_~k

= -1 | -1 ~ik M M
z=z00 n=p 0o W= ==
||fd — k||

ﬂﬂk _ Ilj . ﬂjk Zﬁk = 3. ﬂjk iik =3 _ Zﬁkﬂjk

D.6 Velocity Fields for the Component
Parameters of Multivariate Mixtures

0, . . .
Suppose Vgingle 15 8 solution of the single-component

transport equation for the parameter 6y, i.e.

a%j
00,

9.
+V- (qej vsfngle) =0 (56)

Then o
vgj = 749, sej le
110,
e &
is a solution of the multi-component transport equation,
since

aqg (Z)
00,

(57)

+ V- (go(z)v%) = F,aq"j (2)

]ng
8(]9]' (Z) 6;

+ V- (go(2)v%)

(58)

This completes the derivation for the claim about v%
made at the beginning of Sec. [4] in the main text.

D.7 Pairwise Mass Transport and Control
Variates

For j =1,..., K define K x K square matrices Azk such
that all the rows and columns of each Af & sum to zero.

Then
0 J ik
w = E A
ik

(59)

is a null solution to the transport equation for v%,
Eqn. 39, While we have not done so ourselves, these
null solutions could be used to adaptively move mass
among the K component distributions of a mixture
instead of using the recipe in Eqn. which takes mass
from each component distribution j in proportion to
its mass 7; (which is in general suboptimal).

E Experimental Details

E.1 Synthetic Test Function Experiments

We describe the setup for the experiments in Sec. [6.1.1
and Sec. [6.2.17]in the main text.

For the experiment in Sec.[6.1.1 the dimension is fixed
to D = 50 and the mean of gg is fixed to the zero
vector. The Cholesky factor L that enters into gg is
constructed as follows. The diagonal of L consists
of all ones. To construct the off-diagonal terms we
proceed as follows. We populate the entries below the
diagonal of a matrix AL by drawing each entry from
the uniform distribution on the unit interval. Then we
define L = 1p+rAL. Here r controls the magnitude of
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off-diagonal terms of L and appears on the horizontal
axis of Fig.[La]in the main text. The three test functions
are constructed as follows. First we construct a strictly
lower diagonal matrix Q' by drawing each entry from
a bernoulli distribution with probability 0.5. We then

define Q = Q' + Q'". The cosine test function is then
given by
f(2) = cos ZQijzi/D (60)
0,J

The quadratic test function is given by

f(z) =2"Q= (61)
The quartic test function is given by
2
f(z) = (27Qz) (62)

The AVF gradient uses M = 1 and we train A to (ap-
proximate) convergence before estimating the gradient
variance.

For the experiment in Sec. that is depicted in
Fig. [Lb|the test function is fixed to f(z) = ||z||>. The
distributions gg are constructed as follows. For the
distributions that admit a parameter p;, each p; is
sampled from the sphere centered at z = 0 with radius
2. For the distribution whose velocity field is given in
Eqn. the mean is fixed to 0. The covariance matrices
are sampled from a narrow distribution centered at the
identity matrix. Consequently the different mixture
components have little overlap.

For the experiment in Sec. that is depicted in
Fig. the test function is also fixed to f(z) = ||z||?.
The distributions gg are constructed as follows. The
K means are placed uniformly around the unit circle.
The covariance of each component distribution is given
by 021, where o is the parameter that is varied along
the horizontal axis of the figure. For the gradient
estimator derived from the transport equation, we use
the estimator described in Sec. although in this
particular case the estimator given by Eqn. [I5 yields
identical results.

In all cases the gradients can be computed analytically,
which makes it easier to reliably estimate the variance
of the gradient estimators.

E.2 Gaussian Process Regression

We use the Adam optimizer [21] to optimize the ELBO
with single-sample gradient estimates. We chose the
Adam hyperparameters by doing a grid search over the
learning rate and ;. For the AVF gradient estimator
the learning rate and ; are allowed to differ between
6 and A gradient steps (the latter needs a much larger
learning rate for good results). For each combination

of hyperparameters we did 500 training iterations for
five trials with different random seeds and then chose
the combination that yielded the highest mean ELBO
after 500 iterations. We then trained the model for 500
iterations, initializing with another random number
seed. The figure in the main text shows the training
curves for that single run. We confirmed that other
random number seeds give similar results.

E.3 Baseball Experiment

There are 18 baseball players and the data consists
of 45 hits/misses for each player. The model has two
global latent random variables, ¢ and k, with priors
Uniform(0, 1) and Pareto(1,1.5) oc £~5/2, respectively.
There are 18 local latent random variables, 6; for i =

., 17, with p(0;) = Beta(fi|a = ¢k, 8 = (1 — @)k).
The data likelihood factorizes into 45 Bernoulli obser-
vations with mean chance of success 6; for each player
1. All variational approximations are formed in the un-
constrained space {logit(¢),log(x — 1),logit(6;)}. The
mean field variational approximation consists of a di-
agonal Normal distribution in the unconstrained space,
while the mixture variational approximation consists
of K diagonal Normal distributions in the same space.
We use the Adam optimizer for training with a learning
rate of 5 x 1072 [21].

E.4 Continuous State Space Model

We consider the following simple model with two di-
mensional observations x; and two dimensional latent
random variables z;:

T
p(®rr, 217) = p(x1]z1) [ [ p(zel2e-1)p(me] 1)
t=2

(63)
where
p(z1) = N(21]0,0.15)
p(zt|zi-1) = N(2:|Tz-1,0.12) (64)
p(xi|ze) = N (2| n(2t), 0412)
and
w(z) = (23, 2220) 0. = % Oy = i
1 <—sm(9) cos(9)> g (65)
2 \ cos(f) sin(6) 4

The quadratic term z7, in p(z;) results in a highly
multi-modal posterior. We generate 1000 sequences
with T" = 10 and use 800 for training and 200 for testing.
The model dynamics are assumed to be known, and the
variational family is constructed along the lines of the
DKS inference network in [23]. We use the pathwise
gradient estimators introduced in Sec. [ in the main
text.
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E.5 Deep Markov Model

The training data consist of 229 sequences with a mean
length of 60 time steps from the JSB Chorales poly-
phonic music dataset considered in [3]. Each time slice
in a sequence spans a quarter note and is represented
by an 88-dimensional binary vector. We use a Bernoulli
likelihood. The dimension of the latent z; at each time
step is 32. The inference network a.k.a. variational
family follows the DKS variant described in [23]. Sim-
ilarly, the architecture of the various neural network
components follows the architectures used in [23]. In
particular the RNN dimension is fixed to be 600 and
the dimension of the hidden layer in the neural net-
work that parameterizes p(z:|z;—1) is 200; all other
neural network hidden layers are 100-dimensional. We
use a mini-batch size of 20. Following [23] we anneal
the contribution of KL divergence-like terms over the
course of optimization (we use a linear schedule). We
use the Adam optimizer [21] with gradient clipping
and an exponentially decaying learning rate and do
up to 7000 epochs of learning. We do a grid search
over optimization hyperparameters, which include the
learning rate, 1, the KL annealing schedule, and tem-
perature (the latter only in the case of the Gumbel
Softmax estimators). We use the validation set to fix
the hyperparameters and then report results on the
test set. The reported test ELBOs use a 200-sample
estimator and are normalized per timestep.

E.5.1 Gradient Estimators

For K = 2 the mixture distributions have arbitrary di-
agonal covariance matrices; consequently the pathwise
gradient estimator is of the form described in Sec. [D.3!
For K = 3 the mixture distributions share diagonal
covariance matrices at each time step (we make this
choice to limit the total number of parameters); conse-
quently the pathwise gradient estimator is of the form
described in Sec.[4.2]in the main text.

The two variants of the Gumbel Softmax estimator we
use are more similar to the approach adopted in [17]
than to the approach adopted in [24]. In particular
we do not relax the objective function in the manner
of [24] so that the resulting gradient estimators are
biased. In GS-Soft we draw a K dimensional vector y
from the Gumbel Softmax distribution so that y lies
in the interior of the K — 1 dimensional simplex. To
generate a sample from the mixture ¢(z¢|-) we draw
a D-dimensional sample € ~ N(0,1) and form the
sample z; via

K

2i= Y Yk (i + €owi)  for
k=1

In GS-Hard we adopt the same approach as in GS-Soft,
except y is discretized via arg max, c.f. the straight-
through estimator in [17]. We adopt the approach in
Eqn. [66]so that we do not need to introduce variational
distributions of the form g(m;|-), as we expect that this
additional variational relaxation would lead to looser
ELBO bounds (and would make a direct comparison
to variational setups without ELBO terms of the form
log q(7¢|-) more difficult).

We do not report numbers for the score function es-
timator, since the extremely high variance—O(10°)
times higher than for the pathwise gradient estimator—
prevented us from obtaining competitive results. In
particular we were unable to obtain test ELBOs above
-9.0 nats; by contrast a mean field variational family
with diagonal Normal distributions of the form ¢(z:|x;)
at each time step can achieve ~ —8.0 nats.

E.6 VAE

We train using MNIST 50k and fix the latent dimen-
sionality to 50. The prior is Normal and the likelihood
is Bernoulli. We fix the number of hidden units in the
inference network to 400 and the number of hidden
units in the decoder network to 200. We use the Adam
optimizer and do a grid search over the following opti-
mization hyperparameters: learning rate, 81, and the
temperature (for the Gumbel Softmax estimators). We
train all models for 3000 epochs with a batch size of
256. Test ELBOs are computed with a 50-sample esti-
mator. For details on the Gumbel Softmax estimators,

see Sec. [E5.1
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