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1 Proof of Lemma 1

Lemma 1. For any i, j ∈ I and i 6= j, the difference in Shapley values between i and j is

si − sj =
1

N − 1

∑
S⊆I\{i,j}

1(
N−2
|S|
)[U(S ∪ {i})− U(S ∪ {j})

]
Proof.

si − sj =
∑

S⊆I\{i}

|S|!(N − |S| − 1)!

N !

[
U(S ∪ {i})− U(S)

]
−

∑
S⊆I\{j}

|S|!(N − |S| − 1)!

N !

[
U(S ∪ {j})− U(S)

]
=

∑
S⊆I\{i,j}

|S|!(N − |S| − 1)!

N !

[
U(S ∪ {i})− U(S ∪ {j})

]
+

∑
S∈{T |T⊆I,i/∈T,j∈T}

|S|!(N − |S| − 1)!

N !

[
U(S ∪ {i})− U(S)

]
−

∑
S∈{T |T⊆I,i∈T,j /∈T}

|S|!(N − |S| − 1)!

N !
·
[
U(S ∪ {j})− U(S)

]
=

∑
S⊆I\{i,j}

|S|!(N − |S| − 1)!

N !

[
U(S ∪ {i})− U(S ∪ {j})

]
+

∑
S′⊆I\{i,j}

(|S′|+ 1)!(N − |S′| − 2)!

N !

[
U(S′ ∪ {i})− U(S′ ∪ {j})

]
=

∑
S⊆I\{i,j}

( |S|!(N − |S| − 1)!

N !
+

(|S|+ 1)!(N − |S| − 2)!

N !

)
·
[
U(S ∪ {i})− U(S ∪ {j})

]
=

1

N − 1

∑
S⊆I\{i,j}

1

C
|S|
N−2

[
U(S ∪ {i})− U(S ∪ {j})

]
.

Loosely speaking, the proof distinguishes subsets S which include neither i nor j (such that the subset utility
U(S) of the marginal contribution directly cancels) and subsets including either i or j. In the latter case, S can
be partitioned to a mock subset S′ by excluding the respective point from S such that a common sum over S′

again eliminates all terms other than U(S′ ∪ {i})− U(S′ ∪ {j}).

2 Proof of Lemma 2

Lemma 2. Suppose that Cij is an (ε/(2
√
N), δ/(N(N − 1)))-approximation to si − sj . Then, the solution to the

feasibility problem

N∑
i=1

ŝi = Utot (1)

|(ŝi − ŝj)− Ci,j | ≤ ε/(2
√
N) ∀i, j ∈ {1, . . . , N} (2)

is an (ε, δ)-approximation to s with respect to l2-norm.

Proof. Let ε′ = ε/(2
√
N). Assume that ŝi − si > ε/

√
N . Let ŝi − si = cε′ where c > 2.

Since Ci,j is an (ε′, δ/(N(N−1)))-approximation to si−sj , we have that with probability at least 1−δ/(N(N−1)),

|(si − sj)− Ci,j | ≤ ε′ (3)

Moreover, the inequality (2) implies that

|(ŝi − ŝj)− Ci,j | ≤ ε′
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Therefore,

|ŝi − si + sj − ŝj | = |ŝi − ŝj − Ci,j − (si − sj − Ci,j)| (4)

≤ |ŝi − ŝj − Ci,j |+ |si − sj − Ci,j | (5)

≤ 2ε′ (6)

with probability at least 1− δ/(N(N − 1)). By the assumption that ŝi − si = cε′ and c > 2, we have

(c− 2)ε′ ≤ ŝj − sj ≤ (c+ 2)ε′ (7)

which further implies that ŝj − sj > 0 for some j 6= i. Thus, with probability 1− δ/N , we have ŝj − sj > 0 for all
j 6= i.

Then,

N∑
j=1

(ŝj − sj) =
∑
j 6=i

(ŝj − sj) + (ŝi − si) > 0 (8)

Since
∑N
j=1 sj = Utot, it follows that

∑N
j=1 ŝj > Utot, which contradicts with the fact that ŝj (j = 1, . . . , N) is a

solution to the feasibility problem (1) and (2).

The contradiction can be similarly established for si − ŝi = cε′. Therefore, we have that with probability at least
1−δ/N , |si− ŝi| ≤ 2ε′ for some i. This in turn implies that with probability at least 1−δ, ‖ŝ−s‖∞ ≤ 2ε′ = ε/

√
N .

Moreover, since ‖ŝ− s‖2 ≤
√
N‖ŝ− s‖∞ = ε, we have that ‖ŝ− s‖2 ≤ ε with probability at least 1− δ.

3 Proof of Theorem 3

We prove Theorem 3, which specifies a lower bound on the number of tests needed for achieving a certain
approximation error. Before delving into the proof, we first present a lemma that is useful for establishing the
bound in Theorem 3.

Lemma 3 (Bennett’s inequality [1]). Given independent zero-mean random variables X1, · · · , Xn satisfying the
condition |Xi| ≤ a, let σ2 =

∑n
i=1 σ

2
i be the total variance. Then for any t ≥ 0,

P [Sn > t] ≤ exp(−σ
2

a2
h(
at

σ2
))

where h(u) = (1 + u) log(1 + u)− u.

We now restate Theorem 3 and proceed to the main proof.

Theorem 3. Algorithm 1 returns an (ε, δ)-approximation to the Shapley value with respect to l2-norm if the number

of tests T satisfies T ≥ 8 log N(N−1)
2δ /

(
(1−q2tot)h

(
ε

Zr
√
N(1−q2tot)

))
, where qtot = N−2

N q(1)+
∑N−1
k=2 q(k)[1+ 2k(k−N)

N(N−1) ],

h(u) = (1 + u) log(1 + u)− u, Z = 2
∑N−1
k=1

1
k , and r is the range of the utility function.

Proof. By Lemma 1, the difference in Shapley values between points i and j is given as

si − sj =
1

N − 1

∑
S⊆I\{i,j}

1

C
|S|
N−2

[
U(S ∪ {i})− U(S ∪ {j})

]

=
1

N − 1

N−2∑
k=0

1

CkN−2

∑
S⊆I\{i,j},|S|=k

[
U(S ∪ {i})− U(S ∪ {j})

]
.

Let β1, · · · , βN denote N Boolean random variables drawn with the following sampler:

1. Sample the “length of the sequence”
∑N
i=1 βi = k ∈ {1, 2, · · · , N − 1}, with probability q(k).
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2. Uniformly sample a length-k sequence from
(
N
k

)
all possible length-k sequences

Then the probability of any given sequence β1, · · · , βN is

P [β1, · · · , βN ] =
q(
∑N
i=1 βi)

C
∑N
i=1 βi

N

.

Now, we consider any two data points xi and xj where i, j ∈ I = {1, · · · , N} and their associated Boolean
variables βi and βj , and analyze

∆ = βiU(β1, · · · , βN )− βjU(β1, · · · , βN )

Consider the expectation of ∆. Obviously, only βi 6= βj has non-zero contributions:

E[∆] =

N−2∑
k=0

q(k + 1)

Ck+1
N

∑
S⊆I\{i,j},|S|=k

[
U(β1, · · · , βi−1, 1, βi+1, · · · , βj−1, 0, βj+1, · · · , βN )

− U(β1, · · · , βi−1, 0, βi+1, · · · , βj−1, 1, βj+1, · · · , βN )
]

=

N−2∑
k=0

q(k + 1)

Ck+1
N

∑
S⊆I\{i,j},|S|=k

[
U(S ∪ {i})− U(S ∪ {j})

]

We would like to have ZE[∆] = si − sj

Z
q(k + 1)

Ck+1
N

=
1

(N − 1)CkN−2

which yields

q(k + 1) =
N

Z(k + 1)(N − k − 1)
=

1

Z
(

1

k + 1
+

1

N − k − 1
)

for k = 0, · · · , N − 2. Equivalently,

q(k) =
1

Z
(
1

k
+

1

N − k
)

for k = 1, · · · , N − 1. The value of Z is given by

Z =

N−1∑
k=1

(
1

k
+

1

N − k
) = 2

N−1∑
k=1

1

k
≤ 2(log(N − 1) + 1)

Now, E[Z∆] = si − sj . Assume that the utility function ranges from [0, r]; then, we know from (??) that Z∆ is
random variable ranges in [−Zr, Zr].

Consider

∆ := βiU(β1, · · · , βN )− βjU(β1, · · · , βN )

Note that ∆ = 0 when βi = βj . If P [βi = βj ] is large, then the variance of ∆ will be much smaller than its range.

P [βi = βj ] = P [βi = 1, βj = 1] + P [βi = 0, βj = 0]

=

[N−1∑
k=2

q(k)

CkN
Ck−2N−2

]
+

[
q(1) +

N−1∑
k=2

q(k)

CkN
CkN−2

]
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=
N − 2

N
q(1) +

N−1∑
k=2

q(k)

[
1 +

2k(k −N)

N(N − 1)

]
≡ qtot

Let W = 1[∆ 6= 0] be an indicator of whether or not ∆ = 0. Then, P [W = 0] = qtot and P [W = 1] = 1− qtot.

Now, we analyze the variance of ∆. By the law of total variance,

Var[∆] = E[Var[∆|W ]] + Var[E[∆|W ]]

Recall ∆ ∈ [−r, r]. Then, the first term can be bounded by

E[Var[∆|W ]] = P [W = 0]Var[∆|W = 0] + P [W = 1]Var[∆|W = 1]

= qtotVar[∆|∆ = 0] + (1− qtot)Var[∆|∆ 6= 0]

= (1− qtot)Var[∆|∆ 6= 0]

≤ (1− qtot)r2

where the last inequality follows from the fact that if a random variable is in the range [m,M ], then its variance

is bounded by (M−m)2

4 .

The second term can be expressed as

Var[E[∆|W ]] = EW [(E[∆|W ]− E[∆])2]

= P [W = 0](E[∆|W = 0]− E[∆])2 + P [W = 1](E[∆|W = 1]− E[∆])2

= qtot(E[∆|∆ = 0]− E[∆])2 + (1− qtot)(E[∆|∆ 6= 0]− E[∆])2

= qtot(E[∆])2 + (1− qtot)(E[∆|∆ 6= 0]− E[∆])2 (9)

Note that

E[∆] = P [W = 0]E[∆|∆ = 0] + P [W = 1]E[∆|∆ 6= 0]

= (1− qtot)E[∆|∆ 6= 0] (10)

Plugging (10) into (9), we obtain

Var[E[∆|W ]] = (qtot(1− qtot)2 + q2tot(1− qtot))(E[∆|∆ 6= 0])2

Since |∆| ≤ r, (E[∆|∆ 6= 0])2 ≤ r2. Therefore,

Var[E[∆|W ]] ≤ qtot(1− qtot)r2

It follows that

Var[∆] ≤ (1− q2tot)r2

Given T samples, the application of Bennett’s inequality in Lemma 3 yields

P

[ T∑
t=1

(Z∆t − E[Z∆t]) > ε′
]
≤ exp

(
− T (1− q2tot)

4
h
( 2ε′

TZr(1− q2tot)
))

By letting ε = ε′/T ,

P
[
(Z∆̄− E[Z∆]) > ε

]
≤ exp

(
− T (1− q2tot)

4
h
( 2ε

Zr(1− q2tot)
))

Therefore, the number of tests T we need in order to get an (ε/(2
√
N), δ/(N(N − 1)))-approximation to the

difference of two Shapley values for a single pair of data points is

T ≥ 4

(1− q2tot)h( ε
Z
√
Nr(1−q2tot)

)
log

N(N − 1)

δ
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By union bound, the number of tests T for achieving (ε/
√
N, δ/N)-approximation to the difference of the Shapley

values for all N(N − 1)/2 pairs of data points is

T ≥ 8

(1− q2tot)h( ε
Z
√
NrCε(1−q2tot)

)
log

N(N − 1)

2δ

By Lemma 2, we approximate the Shapley value up to (ε, δ) with (ε/
√
N, δ/(N(N − 1))) approximations to all

N(N − 1)/2 pairs of data points.

4 Proof of Theorem 4

Theorem 4. There exists some constant C ′ such that if M ≥ C ′(K log(N/(2K)) + log(2/δ)) and T ≥ 2r2

ε2 log 4M
δ ,

except for an event of probability no more than δ, the output of Algorithm ?? obeys

‖ŝ− s‖2 ≤ C1,Kε+ C2,K
σK(s)√
K

(11)

for some constants C1,K and C2,K .

Proof. Due to the super-additivity of U(·), ŷm,t can be lower bounded by − 1√
M

∑N
i=1 U(Pπti ∪ {i})− U(Pπti ) =

− 1√
M
U(πt) ≥ − r√

M
; the upper bound can be similarly analyzed. Thus, the range of ŷm,t is [−1/

√
Mr, 1/

√
Mr].

Since E[ŷm,t] =
∑N
i=1Am,iE[U(Pπti ∪ {i}) − U(Pπti )] =

∑N
i=1Am,isi for all m = 1, . . . ,M , an application of

Hoeffiding’s bound gives

P [‖As− ȳ‖2 ≥ ε] ≤ P [‖As− ȳ‖∞ ≥
ε√
M

] (12)

≤
M∑
m=1

P [|Ams− ȳm| ≥
ε√
M

] (13)

≤ 2M exp(− ε2

2r2T
) (14)

Let s = ∆s+ s̄. Thus, P [‖A(s̄+ ∆s)− ȳ‖2 ≤ ε] holds with probability at least δ/2 provided

T ≥ 2r2

ε2
log

4M

δ
. (15)

By the random matrix theory, the restricted isometry constant of A satisfies δ2K ≤ Cδ = 0.465 with probability
at least 1− δ/2 if

M ≥ CC−2δ (2K log(N/(2K)) + log(2/δ)) (16)

where C > 0 is a universal constant.

Applying the Theorem 2.7 in [3], we obtain that the output of Algorithm 2 satisfies

‖ŝ− s‖ = ‖∆s∗ −∆s‖ ≤ C1,Kε+ C2,K
σK(s)√
K

(17)

with probability at least 1− δ provided that (15) holds and M ≥ C ′(K log(N/(2K)) + log(2/δ)) for some constant
C ′.

5 Proof of Theorem 5

For the proof of Theorem 5 we need the following definition of a stable utility function.
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Definition 1. A utility function U(·) is called λ-stable if

max
i,j∈I,S⊆I\{i,j}

|U(S ∪ {i})− U(S ∪ {j})| ≤ λ

|S|+ 1

Then, Shapley values calculated from λ-stable utility functions have the following property.

Proposition 1. If U(·) is λ-stable, then for all i, j ∈ I and i 6= j

si − sj ≤
λ(1 + log(N − 1))

N − 1

Proof. By Lemma 1, we have

si − sj ≤
1

N − 1

∑
S⊆I\{i,j}

1

C
|S|
N−2

λ

|S|+ 1
=

1

N − 1

N−2∑
|S|=0

λ

|S|+ 1

Recall the bound on the harmonic sequences

N∑
k=1

1

k
≤ 1 + log(N)

which gives us

si − sj ≤
λ(1 + log(N − 1))

N − 1

Then, we can prove Theorem 5.

Theorem 5. For a learning algorithm A(·) with uniform stability β = Cstab

|S| , where |S| is the size of the training

set and Cstab is some constant. Let the utility of D be U(D) = M−Ltest(A(D), Dtest), where Ltest(A(D), Dtest) =
1
N

∑N
i=1 l(A(D), ztest,i) and 0 ≤ l(·, ·) ≤M . Then, si− sj ≤ 2Cstab

1+log(N−1)
N−1 and the Shapley difference vanishes

as N →∞.

Proof. For any i, j ∈ I and i 6= j,

|U(S ∪ {i})− U(S ∪ {j})|

= | 1

N

N∑
i=1

[l(A(S ∪ {i}), ztest,i)− l(A(S ∪ {j}), ztest,i)]|

≤ 1

N

N∑
i=1

|l(A(S ∪ {i}), ztest,i)− l(A(S), ztest,i)|+ |l(A(S), ztest,i)− l(A(S ∪ {j}), ztest,i)|

≤ 1

N

N∑
i=1

2Cstab

|S|+ 1
=

2Cstab

|S|+ 1

Combining the above inequality with Proposition 1 proves the theorem.

6 Proof of Theorem 6

Theorem 6. Consider the value attribution scheme that assign the value ŝ(U, i) = CU [U(S ∪{i})−U(S)] to user

i where |S| = N − 1 and CU is a constant such that
∑N
i=1 ŝ(U, i) = U(I). Consider two utility functions U(·) and

V (·). Then, ŝ(U +V, i) 6= ŝ(U, i) + ŝ(V, i) unless V (I)[
∑N
i=1 U(S ∪{i})−U(S)] = U(I)[

∑N
i=1 V (S ∪{i})−V (S)].
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Proof. Consider two utility functions U(·) and V (·). The values attributed to user i under these two utility
functions are given by

ŝ(U, i) = CU [U(S ∪ {i})− U(S)]

and

ŝ(V, i) = CV [V (S ∪ {i})− V (S)]

where CU and CV are constants such that
∑N
i=1 ŝ(U, i) = U(I) and

∑N
i=1 ŝ(V, i) = V (I). Now, we consider the

value under the utility function W (S) = U(S) + V (S):

ŝ(U + V, i) = CW [U(S ∪ {i})− U(S) + V (S ∪ {i})− V (S)]

where

CW =
U(I) + V (I)∑N

i=1[U(S ∪ {i})− U(S) + V (S ∪ {i})− V (S)]

Then, ŝ(U + V, i) = ŝ(U, i) + ŝ(V, i) if and only if CU = CV = CW , which is equivalent to

V (I)[

N∑
i=1

U(S ∪ {i})− U(S)] = U(I)[

N∑
i=1

V (S ∪ {i})− V (S)]

7 Theoretical Results on the Baseline Permutation Sampling

Let πt be a random permutation of D = {zi}Ni=1 and each permutation has a probability of 1
N ! . Let φti =

U(Pπti ∪ {i})− U(Pπti ), we consider the following estimator of si:

ŝi =
1

T

T∑
t=1

φti

Theorem 2. Given the range of the utility function r, an error bound ε, and a confidence 1− δ, the sample size
required such that

P [‖ŝ− s‖2 ≥ ε] ≤ δ

is

T ≥ 2r2N

ε2
log

2N

δ

Proof.

P [ max
i=1,··· ,N

|ŝi − si| ≥ ε] = P [∪i=1,··· ,N{|ŝi − si| ≥ ε}] ≤
N∑
i=1

P [|ŝi − si| ≥ ε]

≤ 2N exp

(
− 2Tε2

4r2

)
The first inequality follows from the union bound and the second one is due to Hoeffding’s inequality. Since
‖ŝ− s‖2 ≤

√
N‖ŝ− s‖∞, we have

P [‖ŝ− s‖2 ≥ ε ≤ P [‖ŝ− s‖∞ ≥ ε/
√
N ] ≤ 2N exp

(
− 2Tε2

4Nr2

)

Setting 2N exp(− Tε2

2Nr2 ) ≤ δ yields

T ≥ 2r2N

ε2
log

2N

δ
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The permutation sampling-based method used as baseline in the experimental part of this work was adapted
from Maleki et al. [2] and is presented in Algorithm 1.

Algorithm 1: Baseline: Permutation Sampling-Based Approach

input : Training set - D = {(xi, yi)}Ni=1, utility function U(·), the number of measurements - M , the number of
permutations - T

output : The Shapley value of each training point - ŝ ∈ RN
1 for t← 1 to T do
2 πt ← GenerateUniformRandomPermutation(D);
3 φti ← U(Pπti ∪ {i})− U(Pπti ) for i = 1, . . . , N ;

4 end

5 ŝi = 1
T

∑T
t=1 φ

t
i for i = 1, . . . , N ;
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