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Abstract

Despite the practical relevance of density-
based clustering algorithms, there is little un-
derstanding in its statistical robustness prop-
erties under possibly adversarial contamina-
tion of the input data. We show both robust-
ness and consistency guarantees for a simple
modification of the popular DBSCAN algo-
rithm. We then give experimental results
which suggest that this method may be rele-
vant in practice.

1 INTRODUCTION

Density-based clustering has had a large practical im-
pact on wide range of areas in machine learning and
data mining. These methods typically proceed by es-
timating the underlying density of the data and then
the clusters would be based on certain structures of
the density. The most notable such examples include
DBSCAN [14] which estimates the connected compo-
nents of the level-set of the density, and Mean Shift
[9, 10], which clusters based on the modes of the den-
sity. There are several key advantages of density-based
clustering algorithms over the more common objective-
based clustering algorithms such as k-means [21] and
spectral clustering [23]: density-based clustering algo-
rithms automatically determine the number of clusters
and the clusters can be of arbitrary shape and relative
position to each other. With modern datasets grow-
ing in both volume and complexity, non-parametric
methods such as density-based clustering may play an
important role as they can automatically adapt and
discover structures in the data.

One important challenge in modern data analysis is
that of robustness. For example, if there is possible
adversarial corruption of the data, it would be desirable
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to have guarantees that the clustering will not be very
sensitive to such corruption. Another example where
having such guarantees can be beneficial is during the
data curation process: the data sources may be more
willing to release their data to the curator if it can be
guaranteed for each source that their additional data
will not change the final outcome by much. Robustness
is also intimately related to privacy [13].

While the issue of robustness has been studied for many
of the objective-based clustering procedures such as
k-means (e.g. [1, 24, 31]) and spectral clustering (e.g.
[4, 34]), there is surprisingly little known about the
robustness of density-based clustering.

In this paper, we provide guarantees of robustness un-
der possibly adversarial contamination of the input
data for a simple modification of the popular DBSCAN
algorithm [14], which we call Robust DBSCAN. Our
results hold under two non-parametric assumptions:
smoothness of the underlying density function (i.e. α-
Hölder continuous) and curvature of the level-sets of
the density (parameterized by β), where the level-set of
density function f at level λ is defined as {x : f(x) ≥ λ}.
The first assumption is standard and the second as-
sumption ensures that the density function decays suf-
ficiently around level-set boundaries so that they are
salient enough to be estimated with statistical guaran-
tees. The level-sets play a critical role in our analysis
because it has been shown that the clustering DBSCAN
produces approximates the connected components of
the density level-set at a particular density level depend-
ing on the hyperparameters and number of samples
drawn from the underlying density [28, 16].

Our first guarantee shows that as long as the hyper-
parameters are chosen appropriately depending on the
number of samples n, and the number of possibly adver-
sarial added samples, `, then with high probability, the
number of clusters will not change when adding these
samples and that furthermore, there exists a one-to-one
correspondence between the clusters and obtained on
the original dataset and the clusters obtained on the
contaminated dataset such that the distances between
the corresponding clusters is bounded.
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We then show that if the goal is to estimate the clusters
corresponding to a certain density level λ, then Robust
DBSCAN (if tuned appropriately given knowledge of λ
and `) can recover these clusters with statistical guar-
antees. We further show that if we have E-fraction
contamination (i.e. ` ≈ E · n) with E sufficiently small
depending on the density, then as n → ∞, the pro-
cedure is robust up to an error of O

(
Eα/(β·α+β·D)

)
,

where D is the dimension of the data. To our knowl-
edge, this is the first time such a guarantee has been
established for a density-based clustering algorithm.

We then show on both simulated and real datasets
that Robust DBSCAN is indeed stable to adversarial
contaminations of the data. We design two types of
adversarial contaminations: one proceeds by adding
points to create the appearance of noisy clusters and the
other proceeds by deleting points in an attempt to break
apart clusters. We show that DBSCAN is sensitive
to these contaminations while Robust DBSCAN can
preserve the number of clusters as well as the clustering
of the original uncontaminated points.

2 ALGORITHM

In this section, we give the forumulation for both DB-
SCAN and the Robust DBSCAN algorithm. We have
n i.i.d. samples X = {x1, ..., xn} drawn from a den-
sity f with compact support X ⊆ RD. The DBSCAN
algorithm has two hyperparameters k and ε. These
hyperparmaters are often referred to as minPts and
bandwidth, respectively. We next define core-points,
which are essentially the sample points of high empiri-
cal density and are the points that end up belonging to
some cluster by both DBSCAN and Robust DBSCAN.
The definition is w.r.t. to the hyperparameter setting
k and ε.

Definition 1 (Core-Point). x ∈ X is a core-point if
|B(x, ε) ∩X| ≥ k, where B(x, ε) := {x′ : |x− x′| ≤ ε}.

DBSCAN (Algorithm 1) then proceeds as follows: first
it takes the sample points which are core-points and
then constructs the ε-neighborhood graph out of them.
The connected components of this graph are the clus-
ters, and the remaining points (i.e. non-core-points)
are unclustered and considered noise-points.

To provide more intuition, the first step of finding
the core-points is equivalent to finding samples whose
k-NN radius is at most ε, which means the k-NN den-
sity estimator (defined later) is above a certain fixed
threshold. It has been shown that the k-NN density
estimator converges to the true underlying density [12].
This implies the core-points approximate the level-set
of the underlying density at some fixed density level.
Then, taking the ε-neighborhood graph of the core-

points groups nearby core-points together and it has
been shown that the connected components of this
graph approximate the connected components of the
aforementioned level-set of the underlying density [5].

We note that the original DBSCAN algorithm of Ester
et al. [14] is a bit different than the version of DBSCAN
described here (Algorithm 1). The only difference is
that in Ester et al. [14], non-core-points which are
within an ε distance of a core-point are clustered with
the corresponding core-point at the end (see e.g. [16]).
Such points are often referred to as border points, which
we leave unclustered here. This makes only a minor
additive difference of ε in the theoretical guarantees
(as shown in [16]) and does not significantly change
the clustering from the original DBSCAN algorithm,
so for simplicity, we use formulation of Algorithm 1.
The modification to allow border points can be found
in the Appendix.

Algorithm 1 DBSCAN
Inputs: X, ε, k
H := {x ∈ X : |B(x, ε) ∩X| ≥ k}.
G := undirected graph with vertices H and edge
between x, x′ ∈ H if |x− x′| ≤ ε.
return connected components of G.

Algorithm 2 Robust DBSCAN [19, 6]
Input: X, ε, ε̃, k
H := {x ∈ X : |B(x, ε) ∩X| ≥ k}.
D := DBSCAN(X, ε̃, k)
C := {C ∩H : C ∈ D}.
return C.

The difference with Robust DBSCAN (Algorithm 2)
is that instead of taking an ε-neighborhood graph, we
use an ε̃-neighborhood graph for some appropriately
chosen ε̃ > ε. This encourages more connectivity which
in turn allows us to give robustness guarantees under
adversarial corruption of the data. In fact, this idea
of modifying DBSCAN so that a different ε is used
to choose core-points from the ε used to compute the
neighborhood graph is not new. It has been studied
in the context of cluster-tree estimation, known as
pruning, (e.g. [19, 6]) and recent analyses of DBSCAN
(e.g. [28, 16, 33]. However in all these cases, it was to
establish theoretical results so that spurious clusters
won’t form near cluster boundaries due to variability
from drawing i.i.d. samples. In this work, we show
that this technique also gives robustness to adversarial
contamination of the input data.
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3 ROBUSTNESS

In this section, we show that if we add ` samples (possi-
bly adversarially), then the number of clusters will not
change and the clustering assignments are preserved
(i.e. no new clusters, old clusters do not merge, etc)
when using Algorithm 2.

3.1 Regularity Assumptions

We first require that the density has smoothness (i.e.
α-Hölder continuous).
Assumption 1 (Smoothness). Let 0 < α ≤ 1. There
exists constant Cα > 0 such that |f(x) − f(x′)| ≤
Cα · |x− x′|α for all x, x′ ∈ X .

We next define the (upper) level-set of a density func-
tion f .
Definition 2 (Level-set). The λ-level set of f is de-
fined as Lf (λ) := {x ∈ X : f(x) ≥ λ}.

The next assumption says that the level sets are smooth
w.r.t. the level. We denote the ε-interior ofA asA	ε :=
{x ∈ A, infy∈∂A d(x, y) ≥ ε} (∂A is the boundary of
A).
Assumption 2 (Curvature). There exists Cβ > 0 and
β > 0 such that the following holds. For any 0 < λ ≤
λ′ < ||f ||∞, we have Lf (λ) 	 (ι(|λ′ − λ|)) ⊆ Lf (λ′)
where ι(r) := Cβ · rβ.

This ensures that there is sufficient decay around level-
set boundaries so that the level-sets are salient enough
to be detected. A similar assumption appears in [17].

3.2 Supporting Results

We next define the k-NN density estimator which plays
an important role about reasoning which points the
procedure selects as part of a cluster.
Definition 3 (k-NN Density Estimator). Define the
k-NN radius of x ∈ RD as rk(x) := inf{r > 0 : |X ∩
B(x, r)| ≥ k}. Then the k-NN density estimator is:

fk(x) :=
k

n · vD · rk(x)D
.

where vD is the volume of a unit ball in RD.

We give the following high-probability uniform rates of
consistency for k-NN density estimation. This follows
from Lemma 3 and 4 of [12] and we omit the proof.
Lemma 1 (k-NN density estimation rates). Let 0 <
δ < 1. Suppose that f satisfies Assumption 1. Then the
following holds for some constants C and Cl depending
on f . Suppose k satisfies

k ≥ Cl · log(1/δ)2 · log n.

Then with probability at least 1− δ,

sup
x∈X
|f(x)− fk(x)| ≤ C ·

(
log(1/δ)

√
log n√

k
+

(
k

n

)α/D)
.

3.3 Guarantees on Core-Points

We now show robustness guarantees on the core-points
returned by Algorithm 2 (i.e. the samples that belong
to some returned cluster). That is, when running
algorithm on X vs running it on X with ` additional
samples, then any new core-points that appear will be
near the original core-points.

Theorem 1. Suppose that Assumption 1 and 2 hold.
There exists constants Cl and C depending on f such
that the following holds. Let 0 < δ < 1 and k satisfy

k ≥ Cl · log(1/δ)2 · log n+ `,

and ε̃ ≥ ε > 0. Let Ĉ and Ĉ ′ be the core-points returned
by Algorithm 2 when run on X and X ′, respectively.
With probability at least 1− δ,

Ĉ ′ ⊆ Ĉ ⊕ r̃,

where ⊕ denotes a tube around a set (i.e. A ⊕ r :=
{x ∈ X : infa∈A |x− a| ≤ r}), and

r̃ := C·

((
`

nεD

) 1
β

+
log(1/δ)

1
β · (log n)

1
2β

(k − `)
1
2β

+

(
k

n

) α
β·D
)
.

Proof. It is clear from Algorithm 2 that

Ĉ = {x ∈ X : |B(x, ε) ∩X| ≥ k}

Ĉ ′ = {x ∈ X ′ : |B(x, ε) ∩X ′| ≥ k}.

We note that x being a core-point (i.e. having at least
k samples in its ε-neighborhood) is equivalent to its
k-NN radius being at most ε. It suffices to show that

inf
x∈X\(Ĉ⊕r̃)

rk−`(x) > ε. (1)

where rk(x) is the k-NN radius of any point x. This is
because when inserting ` points, we can only decrease
the k-NN distance of any point up to its (k − `)-NN
distance. Thus, if we can show that the above holds,
then it will imply that Ĉ ′ ⊆ Ĉ ⊕ r̃.

By Lemma 1 the following holds for some constant
C1 > 0 depending on f . For any x ∈ X , if

f(x) ≥ k

nvDεd
+
C1 log(1/δ)

√
log n√

k
+ C1

(
k

n

)α/D
,

(2)
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then fk(x) ≥ k
nvDεd

, or equivalently, rk(x) ≤ ε imply-
ing x ∈ Ĉ. Thus, letting Ak be the quantity on the
RHS of (2), we have

Lf (Ak) ⊆ Ĉ.

Hence, to show (1), it suffices to show that

inf
x∈X\(Lf (Ak)⊕r̃)

rk−`(x) > ε. (3)

Now, by Assumption 2, we have f(x) ≥ Ak − Cβ · r̃β
implies that x ∈ Lf (Ak) ⊕ r̃. It now follows that to
(3), it is enough to show that

inf
x∈X\Lf (Ak−Cβ r̃β)

rk−`(x) > ε. (4)

This can be re-written as

sup
x∈X\Lf (Ak−Cβ r̃β)

fk−`(x) <
k − `

n · vD · εD
.

By the k-NN density estimation bounds of Lemma 1, we
have the following for some constant C2 > 0 depending
on f .

sup
x∈X\Lf (Ak−Cβ r̃β)

fk−`(x)

≤ Ak − Cβ r̃β +
C2 log(1/δ)

√
log n√

k − `
+ C2

(
k

n

)α/D
.

It thus suffices to take

Cβ r̃
β ≥ `

n · vD · εD
+

(C1 + C2) log(1/δ)
√

log n√
k − `

+ (C1 + C2)

(
k

n

)α/D
,

which holds for a sufficiently large choice of C, as
desired.

3.4 Guarantees on Clusters

The previous result of Theorem 1 bounds the distance
of between the new core-points that appear after adding
` samples and the original core-points. We now show
that the original clustering is preserved when adding `
samples (i.e. no new clusters appear, original clusters
don’t merge, if two points were in the same cluster in
X, then they are also in the same cluster in X ′, etc).
These two results combined together show that there
will be a one-to-one mapping between the returned
clusters by running Algorithm 2 on X and that of X ′,
and that each cluster of the former is contained in the
corresponding cluster of the latter, and the distance
between the two corresponding sets (clusters) is small.

Theorem 2. Suppose that the conditions of Theo-
rem 1 hold. Let C, C′ be output of Algorithm 2
on X and X ′, respectively and define the minimum
inter-cluster distance of the returned clusters R :=
minC1,C2∈C,C1 6=C2

minx1∈C1,x2∈C2
d(x1, x2). If addi-

tionally, the following holds:

r̃ ≤ ε̃ ≤ 1

2
R− r̃,

then |C| = |C′| (i.e. the number of clusters does not
change) and there exists a one-to-one mapping of the
clusters σ : C → C′ such that C ⊆ σ(C) for all C ∈ C
(i.e. original clusters are preserved).

Proof. Note that any point appearing a cluster of C
will also appear in some cluster of C′. By Theorem 1,
we have that any newly appearing points in C′ will
be at a distance of at most r̃ from a point appearing
originally in C. If ε̃ ≥ r̃, then such new points will
become reconnected to a cluster in C. Finally, since
ε̃ ≤ 1

2R − r̃, this means that no two distinct clusters
appearing in C will become merged in C′.

Remark 1. It may be the case that r̃ is not small
enough compared to R in the above result. We note
that as k/n→ 0, `/k → 0, and we choose ε ≈ (k/n)1/D,
then r̃ will go to 0. We will discuss when and why these
hyperparameter choices make sense in the next section.
We will also discuss what happens when ` = E · n
for some 0 < E < 1 (i.e. constant E-fraction of
contaminated samples).

4 RATES OF CONSISTENCY

We now discuss the statistical consistency of Algo-
rithm 2 when the desired density level λ in which to
estimate the clusters is known (Theorem 3). We then
give a culminating result about the consistency of Al-
gorithm 2 when E-fraction of the sample are subjective
to possibly adversarial contamination.

4.1 No contamination

The following result says that that Algorithm 2, when
tuned appropriately to estimate the connected com-
ponents of the λ-level set of the density given, can
recover these connected components with finite-sample
guarantees under the Hausdorff metric. Moreover, the
hyperparameter settings only requires knowledge of λ
and nothing else about the underlying unknown density
f except a finite sample drawn from it, and the results
hold for n sufficiently large depending on f . This re-
sult follows from the same arguments made to prove
Theorem 1 and 2 of [16]. We give a proof sketch which
discusses the differences.
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Theorem 3 (Rates of consistency). Suppose that As-
sumption 1 and 2 hold. Let 0 < δ < 1, 0 < λ < ||f ||∞.
There exists Cl, C,Rλ > 0 depending on f such that the
following holds with probability 1− δ for n sufficiently
large depending on f . Suppose that Algorithm 2 has
the following settings:

k ≥ Cl · log(1/δ)2 · log n,

ε =

(
k

n · vD · (λ− λ · 16 log(2/δ)
√

log n/
√
k)

)1/D

,

ε ·

(
1− 16 log(2/δ)

√
log n/

√
k)

1− 16 log(2/δ)
√

log n/ 3
√
k)

)1/D

≤ ε̃ < Rλ.

Let C be the connected components of Lf (λ) and Ĉ be
the output of Algorithm 2 on X. Then we have |C| = |Ĉ|
and there exists a one-to-one mapping σ : C → Ĉ such
that for all C ∈ C, we have

dH(C, σ(C)) ≤ C ·

(
log(1/δ)1/β(log n)1/2β

k1/2β
+

(
k

n

) α
β·D
)
,

where dH is Hausdorff distance between two sets
defined as dH(A,B) := max{supa∈A infb∈B |a −
b|, supb∈B infa∈A |a− b|}.

Proof Sketch. Theorem 3 follows from Theorem 1 and
2 of [16] but with two differences: in the previous work,
α = β and the k-NN density estimation bound used
was less general than Lemma 1, in that it had an upper
bound on k so that the first term of the bound (of
order log(1/δ)

√
log n/

√
k) dominated the second (of

order (k/n)α/D) to avoid explicitly writing out the
latter term. Here, we don’t enforce such an upper
bound on k since we require k to grow as fast as n in a
later result. The proof for Theorem 3 can be obtained
by following the same steps of the proofs of Theorem 1
and 2 of [16] but using the density estimation bound of
Lemma 1 and explicitly writing out both terms instead
of enforcing an upper bound on k, and treating α and
β separately.

Remark 2. The 3
√
k appearing in the inequality for ε̃

is a theoretical artifact to ensure ε̃ is of higher order
than ε.

4.2 E-fraction contamination

We next consider the setting where ` = bE · nc, that
is, the number of points the adversary can add can
grow linearly with the original dataset size. In such
a situation, it is clear that we cannot in general con-
sistently recover the clusters of the original density
because the adversary can augment the dataset to look
like a density which has sufficiently different clusters.

Here, we give a result about how robust Algorithm 2 is
to such setting of ` when trying to recover the clusters
corresponding to the connected components of the λ-
level set where λ is known. The goal is similar to before:
ensure that the original clusters are preserved, that no
new clusters arise, and that the clusters don’t change
much.

To provide some intuition of why Algorithm 2 can have
robustness here, a key idea is that we can set k higher
than `. Otherwise, an adversary can simply place a
clump of k points in some ball of radius smaller than ε
somewhere arbitrary far away from the other clusters,
and the algorithm will believe that there is at least a
core-point (since there will be a sample with at most k
points in its ε-neighborhood) and thus a new cluster
will form. If k is sufficiently higher than `, then it
will be more difficult for the adversary to create a new
core-point which is far away from other core-points.
Corollary 1 (Rates of consistency under
E-contamination). Suppose that Assumption 1
and 2 hold. Let C be the connected components of
Lf (λ) and Ĉ be the output of Algorithm 2 on X ′. There
exists constants Cλ, C depending on f and λ such that
the following holds. Suppose that ` = bE ·nc. Choosing
k = bĒ · nc with Ē > E, then for n sufficiently large
depending on f , λ, δ, E and Ē, and taking

ε :=
(
Ē · vD · λ · (1− 16 log(2/δ)

√
log n/

√
Ē · n)

)1/D
,

ε̃ ≥
(
Ē · vD · λ · (1− 16 log(2/δ)

√
log n/

3
√
Ē · n)

)1/D
,

r̃ ≤ ε̃ ≤ 1

2
Cλ − r̃, where r̃ := C

(
(E/Ē)1/β + Ēα/(β·D)

)
.

then with probability at least 1 − δ, we have |C| = |Ĉ|
and there exists a one-to-one mapping σ : C → Ĉ such
that for all C ∈ C, we have

dH(C, σ(C)) ≤ C ·
(

(E/Ē)1/β + Ēα/(β·D)
)
.

In particular, if we choose Ē = ED/(D+α) (i.e. k =
bED/(D+α) · nc), then we attain the following rate:

dH(C, σ(C)) ≤ O
(
Eα/(β·α+β·D)

)
.

Proof. The consistency result of Theorem 3 bounds
the the distance between the clustering of X and the
true clusters, then the robustness results Theorem 1
and 2 bounds the distance between the clustering of
X ′ and that of X and the result follows by a triangle
inequality.

5 SIMULATIONS

We evaluate Robust DBSCAN in adversarial settings
on the common benchmarks “Circles” and “Moons” as
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Adversarial Dataset DBSCAN Robust DBSCAN

Figure 1: Adversarial augmentation applied to datasets
and the resulting clusterings of DBSCAN and Robust
DBSCAN.

Adversarial Dataset DBSCAN Robust DBSCAN

Figure 2: Adversarial deletion applied to datasets and
the resulting clusterings of DBSCAN and Robust DB-
SCAN.

well as a mixture of three Gaussians. For each dataset,
we evaluate DBSCAN and Robust DBSCAN on an
adversarial version of the dataset via either point aug-
mentation or point deletion. To adversarially augment
the data, we compute its convex hull, and then add a
number of points sampled from a Gaussian positioned
slightly outside this hull. In this way, the adversary
may add a small number of points which cause a cluster-
ing algorithm to produce an additional cluster beyond
the desired, true clustering. To adversarially delete
points, we randomly choose two points in the same
cluster, and then compute the minimum vertex cut on
the neighborhood graph. That is, we find the minimum
number of points to remove from the clustering so that
the two chosen points are not reachable from each other
using hops between datapoints within an ε-ball [22, 11].

In this way, the adversary may remove a small number
of points which cause a single cluster to be clustered
as two distinct clusters.

Results are presented in Figures 1 and 2. We find that
DBSCAN is vulnerable to the adversarial dataset per-
turbations we described. Even though the adversarial
perturbations are slight, DBSCAN yields clusterings
which are substantially distinct from the true data clus-
tering. On the other hand, Robust DBSCAN is able to
successfully preserve the true clusterings, despite the
adversarial augmentations or deletions.

6 EXPERIMENTS

We test the robustness properties of Robust DBSCAN
against DBSCAN on 9 benchmark UCI datasets [20].
We use the same adversarial contamination methods
as used for the simulations. For each dataset, the
setting of k and ε were the same for DBSCAN and
Robust DBSCAN and we chose ε̃ = 1.2 · ε for Robust
DBSCAN. We then choose k and ε for each dataset so
that DBSCAN and Robust DBSCAN gave the same
clustering on the initial dataset.

We stress that the purpose of these experiments is not
necessarily to show that our algorithms provides accu-
rate clusterings, but rather show how stable they are to
adversarial contamination of the data. As clustering is
an unsupervised method, oftentimes the ground truth
is not well defined or not available in practice and there
is still no agreement in the appropriate notion of clus-
ters [2]. Thus, our real-data experiments will simply
focus on robustness in the context of the density-based
notion of clusters. As such, the number of clusters
found by our algorithms may not always match the
number of labels in the dataset.

The adversarial augmentation tries to create the ap-
pearance of new clusters and the adversarial deletion
tries to break apart clusters. Hence, in either situation,
an increase in the number of clusters found after ad-
versarial perturbation indicates that the algorithm was
not robust. Thus, observing how much the number of
returned clusters increases under adversarial perturba-
tion is a reasonable way to test the robustness of the
algorithm.

In Figure 3 we test the robustness of our algorithms
under adversarial augmentation as we increase the num-
ber of additions to the dataset. Since the augmentation
is randomized, we ran it multiple times and showed the
average across 100 runs. We see that number of clus-
ter increases considerably slower for Robust DBSCAN
than DBSCAN thus showing that Robust DBSCAN is
stable to additive perturbations.

In Figure 4 we test robustness under adversarial dele-
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Figure 3: Adversarial augmentation. We plot the
number of clusters returned by DBSCAN (in blue)
and Robust DBSCAN (in green) as the number of
adversarial additions increases. We see that Robust
DBSCAN is better able to maintain the original number
of clusters.

Figure 4: Adversarial deletion. We show the num-
ber of clusters before and after adversarial deletion
averaged over multiple runs for both DBSCAN and
Robust DBSCAN. We see that the number of clusters is
stable for Robust DBSCAN under adversarial deletion
while for DBSCAN the number increases substantially.
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Figure 5: Image Segmentation. We apply density
clustering on the pixels of an image to produce a
segmentation, where each pixel is represented as a
5-dimensional point consisting of position and RGB
color channel and the final clusters are the segments.
We use an image that has been corrupted with vertical
and horizontal white lines. We show that, compared
to DBSCAN, with the same hyperparameters k = 10
and ε = 10, Robust DBSCAN is able to recover the
segments without letting the corrupted pixels affect
the result while the corruption causes DBSCAN to
oversegment. This suggests that our robust algorithm
is versatile and can be applied to damaged images.

tion. For both algorithms, we show the number of
clusters found on the original and perturbed dataset.
Since the perturbation is randomized, we show the
average over 100 runs and also show the standard error
bar. We see that for adversarial deletion, Robust DB-
SCAN is able to maintain the same number of clusters
while the number of clusters DBSCAN finds increases
considerably.

7 RELATED WORKS

Density level-set estimation has a long history. [15]
first formulated the notion of clusters as the connected
components of level-sets. [32] then provided consistent
procedures as well as lower bounds for estimating the
level-sets. There have since been a number of analy-
ses (see e.g. [30, 18, 3, 25, 26, 7, 8]). [27] provided
the first result under the Hausdorff metric, which is a
strong notion of consistency since it provides a uniform
guarantee on the samples. However, such approaches
which attained the strongest consistency results were
largely unimplementable and thus had little practical
value. It was only recently shown that DBSCAN [14],
an algorithm that has already shown to be of high prac-
tical value, was able to attain the strongest consistency
results [28, 16, 33, 29]. This observation was largely
due to the fact that DBSCAN works in similar way

to procedures which estimate the cluster-tree, which
is the hierarchical nesting structure of the clusters at
varying density levels (see e.g. [5, 6]), and much of the
techniques developed in this line of work was applicable
in studying DBSCAN. The results in this paper borrow
some of these previous results and are also under the
strong notions of consistency (i.e. finite-sample rates
under Hausdorff metric).

As mentioned earlier, the Robust DBSCAN idea has
appeared before in cluster-tree estimation as a way
to prune the neighborhood graph [19, 6] as well as
previous analyses of DBSCAN [28, 16]. In all such
cases, it was to ensure that the clustering was robust
to the variability of the data near the boundary of the
clusters. That is, at cluster boundaries, samples are
sensitive in whether they are classified as core-points
or not, and without increasing the connectivity of the
neighborhood graph, small spurious clusters may arise
in these areas.

However, previous analyses analyze consistency under
no contamination. In this work, we analyze robustness
in the face of possibly adversarial contamination of the
data. Some key differences from previous works in-
clude the following. First, we give precise requirements
for parameter settings in terms of the number of con-
taminated samples. Second, with the contamination
of the data, the sample drawn is biased and previous
instantiations of the procedure will in general not be
robust since the clusters of corresponding to the biased
distribution can possibly be very different from that
of the true distribution. For example, previous works
such as [16] assume that k/n→ 0 and/or ε̃→ 0, which
as shown earlier will fail with sufficient contamination
of the data. Lastly, we provide a novel robustness rate
in terms of E, the fraction of contaminated data.

8 CONCLUSION

Density clustering has played a key role in data analysis
but little is understood about its statistical robustness
properties under possibly adversarial contamination,
an important challenge in modern data analysis. In
this paper, we provided the first theoretical and experi-
mental analysis of robustness for a simple modification
of DBSCAN showing that robustness can be obtained
for density clustering.
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