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A Proofs

A.1 Proof of bounds for support sufficiency divergence

Lemma 1. The support sufficiency divergence is bounded with 0 < d§,,,(p || ¢) < 1, and the bounds
are tight.

Proof. The lower bound holds and is tight because

B || 1) = / (a(x) — p(2))6, 4 )

_ / max(q(z) — p(x), 0)1[p(z) < el[p(z) < ¢ .

which is clearly non-negative. Moreover, for e < inf, p(z), d§,,,(p || ¢) = 0. The upper bound holds
trivially as d, 4(z) < 1. For tightness, let ¢, p be discrete densities over two states, ¢ = [1.,0.] and

p = [0.,1.]. Then with € > 0, d§,,,(p || ¢) = 1.

Recall that

ws, (z) =

{ginipie) a2 "

otherwise

A.2 Proof of Lemmal[ll

Lemma 2. Let p, q be densities over X. Further, define 0, 4(z) = 1[p(x) < e and p(x) < q(z)].
Then,
Eqlf(2)] < Ep [w) (@) f(2)] + M - (Eq[0}, o ()] — Ep[d;, 4 (x)])

Proof. We have,

B(f(@)) = [ a(o)f(@)do (B def)
= / q(z) f(z)dx + / q(z) f(z)dx (Dividing domain)
wip(z)> wip(z)<e
= / @p(m)f(x)dx + / q(z) f(z)dz (Multiply and divide)
z:p(x)>e€ p(I) xz:p(x)<e
<E,p [w () f(z)] + / e (q(z) — p(x)) f(z)dx (Add and subtract p(x))

< [uf (@) f@)] + M [ (o) - po)ds By assmp. & £.p.q 2 0)
p(z)<q(z)
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= Ep [w}, 4(2)f(2)]

+ M / (q(z) — p(z)) L[p(z) < e Ap(z) < g(z)] dz (By domain of int.)
* 6;,11(1)
=E, [w ,(2)f(z)] + M - (Jg[&p,q(x)] - 15[5;7(](1;)]) (By def.)

Further, p = ¢ implies equality when € > sup,, q(z).

A.3  Proof of Theorem 2]
Lemma 3. Assume that p;(Y | X) = ps(Y | X). Define Z = ¢(X) and let h(x) = f(¢(x)). Then,
B lr@l=_ E )y

z,y~q(z,y) 2,y~q(z,y
Proof.

B [0(f(2),9)] =

z,y~q(z,y)

q(z, Y)U(f(2),y)dzdy

f(f(Z),y)/e¢ y )(J(%y)dxdzdy

I

a(z,) / 1z = ¢(2)0(f (=), y)dzdady

q(z, y)t(h(z), y)dzdy

= E [l(h(z),y)]

z,y~q(z,y)

Lemma 4.
Rt(h) = Eq(z)p(ylz) [e(f(z)’ y)] + Ué(f, y)

Proof. By Lemma[AJ]

Rt(h) = Eq(w,y) [E(h(.lﬁ), y)] = Eq(z,y) Wf(z), y)]
We have that

Eq(2)q(12) [ / / )y
///¢ Jaly | (@)Eh(B()), y)drdydz
- [ [t stonetncoto. sy

//q(w)ﬁ(h(qﬁ(x)),y)( qlylz) +ay| ¢(x))q(yx)) dzdy

=p(y|z) (assmp.)



and by the same argument,

Eqeyp(yio U(F(2),9)] = /

x

/ q(x)l(h(o(x)), y) (p(y | ©) +p(y | ¢(x)) —p(y | 7)) dedy

and as a result,

Eq2)q ) E(F(2),9)] = Eq()p(yl2) [E(f(2), y)]

—E@ B GG - E Af6@).)
FE@L B 6@))] - E (700
=n5(f.y)

O

Theorem [2| (Restated). Consider any feature representation z = ¢(z) with ¢ : X — Z and
prediction function f : Z — Y, and define h = f o ¢. Further, let p(Z) and ¢(Z) be the two
distributions induced by the representation ¢ applied to X distributed according to p(X), ¢(X).
Further, assume that for any hypothesis i and a loss function £, sup,.c y e ¢(h(z),y) < M. Now,
with € > 0, we have the following result.

Ry(h) < By [wy, ,, ()0(f(2),9)] + Mdgyp, (p(2) || a(2)) + 175, y) -
Proof. By Lemmafd] we have that

Further,

Eq(Z)P(y|z) //ZEZ yey ‘ ) ( ( ),y)dydz
- // q(z)p(y | 2)0(f(2),y)dydz
z2:p(z)>e,y€Y

! //Z:p(z)<e,yey q(2)p(y | 2)(f(2), y)dydz
- / / 2 ey wh, o (2)(2)p(y | 2)(f(2),y)dydz

+ / (a() - p(2)) / p(y | (=), y)dy d=

. p(z)<e _,_/
'p(2)<q(2)

e @@ 2C) [ o0, vz

p(z)<e
p(2)>q(2)

A.4 Kernel support divergence

Theorem [3may be viewed as a measuring differences in density only where supports differ signifi-
cantly. In the case where L is a Hilbert space, similar to the maximum mean discrepancy (Gretton

et al.,|2012), we may decompose dﬁl’pep (p || ) using reproducing kernels.

Lemma 5. Let H be the reproducing-kernel Hilbert space with kernel k : X x X — R. Then,

supp(p || q)g = E [5;($,$/)k($,$/) (2)
x,x' ~p
-2 E  [6(z,2")k(z,2")] + E [o(x,2")k(z,z")]
z~p,x’ ~q z,x’'~q



Proof. The proof follows from Gretton ez al.| (2012)) and can be found in Appendix [A.4] O
Let 05 (7) = 1[p(x) < €] and &5, (x, 2") = d; ()05 (")

dsupp(P | 9)g = sup E[o,(2)g()] — E[dy,(2)g(2)]

E|
= E [65(z,2))k(z,2")]

z,x’ ~p

-2 E [0z, 2)k(x,2")] 3)

INp,(lT,Nq p
+ E 5 (x, 2" )k(z,2')]

z,x’'~q

Proof. Follow http://alex.smola.org/teaching/iconip2006/iconip_3.pdf page 18-20.
O

B Model

We may bound dg,,,(p || g) using the hinge loss as follows,

Ty 1)< B, lma (0,222 max (0.2~ 255
(@)

- E |:max (0, 1- pix)) max (0’1 - q(axs)ﬂ

=t dg(P [l @) -

b=
~—
&

!

C Experiments

In Figure [} we see that the embeddings learned using DANN models under label marginal shift
show worse separation between classes, than the embeddings learned under equal label marginal
distributions.

D Consistent domain-invariant variable selection

Consider a matrix A € {0,1}**¢ with k < d such that Vj : ", a;; < 1 and Vi : Zj:1 a;; < 1.
In other words, A is a variable selection operator on X. Now, assume that Z := ®(X) := AX is
sufficient for Y on p, and p; and that p;(AX) = p;(AX). Further, assume labeled data is observed
under p and unlabeled data observed under p;. Then, is Y identifiable based on domain-invariance
and source predictive loss?

Condition 1 (Smoothness). With Xy, = {f : >, cpa k3(f, 0r)* < L;Vj € {1,....d} for L >0, f
is L-smooth if f € X1, with ¢y, the trigonometric fourier basis.

Condition 2 (Identifiability). A sufficient set of variables J, such that 3f : f(x) = f(xs) for all
x € RY, is k-identifiable if for all j € J,

/[0,1]d(f(x) B /01 f@)dz;)?de > k.

Condition 3 (Positive bounded support). The density p,(x) has positive bounded support over [0, 1]%
ifwith ps iy > 0, Vo € [0,1]4 : pe(x) > Py and Y ¢ [0,1]% : pe(z) = 0.

Condition 4 (Bounded co-norm and 2-norm). A function f has bounded oco-norm and 2-norm with
respect 1o p if Pryx p. (| f(X)| < Loo) = L and Ex ., [f(X)?] < L3.

Condition 5 (Sub-gaussian additive noise). The observed outcome may be written as Y; = f(x;) +
oe; with Ele'i | X;] < et"/2 for all t > 0.



http://alex.smola.org/teaching/iconip2006/iconip_3.pdf

(b) MNIST—MNIST-M\{0, 1, 2}

Figure 1: Embeddings learned by DANN with equal (top) and unequal (bottom) label marginal
distributions. In MNIST-M\{0, 1, 2}, all images of digits 0,1,2 have been removed. Grey digits are
embeddings and labels of the source domain. Black digits against colored background are from the
target domian.



Theorem 1 (Variable selection in non-parametric regression (Comminges et al., 2012)). Assume that
Condlttonshold with known parameters Dsmins 0 = 2L /K and Lo. Then, there is an estimator J
that satisfies Pr(J # J) < (8d/d*) ¢

Comminges ef al.|(2012)) give a constructive proof of Theorem[I]in which the chosen estimator is
allowed to depend on the density ps(x).
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