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1 Proof of Lemma 1

Lemma 1. For any i,j € I and i # j, the difference in Shapley values between i and j is
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Loosely speaking, the proof distinguishes subsets S which include neither ¢ nor j (such that the subset utility
U(S) of the marginal contribution directly cancels) and subsets including either ¢ or j. In the latter case, S can

be partitioned to a mock subset S’ by excluding the respective point from S such that a common sum over S’
again eliminates all terms other than U(S" U {i}) — U(S" U {j}).

2 Proof of Lemma 2

Lemma 2. Suppose that C;; is an (¢/(2V/N),/(N(N — 1)))-approzimation to s; — s;. Then, the solution to the
feasibility problem

;) —Cijl <e/(2VN) Vi,je{l,...,N} (2)
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is an (e, §)-approximation to s with respect to la-norm.

Proof. Let € = ¢/(2v/N). Assume that §; —s; > ¢/V/N. Let §; — s; = ¢ where ¢ > 2.

Since C; j is an (¢/,§ /(N (N —1)))-approximation to s; —s;, we have that with probability at least 1—¢/(N(N —1)),
[(si = 55) = Cijl < ¢ (3)

Moreover, the inequality implies that

(8 = 8;5) = Cig| <€
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Therefore,
8i = si+s; =8| =18 — 8 = Cij — (si — s — Cij)| )
<18 —8; = Cijl +[si — 85 — Cij ()
Y (6)

with probability at least 1 — d/(N (NN — 1)). By the assumption that §; — s; = c¢’ and ¢ > 2, we have

(c—2) <5, —s; < (c+2)¢ (7)
which further implies that §; —s; > 0 for some j # 4. Thus, with probability 1 — §/N, we have §; — s; > 0 for all
J# i
Then,

D> =)= (8 — ;) + (8 — 1) >0 (8)

j=1 J#i

Since Z 1 85 = Ugot, it follows that Z 1 8; > Upot, which contradicts with the fact that §; (j =1,...,N)isa
solution to the feasibility problem (|| and .

The contradiction can be similarly established for s; — 8; = ce’. Therefore, we have that with probability at least
1—=6/N, |s;—§;| < 2€¢ for some i. This in turn implies that with probability at least 1 —9, ||§ — s||co < 2¢’ = €¢/V N.
Moreover, since ||§ — s|la < VN||§ — s||c = €, we have that ||§ — s||2 < e with probability at least 1 — 4.

O

3 Proof of Theorem 3

We prove Theorem 3, which specifies a lower bound on the number of tests needed for achieving a certain
approximation error. Before delving into the proof, we first present a lemma that is useful for establishing the
bound in Theorem 3.

Lemma 3 (Bennett’s inequality [1]). Given independent zero-mean random variables X1, -+ , X, satisfying the
condition | X;| < a, let 0* =37, 02 be the total variance. Then for anyt > 0,

P[S, > t] < eXp(—Zﬁh(*))

o2
where h(u) = (1 + u)log(1l + u) — u.

We now restate Theorem 3 and proceed to the main proof.

Theorem 3. Algorithm 1 returns an (e, d)-approximation to the Shapley value wz'th Tespect to l2 norm if the number
of tests T satisfies T > 8log M/((1 qtot)h(m)) where guor = Y2q(1) + S0, q(k)[1+ 3\];((;7_]\17))},
h(u)=(14u)log(l+u) —u, Z = 2Zk 1 ,1{, and r is the range of the utility functwn

Proof. By Lemmal[I] the difference in Shapley values between points ¢ and j is given as
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SCI\{i,j} “N-2
N-—2

:Nl_ chl 3 [ (Su{z‘})—U(SU{j})]-

N=2 gc1\{i,j},|S|=k

Let 81, -+, Bn denote N Boolean random variables drawn with the following sampler:

1. Sample the “length of the sequence” Zf\;l Bi=ke{l,2,--- N — 1}, with probability ¢(k).
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2. Uniformly sample a length-k sequence from (J,\C’ ) all possible length-k sequences

Then the probability of any given sequence 1, -- , By is
N
a2 iz Bi)
P[ﬁla"'7ﬁN]: z;gvlﬁjb .
CN =17
Now, we consider any two data points x; and x; where 4,5 € I = {1,--- , N} and their associated Boolean

variables 3; and 8;, and analyze

A= piU(B1,--,BNn) = BiU(B1, -, BN)

Consider the expectation of A. Obviously, only §; # 8; has non-zero contributions:

(k+1)
Z qu+1 Z [U(B1,--+ 5 Bie1, L Biga, - Bj—1,0, Bjrs -+, BN)
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We would like to have ZE[A] = s; — s;

qlk+1) 1
oyttt (N=-1)Ck L,

VA

which yields

N 1, 1 1

q(k+1):2(]g+1)(N—k—1):Z(k+1+N—k_1)

for k=0, ---, N — 2. Equivalently,

for k=1,--- N — 1. The value of Z is given by

N—
1
7 — - — <2(log(N —-1)+1
“<k k§:)k (Io5(N — 1) + 1)

Now, E[ZA] = s; — sj. Assume that the utility function ranges from [0, r]; then, we know from (??) that ZA is
random variable ranges in [—Zr, Zr].

Consider

A= B;U(Br, -+, Bn) = BiU(B1, -+, BN)

Note that A = 0 when §; = ;. If P[g; = ;] is large, then the variance of A will be much smaller than its range.
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=

N—
— X0+ X a1+
k=2

2k(k—N)| _
N(N . 1) = Gtot
Let W = 1[A # 0] be an indicator of whether or not A = 0. Then, P[W = 0] = ¢ot and P[W =1] =1 — g4t.
Now, we analyze the variance of A. By the law of total variance,
Var[A] = E[Var[A|W]] + Var[E[A|WV]]

Recall A € [—r,r]. Then, the first term can be bounded by

E[Var[A|W]] = P[W = 0]Var[A|W = 0] + P[W = 1|Var[A|W = 1]

= @0t Var[A|A = 0] 4+ (1 — gtot)Var[A]A # 0]

— (1 - uo)Var[AJA £ 0]

< (1= grot)r”

where the last inequality follows from the fact that if a random variable is in the range [m, M], then its variance
2

is bounded by @.

The second term can be expressed as

Var[E[A|W]] = Ew [(E[A|W] - E[A])?]
= P[W = 0](E[A|W = 0] — E[A])?* + P[W = 1)(E[A|W = 1] — E[A])?
= qrot (E[A|A = 0] = E[A])? + (1 — gror) (E[A|A # 0] — E[A])?
= grot(E[A])* + (1 — gror) (E[A[A # 0] — E[A])? (9)
Note that
E[A] = P[W = 0]JE[A|A = 0] + P[W = 1]E[A|A # 0]
= (1= qot)E[A|A # 0] (10)
Plugging into @7 we obtain
Var[E[A|W]] = (qtot(1 — Grot)® + @ior (1 — Gtot)) (E[A|A # 0])?
Since |A| < 7, (E[A|A # 0])2 < 72. Therefore,
Var[E[A|W]] < gror(1 — qrot)r?
It follows that

Var[A] < (1 — gio)r”

Given T samples, the application of Bennett’s inequality in Lemma [3] yields

p[gmt -siza > ¢] <o (- K )

By letting e = €//T,

— — : ¢
P[(ZA - E[ZA]) > ] <exp ( - 1 = h(Zr(12— q?ot)))

Therefore, the number of tests 7' we need in order to get an (¢/(2v/N),5/(N(N — 1)))-approximation to the
difference of two Shapley values for a single pair of data points is
4 N(N -1
T2a=gan : g 21 5 :
(1 — aibe) (m)
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By union bound, the number of tests T' for achieving (e/v/N, d/N)-approximation to the difference of the Shapley
values for all N(N — 1)/2 pairs of data points is

8 N(N 1)
T> 1
DY

= 2 £
(A = G M mre ey

By Lemma [2, we approximate the Shapley value up to (e, §) with (¢/v/N,§/(N(N — 1))) approximations to all
N(N —1)/2 pairs of data points. O

4 Proof of Theorem 4

Theorem 4. There exists some constant C' such that if M > C'(K log(N/(2K))+10g(2/6)) and T > 26%2 log 4 |
except for an event of probability no more than §, the output of Algorithm 77 obeys

18 =52 < C1,K€+C'2,KUK7(S) (11)

VK

for some constants Cy g and Cs .

Proof. Due to the super-additivity of U(-), §m, can be lower bounded by —ﬁ Zfil UPruJ{i}) —UFp™) =
—ﬁU(wt) > — 77} the upper bound can be similarly analyzed. Thus, the range of g is [-1/vVMr,1/v/ Mr].
Since Eljmi] = SN, A E[U(PF U {i}) — U(P™)] = N, Apuusi for all m = 1,..., M, an application of
Hoeffiding’s bound gives

€
PJ[||As — gll2 > €] < P[||As — §|loc > — 12
s = gl > € < Pllds = ] > <= (12
M €
< PllA;s — Um| > 13
< PllAns —ial 2 ] 13
2

<2M — 14

Let s = As + 3. Thus, P[||A(5 + As) — 7|2 < €] holds with probability at least 6/2 provided

272 4M

By the random matrix theory, the restricted isometry constant of A satisfies dox < Cs = 0.465 with probability
at least 1 —¢6/2 if

M > CC;?(2K log(N/(2K)) + log(2/6)) (16)

where C' > 0 is a universal constant.

Applying the Theorem 2.7 in [3], we obtain that the output of Algorithm 2 satisfies

O’K(S)

H§—S|| = ||A3* —AS” S CLKE"‘CQ,K \/E (17)
with probability at least 1 —§ provided that holds and M > C'(K log(N/(2K)) +log(2/6)) for some constant
C. O

5 Proof of Theorem 5

For the proof of Theorem 5 we need the following definition of a stable utility function.
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Definition 1. A wtility function U(-) is called A-stable if

SuU il — | <
maﬁ%mﬁW(U“D U@UUDkﬂﬂ+l

Then, Shapley values calculated from A-stable utility functions have the following property.
Proposition 1. If U(:) is A-stable, then for alli,j € I and i # j

A(L + log(N — 1))

. <
ST N-1
Proof. By Lemma,[I] we have
1 1 A
sty S by
N -1 ISl |S 1 N_-1 S|+1
sciiig One 191 ||o||+
Recall the bound on the harmonic sequences
N
1
Z: 7S 1+ log(N)
which gives us
A1+ log(N — 1))
. <
ST N-1
O
Then, we can prove Theorem 5.
Theorem 5. For a learning algorithm A() with uniform stability § = |§'|"° where |S| is the size of the training

set and Cigap is some constant. Let the utility of D be U(D) = M — Lyest(A(D), Diest), where Liesi(A(D), Diest) =

% Zf\il I(A(D), ztest,i) and 0 < I(-,-) < M. Then, s; —s; < QCStab% and the Shapley difference vanishes
as N — oo.

Proof. For any i,j € I and i # j,

U(Su{i}) U U}

1 N

Iy Z[Z(A(S U{i}), ztest,i) — LA(S U{}), Ztest.i)]|

=1
<= Z |l S U {Z Ztest,i) - Z(A(S)7 Ztest,i)' + ‘Z(A(S), Ztest,i) - l(A(S U {j})a Ztest,i)|

N
2 Cst ab 2 Cst ab
< _
= zhﬂ+1 S|+ 1

Combining the above inequality with Proposition [I| proves the theorem. O

6 Proof of Theorem 6

Theorem 6. Consider the value attribution scheme that assign the value §(U, 1) = Cy[U(SU{i}) — U(S)] to user
i where |S| = N —1 and Cy is a constant such that Zi\;l 5(U,i) =U(I). Consider two utility functions U(-) and
V(). Then, 8(U +V,i) # 8(U,4) +8(V, ) unless V(D[ USULi}) = U(S)] = UL, V(SU{i}) = V(S)].
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Proof. Consider two utility functions U(-) and V(-). The values attributed to user i under these two utility
functions are given by

5(U,i) = Cy[U(SU{i}) — U(S)]
and
§(Vi) = Cy[V(SU{i}) — V(9)]

where Cy and Cy are constants such that Ef\il $(U,4) =U(I) and Zf\il 3(V,i) = V(I). Now, we consider the
value under the utility function W(S) = U(S) + V(5):

S(U+V,i) = Cw[U(SU{i}) —U(S) + V(SU{i}) - V(S)]
where
B UI)+V(I)
- LTS Ui —US) + V(S Ui} = V(S)]
Then, $(U + V,i) = §(U,4) + §(V, i) if and only if Cyy = Cy = Cyw, which is equivalent to

ZUSU{Z ZVSU{Z V(9

7 Theoretical Results on the Baseline Permutation Sampling

Let 7 be a random permutation of D = {2}/, and each permutation has a probability of ;. Let ¢! =
U(P™ U{i}) — U(P™), we consider the following estimator of s;:

1
==Y ¢
>

Theorem 2. Given the range of the utility function r, an error bound €, and a confidence 1 — §, the sample size
required such that
Plls—=sllz =€) <0

18

212N 2N
Tz—gley
Proof.
N
2T ¢?
< 2N -
caven (12

The first inequality follows from the union bound and the second one is due to Hoeffding’s inequality. Since
I3 = s|l2 < VN||§ — $||c, we have

R R 27T e?
PllI5—sll2= €< P[5 — s]loo > e/ﬁ] < 2N exp ( — 4Nr2>

Setting 2N exp(— 5a& 2) < ¢ yields

2r2N 2N

T> log —
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The permutation sampling-based method used as baseline in the experimental part of this work was adapted
from Maleki et al. [2] and is presented in Algorithm

Algorithm 1: Baseline: Permutation Sampling-Based Approach

input : Training set - D = {(x;,9;)},, utility function U(-), the number of measurements - M, the number of
permutations - T’
output : The Shapley value of each training point - § € R
fort <+ 1to T do
7t <— GenerateUniformRandomPermutation(D);
¢t U(PM u{i}) —UP™) fori=1,...,N;
end
8 = %EtT:l(bﬁ fori=1,...,N;
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