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Abstract

“How much is my data worth?” is an in-
creasingly common question posed by organi-
zations and individuals alike. An answer to
this question could allow, for instance, fairly
distributing profits among multiple data con-
tributors and determining prospective com-
pensation when data breaches happen. In this
paper, we study the problem of data valua-
tion by utilizing the Shapley value, a popular
notion of value which originated in coopoera-
tive game theory. The Shapley value defines
a unique payoff scheme that satisfies many
desiderata for the notion of data value. How-
ever, the Shapley value often requires exponen-
tial time to compute. To meet this challenge,
we propose a repertoire of efficient algorithms
for approximating the Shapley value. We
also demonstrate the value of each training
instance for various benchmark datasets.

1 Introduction

Data analytics using machine learning (ML) is an in-
creasingly common practice in modern science and
business. The data for building an ML model are often
provided by multiple entities. For instance, Internet
enterprises analyze various users’ data to improve prod-
uct design, customer retention, and initiatives that help
them earn revenue. Furthermore, the quality of the
data from different entities may vary widely. Therefore,
a key question often asked by stakeholders of a ML
system is how to fairly allocate the revenue generated
by a ML model to the data contributors.

This question is also motivated by a system we are
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Figure 1: Overview of the data valuation problem.

building together with one of the largest hospital in
the US. In the system, patients submit part of their
medical records onto a “data market,” and analysts
pay a certain amount of money to train a ML model
on patients’ data. One of the challenges in such data
markets is how to distribute the payment from analysts
back to the patients.

A natural way of tackling the data valuation problem is
to adopt a game-theoretic viewpoint, where each data
contributor is modeled as a player in a coaltional game
and the usefulness of data from any subset of contribu-
tors is characterized via a utility function. The Shapley
value (SV) is a classic method in cooperative game
theory to distribute the total gains generated by the
coalition of all players, and has been applied to prob-
lems in various domains, ranging from economics [13],
counter-terrorism [20, 16], environmental science [23],
to ML [6]. The reason for its broad adoption is that
the SV defines a unique profit allocation scheme that
satisfies a set of properties with appealing real-world
interpretations, such as fairness, rationality, and decen-
tralizability.

Despite the desirable properties of the SV, comput-
ing the SV is known to be expensive; the number of
utility function evaluations required by the exact SV
calculation grows exponentially in the number of play-
ers. This poses a radical challenge to using the SV
in the context of data valuation—how to calculate, or
approximate the SV over millions or even billions of
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data points, a scale that is rare in previous applica-
tions of the SV, but not uncommon for real-world data
valuation tasks. Even worse, for ML tasks, evaluat-
ing the utility function itself (e.g., testing accuracy)
is already computationally expensive, as it requires to
train a model. Due to the computational challenge,
the application of the SV to data valuation has thus
far been limited to stylized examples, in which the
underlying utility function of the game is simple and
the resulting SV can be represented as a closed-form
expression [14, 5]. The state-of-the-art method to esti-
mate the SV for a black-box utility function is based
on Monte Carlo simulations [19], which still requires
re-training ML models for superlinearly many times
and is thus clearly impracticable. In this paper, we at-
tempt to answer the question on whether it is possible
to efficiently estimate the SV while achieving the same
performance guarantee as the state-of-the-art method.

Theoretical Contribution We first study this ques-
tion from a theoretical perspective. We show that,
to approximate the SV of N data points with prov-
able error guarantees, it is possible to design an algo-
rithm with a sublinear amount of model evaluations—
O(
√
N log(N)2). We achieve this by enabling proper

information sharing between different model evalua-
tions. Moreover, if it is reasonable to assume that the
SV is “sparse” in the sense that only few data points
have significant values, then we are able to further
reduce the number of model training to O(log log(N)),
when the model can be incrementally maintained. It
is worth noting that these two algorithms are agnostic
to the context wherein the SV is computed; hence,
they are also useful for the applications beyond data
valuation.

Practical Contribution Despite the improvements
from a theoretical perspective, retraining models for
multiple times may still be unaffordable for large
datasets and ML models. We then introduce two prac-
tical SV estimation algorithms specific to ML tasks by
introducing various assumptions on the utility function.
We show that if a learning algorithm is uniformly sta-
ble [2], then uniform value division produces a fairly
good approximation to the true SV. In addition, for a
ML model with smooth loss functions, we propose to
use the influence function [15] to accelerate the data
valuation process. However, the efficiency does not
come for free. The first algorithm relies on the stability
of a learning algorithm, which is difficult to prove for
complex ML models, such as deep neural networks.
The compromise that we have to make in the second
algorithm is that the resulting SV estimates no longer
have provable guarantees on the approximation error.
Filling the gap between theoretical soundness and prac-
ticality is important future work.

Table 1 summarizes the contributions of this paper. In
the rest of the paper, we will elaborate on the idea
and analysis of these algorithms, and further use them
to compute the data values for various benchmark
datasets.

2 Related Work

Originated from game theory, the SV, in its most gen-
eral form, can be #P-complete to compute [8]. Ef-
ficiently estimating SV has been studied extensively
for decades. For bounded utility functions, Maleki
et al. [19] described a sampling-based approach that
requires O(N logN) samples to achieve a desired ap-
proximation error in l∞ norm and O(N2 logN) in l2
norm. Bachrach et al. [1] also leveraged a similar ap-
proach but focused on the case where the utility func-
tion has binary outputs. By taking into account special
properties of the utility function, one can derive more
efficient approximation algorithms. For instance, Fa-
tima et al. [11] proposed a probabilistic approximation
algorithm with O(N) complexity for weighted voting
games. The game-theoretic analysis of the value of per-
sonal data has been explored in [5, 14], which proposed
a fair compensation mechanism based on the SV like
ours. They derived the SV under simple data utility
models abstracted from network games or recommenda-
tion systems, while our work focuses on more complex
utility functions derived from ML applications. In our
case, the SV on longer has closed-form expressions. We
develop novel and efficient approximation algorithms
to overcome this hurdle.

Using the SV in the context of ML is not new. For
instance, the SV has been applied to feature selec-
tion [6, 28, 21, 25, 17]. While their contributions have
inspired this paper, many assumptions made for feature
“valuation” do not hold for data valuation. As we will
see, by studying the SV tailored to data valuation, we
can develop novel algorithms that are more efficient
than the previous approaches [19].

Despite not being used for data valuation, ranking the
importance of training data points has been used for
understanding model behaviors, detecting dataset er-
rors, etc. Existing methods include using the influence
function [15] for smooth parametric models and a vari-
ant [27] for non-parametric ones. Ogawa et al. [22]
proposed rules to identify and remove the least influ-
ential data in order to reduce the computation cost
when training support vector machines (SVM). One
can also construct coresets—weighted data subsets—
such that models trained on these coresets are provably
competitive with models trained on the full dataset [7].
These approaches could potentially be used for valuing
data; however, it is not clear whether they satisfy the
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Table 1: Summary of Technical Results. N is the number of data points.

Assumptions Techniques
Complexity

Approximation
incrementally trainable models otherwise

Existing Bounded utility Permutation sampling
O(N log(N)) model training
and O(N2 log(N)) eval

O(N2 log(N))
model training and eval

(ε, δ)

Application
-agnostic

Bounded utility Group testing
O(
√
N log(N)2) model training

and eval
O(
√
N log(N)2)

model training and eval
(ε, δ)

Sparse value
Compressive

permutation sampling
O(log log(N)) model training
O(N log log(N)) and eval

O(N log log(N))
model training and eval

(ε, δ)

ML-specific
Stable learning Uniform division O(1) computation (ε, 0)
Smooth utility Influence function O(N) optimization routines Heuristic

properties desired by data valuation, such as fairness.
We leave it for future work to understand these distinct
approaches for data valuation.

3 Problem Formulation

Consider a dataset D = {zi}Ni=1 containing data from
N users. Let U(S) be the utility function, representing
the value calculated by the additive aggregation of
{zi}i∈S and S ⊆ I = {1, · · · , N}. Without loss of
generality, we assume throughout that U(∅) = 0. Our
goal is to partition Utot , U(I), the utility of the entire
dataset, to the individual users; more formally, we
want to find a function that assigns to user i a number
s(U, i) for a given utility function U . We suppress the
dependency on U when the utility is self-evident and
use si to represent the value allocated to user i.

The SV [26] is a classic concept in cooperative game
theory to attribute the total gains generated by the
coalition of all players. Given a utility function U(·),
the SV for user i is defined as the average marginal
contribution of zi to all possible subsets of D = {zi}i∈I
formed by other users:

si =
∑

S⊆I\{i}

1

N
(
N−1
|S|
)[U(S ∪ {i})− U(S)

]
(1)

The formula in (1) can also be stated in the equivalent
form:

si =
1

N !

∑
π∈Π(D)

[
U(Pπi ∪ {i})− U(Pπi )

]
(2)

where π ∈ Π(D) is a permutation of users and Pπi is
the set of users which precede user i in π. Intuitively,
imagine all users’ data are to be collected in a random
order, and that every user i receives his data’s marginal
contribution that would bring to those whose data are
already collected. If we average these contributions
over all the possible orders of users, we obtain si. The
importance of the SV stems from the fact that it is the
unique value division scheme that satisfies the following
desirable properties.

1. Group Rationality: The value of the entire
dataset is completely distributed among all users, i.e.,
U(I) =

∑
i∈I si.

2. Fairness: (1) Two users who are identical with
respect to what they contribute to a dataset’s utility
should have the same value. That is, if user i and j
are equivalent in the sense that U(S ∪ {i}) = U(S ∪
{j}),∀S ⊆ I \ {i, j}, then si = sj . (2) Users with zero
marginal contributions to all subsets of the dataset
receive zero payoff, i.e., si = 0 if U(S ∪ {i}) = 0 for all
S ⊆ I \ {i}.

3. Additivity: The values under multiple utilities
sum up to the value under a utility that is the sum
of all these utilities: s(U, i) + s(V, i) = s(U + V, i) for
i ∈ I.

The group rationality property states that any rational
group of users would expect to distribute the full yield
of their coalition. The fairness property requires that
the names of the users play no role in determining
the value, which should be sensitive only to how the
utility function responds to the presence of a user’s
data. The additivity property facilitates efficient value
calculation when data is used for multiple applications,
each of which is associated with a specific utility func-
tion. With additivity, one can decompose a given utility
function into an arbitrary sum of utility functions and
compute utility shares separately, resulting in trans-
parency and decentralizability. The fact that the SV
uniquely possesses these properties, combined with its
flexibility to support different utility functions, leads us
to employ the SV to attribute the total gains generated
from a dataset to each user.

4 Efficient SV Estimation

The challenge in adopting the SV lies in its compu-
tational cost. Evaluating the exact SV using Eq. (1)
involves computing the marginal utility of every user
to every coalition, which is O(2N ). Even worse, in
many ML tasks, evaluating utility per se (e.g., testing
accuracy) is computationally expensive as it requires
training a ML model. In this section, we present vari-
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ous efficient algorithms for approximating the SV. We
say that ŝ ∈ RN is a (ε, δ)-approximation to the true
SV s = [s1, · · · , sN ]T ∈ RN with respect to lp-norm
if P [||ŝi − si||p ≤ ε] ≥ 1 − δ. Throughout this paper,
we will measure the approximation error in terms of l2
norm.

4.1 Baseline: Permutation Sampling

We start by describing a baseline algorithm [18] that
approximates the SV for any bounded utility func-
tions with provable guarantees. Let π be a ran-
dom permutation of I and each permutation has a
probability of 1/N !. Consider the random variable
φi = U(Pπi ∪{i})−U(Pπi ). According to (2), si = E[φi].
Thus, we can estimate si by the sample mean. An
application of Hoeffding’s bound indicates that the
number of permutations needed to achieve an (ε, δ)-
approximation is mperm = (2r2N/ε2) log(2N/δ), where
r is the range of the utility function. For each per-
mutation, the utility function is evaluated N times in
order to compute the marginal contribution for all N
users; therefore, the number of utility evaluations in-
volved in the baseline approach is meval = Nmperm =
O(N2 logN).

Note that for an ML task, we can write the utility
function U(S) = Um(A(S)), where A(·) represents a
learning algorithm that maps a dataset S onto a model
and Um(·) is some measure of model performance, such
as test accuracy. Typically, a substantial part of com-
putational costs associated with the utility evaluation
lies in A(·). Hence, it is useful to examine the efficiency
of an approximation algorithm in terms of the number
of model training required. In general, one utility eval-
uation would need to re-train a model. Particularly,
when A(·) is incrementally trainable, one pass over
the entire training set allows us to evaluate φi for all
i = 1, · · · , N . Hence, in this case, the number of model
training needed achieving an (ε, δ)-approximation is
the same as mperm = O(N logN).

4.2 Group Testing-Based Approach

We now describe an algorithm that makes the same
assumption of bounded utility as the baseline algorithm,
but requires significantly fewer utility evaluations than
the baseline.

Our proposed approximation algorithm is inspired by
previous work applying the group testing theory to
feature selection [29]. Recall the group testing is a
combinatorial search paradigm [9], in which one wants
to determine whether each item in a set is “good” or
“defective” by performing a sequence of tests. The result
of a test may be positive, indicating that at least one
of the items of that subset is defective, or negative,

indicating that all items in that subset are good. Each
test is performed on a pool of different items and the
number of tests can be made significantly smaller than
the number of items by smartly distributing items into
pools. Hence, the group testing is particularly useful
when testing an individual item’s quality is expensive.
Analogously, we can think of SV calculation as a group
testing problem with continuous quality measure. Each
user’s data is an “item” and the data utility corresponds
to the item’s quality. Each “test” in our scenario
corresponds to evaluating the utility of a subset of
users and is expensive. Drawing on the idea of group
testing, we hope to recover the utility of all user subsets
from a small amount of customized tests.

Let T be the total number of tests. At test t, a random
set of users is drawn from I and we evaluate the utility
of the selected set of users. If we model the appearance
of user i and j’s data in a test as Boolean random
variables βi and βj , respectively, then the difference
between the utility of user i and that of user j is

(βi − βj)U(β1, · · · , βN ) (3)

where U(β1, · · · , βN ) is the utility evaluated on the
users with the Boolean appearance random variable
equal to 1.

Using the definition of the SV, one can derive the
following formula of the SV difference between any pair
of users.

Lemma 1. For any i, j ∈ I, the difference in SVs
between i and j is

si − sj =
1

N − 1

∑
S⊆I\{i,j}

U(S ∪ {i})− U(S ∪ {j})(
N−2
|S|
) (4)

Due to the space limitation, we omit all the proofs
of the paper to our supplemental materials. The key
idea of the proposed algorithm is to smartly design
the sampling distribution of β1, · · · , βN such that the
expectation of (3) mirrors the Shapley difference in
(4). This will enable us to calculate the Shapely differ-
ences from the test results with a high-probability error
bound. The following Lemma states that if we can es-
timate the Shapley differences between all data pairs
up to (ε/

√
N, δ/N), then we will be able to recover the

SV with the approximation error (ε, δ).

Lemma 2. Suppose that Cij is an

(ε/(2
√
N), δ/(N(N − 1)))-approximation to si − sj.

Then, the solution to the feasibility problem

N∑
i=1

ŝi = Utot (5)

|(ŝi − ŝj)− Ci,j | ≤ ε/(2
√
N) ∀i, j ∈ {1, . . . , N} (6)

is an (ε, δ)-approximation to s with respect to l2-norm.
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Algorithm 1 presents the pseudo-code of the group
testing-based algorithm, which first estimates the Shap-
ley differences and then derives the SV from the Shapley
differences by solving a feasbility problem.

Algorithm 1: Group Testing Based SV Estimation.

input : Training set - D = {(xi, yi)}Ni=1, utility
function U(·), the number of tests - T

output : The estimated SV of each training point -
ŝ ∈ RN

Z ← 2
∑N−1
k=1

1
k ;

q(k)← 1
Z ( 1

k + 1
N−k ) for k = 1, · · · , N − 1;

Initialize βti ← 0, t = 1, ..., T, i = 1, ..., N ;
for t = 1 to T do

Draw k ∼ q(k);
for j = 1 to kt do

Uniformly sample a length-k sequence S from
{1, · · · , N} ;
βti ← 1 for all i ∈ S;

end
ut ← U({i : βti = 1});

end

∆Uij ← Z
T

∑T
t=1 ut(βti − βtj) for i = 1, .., N ,

j = 1, ..., N and j ≥ i ;
Find ŝ by solving the feasibility problem∑N

i=1 ŝi = U(D), |(ŝi − ŝj)−∆Ui,j | ≤
ε/(2
√
N),∀i, j ∈ {1, · · · , N};

The following theorem provides a lower bound on
the number of tests T needed to achieve an (ε, δ)-
approximation.

Theorem 3. Algorithm 1 returns an (ε, δ)-
approximation to the SV with respect to
l2-norm if the number of tests T satisfies

T ≥ 8 log N(N−1)
2δ /

(
(1 − q2

tot)h
(

ε
Zr
√
N(1−q2tot)

))
,

where qtot = N−2
N q(1) +

∑N−1
k=2 q(k)[1 + 2k(k−N)

N(N−1) ],

h(u) = (1 + u) log(1 + u)− u, Z = 2
∑N−1
k=1

1
k , and r is

the range of the utility function.

Note that Z = 2
∑N−1
k=1

1
k ≤ 2(log(N − 1) + 1) and

1/h(1/(Z
√
N)) ≤ 1/ log(1 + 1/(Z

√
N)) ≤ Z

√
N + 1.

Since only one utility evaluation is required for a sin-
gle test, the number of utility evaluations is at most
O(
√
N(logN)2). On the other hand, in the base-

line approach, the number of utility evaluations is
O(N2 logN). Hence, the group testing requires sig-
nificantly fewer model evaluations than the baseline.

4.3 Exploiting the Sparsity of Values

We now present an algorithm inspired by our empirical
observations of the SV for large datasets. This algo-
rithm can produce an (ε, δ)-approximation to the SV
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Figure 2: The distribution of the SV of a size-
1000 training set randomly sampled from MNIST.
σ367(s)/(

∑N
i=1 si) = 0.5. The utility function is the

test accuracy.

with only O(N log(N) log(log(N))) utility evaluations.

Figure 2 illustrates the distribution of the SV of the
MNIST dataset, from which we observed that the SV
is “approximately sparse”—most of values are concen-
trated around its mean and only a few data points have
significant values. In the literature, the “approximate
sparsity” of a vector s is characterized by a small error
of its best K-term approximation:

σK(s) = inf{‖s− z‖1, z is K-sparse} (7)

This observation opens up a vast collection of tools
from compressive sensing for the purpose of calculating
the SV.

Compressive sensing studies the problem of recovering
a sparse signal s with far fewer measurements y = As
than the length of the signal. A sufficient condition for
recovery is that the measurement matrix A ∈ RM×N
satisfies a key property, the Restricted Isometry Prop-
erty (RIP). In order to ensure that A satisfies this
property, we simply choose A to be a random Bernoulli
matrix. The results in random matrix theory implies
that A satisfies RIP with high probability. Define the
kth restricted isometry constant δk for a matrix A as

δk(A) = min{δ : ∀s, ‖s‖0 ≤ k,
(1− δ)‖s‖22 ≤ ‖As‖22 ≤ (1 + δ)‖s‖22 (8)

It has been shown in [24] that every k-sparse vector
s can be recovered by solving a convex optimization
problem

min
s∈RN

‖s‖1, s.t. As = y (9)

if δ2s(A) < 1/3. This result can also be generalized
to noisy measurements [3]. Drawing on the ideas of
compressed sensing, we present Algorithm 2, termed
compressive permutation sampling.

Theorem 4. There exists some constant C ′ such
that if M ≥ C ′(K log(N/(2K)) + log(2/δ)) and T ≥
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Algorithm 2: Compressive Permutation Sampling.

input : Training set - D = {(xi, yi)}Ni=1, utility
function U(·), the number of measurements -
M , the number of permutations - T

output : The SV of each training point - ŝ ∈ RN
Sample a Bernoulli matrix A, where
Am,i ∈ {−1/

√
M, 1/

√
M} with equal probability;

for t← 1 to T do
πt ← GenerateUniformRandomPermutation(D);
φti ← U(Pπt

i ∪ {i})− U(Pπt
i ) for i = 1, . . . , N ;

for m← 1 to M do

ŷm,t ←
∑N
i=1Am,iφ

t
i;

end

end

ȳm = 1
T

∑T
t=1 ŷm,t for m = 1, . . . ,M ;

s̄ = U(D)/N ;
∆s∗ ← argmin∆s∈RN ‖∆s‖1, s.t. ‖A(s̄+ ∆s)− ȳ‖2 ≤ ε;

ŝ = s̄+ ∆s∗;

2r2

ε2 log 4M
δ , except for an event of probability no more

than δ, the output of Algorithm 2 obeys

‖ŝ− s‖2 ≤ C1,Kε+ C2,K
σK(s)√
K

(10)

for some constants C1,K and C2,K .

Therefore, the number of utility evaluations (and model
training) required for achieving the approximation er-
ror guarantee in Theorem 4 is NT = O(N log(log(N))).
Particularly, when the utility function is defined with
respect to an incrementally trainable model, only
log log(N) full model training is needed for achieving
the error guarantee.

4.4 Stable Learning Algorithms

A learning algorithm is stable if the model learned by
the algorithm is insensitive to the removal of an arbi-
trary point in the training dataset [2]. More specifically,
an algorithm G has uniform stability γ with respect to
the loss function l if ‖l(G(S), ·)−l(G(S\i), ·)‖∞ ≤ γ for
all i ∈ {1, · · · , |S|}, where S denotes the training set
and S\i denotes the one by removing ith element of S.
Indeed, a broad variety of learning algorithms are sta-
ble, including all learning algorithms with Tikhonov reg-
ularization. Stable learning algorithms are appealing
as they enjoy provable generalization error bounds [2].
Assume that the model is trained via a stable learning
algorithm and training data’s utility is measured in
terms of the testing loss. Due to the inherent insen-
sitivity of a stable learning algorithm to the training
data, we expect that the SV of each training point is

similar to one another. The following theorem confirms
our intuition and provides an upper bound on the SV
difference between any pair of training data points.

Theorem 5. For a learning algorithm A(·) with uni-
form stability β = Cstab

|S| , where |S| is the size of

the training set and Cstab is some constant. Let
the utility of D be U(D) = M − Ltest(A(D), Dtest),

where Ltest(A(D), Dtest) = 1
N

∑N
i=1 l(A(D), ztest,i) and

0 ≤ l(·, ·) ≤M . Then, si − sj ≤ 2Cstab
1+log(N−1)

N−1 and
the Shapley difference vanishes as N →∞.

By Lemma 2, if 2Cstab
1+log(N−1)

N−1 is less than ε/(2
√
N),

uniformly assigning Utot

N to each data contributor pro-
vides an (ε, 0)-approximation to the SV.

4.5 Heuristic Based on Influence Functions

Computing the SV involves evaluating the change in
utility of all possible sets of data points after adding
one more point. A plain way to evaluate the difference
requires training a large number of models on different
subsets of data. Koh et al. [15] show that influence
functions can be used as an efficient approximation of
parameter changes after adding or removing one point.
Therefore, the need for re-training models is circum-
vented. Assume that model parameters are obtained by
solving an empirical risk minimization problem θ̂m =
argminθ

1
m

∑m
i=1 l(zi, θ). Applying the result in [15], we

can approximate the parameters learned after adding z
by using the relation θ̂m+1

z = θ̂m − 1
mH

−1

θ̂m
∇θL(z, θ̂m)

where Hθ̂m = 1
m

∑m
i=1∇2

θL(zi, θ̂
m) is the Hessian. The

parameter change after removing z can be approxi-
mated similarly, except replacing the − by + in the
above formula. The efficiency of the baseline per-
mutation sampling method can be significantly im-
proved by combining it with influence functions. More-
over, we can employ a more sophisticated sampling
scheme to reduce the variance of the result. Indeed,
we can re-write the SV as si = 1

N

∑N
k=1 E[Xk

i ], where
Xk
i = U(S ∪ {i})− U(S) is the marginal contribution

of user i to a size-k subset that is randomly selected
with probability 1/

(
N−1
k

)
. This suggests that stratified

sampling can be used to approximate the SV, which
customizes the number of samples for estimating each
expectation term according to the variance of Xk

i .

Largest-S Approximation. One practical
heuristic of using influence functions is to consider a
single subset S for computing si, namely, I \ {i}. With
this heuristic, we can simply take a trained model on
the whole dataset, and calculate the influence function
for each data point. For logistic regression models,
the first and second derivations enjoy closed-form
expressions and the change in parameters after
removing one point z = (x, y) can be approximated by
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−
(∑N

i=1 σ(xTi θ̂
N )σ(−xTi θ̂N )xix

T
i

)−1
σ(−yxTi θ̂N )yx

where σ(u) = 1/(1 + exp(−u)) and y ∈ {−1, 1}.
The fact that largest-S influence only considers a
single subset makes it impossible to satisfy the group
rationality and additivity properties simultaneously.

Theorem 6. Consider the value attribution scheme
that assigns the value ŝ(U, i) = CU [U(S∪{i})−U(S)] to
user i where |S| = N−1 and CU is a constant such that∑N

i=1 ŝ(U, i) = U(I). Consider two utility functions
U(·) and V (·). Then, ŝ(U +V, i) 6= ŝ(U, i) + ŝ(V, i) un-

less V (I)[
∑N
i=1 U(S∪{i})−U(S)] = U(I)[

∑N
i=1 V (S∪

{i})− V (S)].

5 Experimental Results

Comparing Approximation Accuracy. We
first compare the proposed approximation methods
that only require mild assumptions on the ML mod-
els (e.g., bounded or differentiable utility), including
(a) the permutation sampling baseline, (b) the group
testing-based method, (c) using influence functions to
approximate all marginal contributions, and (d) approx-
imating the SV with only the influence function to the
largest subset. The last two methods are hereinafter
referred to as all-S influence and largest-S influence,
respectively. We use a small-scale dataset, iris, and
use (a) to estimate the true SV for a regularized logis-
tic regression up to ε = 1/N . Figure 6(d) shows that
the approximations produced by (a)-(c) are closest to
each other. The result of the largest-S influence are
correlated with that of the other techniques, although
it cannot recover the true SV.

Runtime comparison. We implement the SV cal-
culation techniques on a machine with 16 cores (In-
tel Xeon CPU E5-2620 v4 @ 2.10GHz) and compare
the runtime of different techniques on a two-class
dog-vs-fish dataset [15] of size 900 constructed from
the ImageNet dataset. To evaluate the runtime for
training sizes above 900, we concatenate duplicate
copies of the dog-vs-fish dataset. For each training
data point, we first pre-compute the 2048-dimensional
inception features and then train a logistic regression
using the stochastic gradient descent for 150 epochs.
The utility function is the negative testing loss of the
logistic regression model. For the largest-S influence
and the all-S influence, we use the method in [15] to
compute the influence function. The runtime of dif-
ferent techniques in logarithmic scale is displayed in
Figure 3 (b). We can see that the group testing-based
method outperforms the permutation sampling baseline
by several orders of magnitude for a large number of
data points. By exploiting influence function heuristics
and the stratified sampling trick in Section 4.5, the
computational costs can be further reduced. Due to the
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Figure 3: Consider the SV approximation methods that
do not rely on specific assumptions on the underlying
learning algorithms and compare the (a) data values
produced by them for training a logistic regression
model and (b) their runtime.
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Figure 4: Comparison of approximation errors with
different number of permutations for the baseline per-
mutation sampling and the compressive permutation
sampling method.

fact that the largest-S influence heuristic only focuses
on the marginal contribution of each training data
point to a single subset, it is much more efficient than
the permutation sampling, group testing and the all-S
influence, which compute the marginal contributions
to a large number of subsets.

Approximation under sparsity assumptions.
When it is plausible to assume the SV of a training set is
sparse, we could employ the idea of compressive sensing
to recover the SV with fewer samples. Figure 4 com-
pares the sample efficiency of the baseline permutation
sampling and the compressive permutation sampling
method on a size-1000 dataset sampled randomly from
MNIST. For a given approximation error, the compres-
sive permutation requires significantly fewer samples
and model valuations than the baseline approach. The
superiority of the compressive permutation becomes
less evident at the large sample regime.

Stable learning algorithms. Our theoretical re-
sult in Section 4.4 shows that the SV of training data
tends to be uniform for a stable learning algorithm,
which has a small stability parameter β. We em-
pirically validate this result by training a ridge re-
gression on the diabetes dataset and varying the
strength of its regularization term. In [2], it is shown
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Figure 5: (a) Variance of data values for a ridge re-
gression with different regularization strength (λ). (b)
Tradeoff between data value and privacy.

that the stability parameter β of the ridge regression
minθ

1
N

∑N
i=1 l(θ, zi) + λ‖θ‖2 is proportional to σ2/λ,

where σ is the Lipschitz constant of the loss function
with respect to the model parameter θ and equal to
2|xTi θ−yi| · |xi|. When the model fits the training data
well, the change in σ is small; therefore, applying more
regularization leads to a more stable learning algorithm,
which has lower variance in the training data values
as illustrated in the shaded area of Figure 5. On the
other hand, if the model no longer fits the data well due
to excessive regularization, then σ will dominate the
stability parameter. In this case, since σ increases with
the regularization strength, β and thereby the variance
of the SV also increase. Note that the variance of the
SV is identical to the approximation error of a uniform
value division scheme.

Value for Privacy-Preserving Data. Differen-
tial privacy [10] has emerged as a standard privacy
notation and is often achieved by adding noise that has
a magnitude proportional to the desired privacy level.
On the other hand, noise diminishes the usefulness of
data and thereby degrades the value of data. We con-
struct a training set using the MNIST, and divide the
training dataset into two halves, one half containing
normal images and the other half containing noisy ones.
The testing accuracy on normal images is used as the
utility function. Figure 5(b) illustrates a clear tradeoff
between privacy and data value - the SV decreases as
data becomes noisier.

Value for Adversarial Examples. Mixing ad-
versarial examples with benign examples in the training
dataset, or adversarial training, is an effective method
to improve the adversarial robustness of a model. In
practice, we measure the robustness in terms of the
testing accuracy on a dataset containing adversarial
examples. We expect that the adversarial examples
in the training dataset become more valuable as more
adversarial examples are added into the testing dataset.
Based on the MNIST, we construct a training dataset
that contains both benign and adversarial examples and
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Figure 6: (a, b) Comparison of SV of benign and ad-
versarial examples. FGSM and CW are different attack
algorithms used for generating adversarial examples in
the testing dataset: (a) (resp. (b)) is trained on Benign
+ FGSM (resp. CW) adversarial examples.

synthesize testing datasets with different adversarial-
benign mixing ratios. Two popular attack algorithms,
namely, Fast Gradient Sign Method (FGSM) [12] and
the Carlini and Wagner (CW) attack [4] are used to
generate adversarial examples. Figure 6(a, b) compares
the average SV for adversarial examples and for benign
examples in the training dataset. The negative testing
loss for logistic regression is used as the utility function.
We see that the SV of adversarial examples increases as
the testing data becomes more adversarial and contrari-
wise for benign examples. This is consistent with our
expectation. In addition, the adversarial examples in
the training set are more valuable if they are generated
from the same attack algorithm for testing adversarial
examples.

6 Conclusion

ML has opened up exciting opportunities to tackle a
wide variety of problems; nevertheless, very few works
have attempted to understand the value of data used
for training models. A principled way of data valua-
tion is the key to stimulate data exchange, enabling
the development of more sophisticated and robust ML
models. We adopt the SV, a classic concept from co-
operative game theory, for data valuation. The SV has
many unique properties appealing to data valuation.
However, the lack of efficient methods to compute the
SV has prevented it from being adopted in the past.
We develop a repertoire of techniques for estimating
the SV in different scenarios.

For future work, We wish to continue exploring the
connection between ML and game theory and develop
efficient valuation methods for ML models. It is also
critical to understand other concepts from cooperative
game theory (e.g., stable coalition) in the context of
data valuation. Last but not least, we hope to apply the
techniques to real-world applications and revolutionize
the way of data collection and dissemination.
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