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Abstract

We study the problem of learning condi-
tional average treatment effects (CATE) from
observational data with unobserved con-
founders. The CATE function maps baseline
covariates to individual causal effect predic-
tions and is key for personalized assessments.
Recent work has focused on how to learn
CATE under unconfoundedness, i.e., when
there are no unobserved confounders. Since
CATE may not be identified when uncon-
foundedness is violated, we develop a func-
tional interval estimator that predicts bounds
on the individual causal effects under realistic
violations of unconfoundedness. Our estima-
tor takes the form of a weighted kernel esti-
mator with weights that vary adversarially.
We prove that our estimator is sharp in that
it converges exactly to the tightest bounds
possible on CATE when there may be unob-
served confounders. Further, we prove that
personalized decision rules derived from our
estimator achieve optimal minimax regret
asymptotically. We assess our approach in
a simulation study as well as demonstrate its
application by comparing conclusions from a
real observational study and clinical trial.

1 Introduction

Learning individual-level (conditional-average) causal
effects from observational data is a key question for
determining personalized treatments in medicine or in
assessing policy impacts in the social sciences. Many
recent advances have been made for the important
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question of estimating conditional average treatment
effects (CATE), which is a function mapping base-
line covariates to individual causal effect predictions
[1, 3, 10, 13, 19, 26, 34, 38]. However, all of these
approaches need to assume unconfoundedness, or that
the potential outcomes are conditionally independent
of treatments, given observed covariates. That is, that
all possible confounders have been observed and are
controlled for.

While unconfoundedness may hold by design in ideal
settings like randomized controlled trials, the assump-
tion is almost always invalid to some degree in any real
observational study and, to make things worse, the as-
sumption is inherently unverifiable. For example, pas-
sively collected healthcare databases often lack part of
the critical clinical information that may drive both
doctors’ and patients’ treatment choices, e.g., sub-
jective assessments of condition severity or personal
lifestyle factors. The expansion and linkage of observa-
tional and administrative datasets does afford greater
opportunities to observe important factors that influ-
ence selection into treatment, but some hidden factors
will always remain and there is no way to prove oth-
erwise. When unconfoundedness does not hold, one
might find causal effects in observational data where
there is actually no real effect or vice versa, which in
turn may lead to real decisions that dangerously rely
on false conclusions and may introduce unnecessary
harm or risk [17].

Therefore, sensitivity analysis of causal estimates to
realistic violations of unconfoundedness is crucial for
both credible interpretation of any findings and reli-
able decision making. Traditional sensitivity analy-
sis and modern extensions focus on bounding feasible
values of average treatment effects (ATE) or the corre-
sponding p-values for the hypothesis of zero effect, as-
suming some violation of unconfoundedness [7, 31, 40].

However, ATE is of limited use for individual-level as-
sessments and personalization. For such applications,
it is crucial to study the heterogeneity of effects as
covariates vary by estimating the CATE. Given an in-
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dividual with certain baseline covariates, the sign of
the CATE for their specific values determines the best
course of action for the individual. Furthermore, learn-
ing CATE also allows one to generalize causal conclu-
sions drawn from one population to another popula-
tion [11].

In this paper, we develop new methodology and theory
for learning bounds on the CATE function from obser-
vational data that may be subject to some confound-
ing. We propose a functional interval estimator for
CATE that is derived from a weighted kernel regres-
sion, where the weights vary adversarially per a stan-
dard sensitivity model that specifies how big the po-
tential impact of hidden confounders might be on selec-
tion. The proposed estimators admit efficient compu-
tation by a sorting and line search procedure. We show
that our estimator is sharp in that it converges point-
wise to the tightest possible set of identifiable CATE
functions – the set of CATE functions that are con-
sistent with both the population-level observational-
data generating process and the assumed sensitivity
model. That is, our interval function is asymptoti-
cally neither too wide (too conservative) nor too nar-
row (too optimistic). We show that the minimax-
regret of the derived personalized decision rules con-
verges to the best possible under the assumed sensi-
tivity model. We assess the success of our approach
in considering individual-level effects in a simulation
study, and demonstrate its application on real data, a
likely-confounded observational study and companion
clinical trial for hormone replacement therapy.

2 Related work

Learning CATE. Studying heterogeneous treatment
effects by learning a functional form for CATE un-
der the assumption of unconfoundedness is a common
approach [1, 3, 10, 13, 19, 26, 34, 38]. Under uncon-
foundedness, CATE is given by the difference of two
identifiable regressions and the above work study how
to appropriately tailor supervised learning algorithms
specifically to such a task. In particular, [1] con-
sider estimating CATE under unconfoundedness us-
ing kernel regression on a transformation of the out-
come given by inverse propensity weighting (IPW).
Our bounds arise from adversarially-weighted kernel
regression estimators, but in order to ensure sharp-
ness, the estimators we use reweight the sample rather
than the outcome.

Sensitivity analysis and partial identification.
Sensitivity analysis in causal inference considers how
the potential presence of unobserved confounders
might affect a conclusion made under the assumption

of unconfoundedness. It originated in a thought exper-
iment on the effects of smoking in lung cancer where it
is argued that unobservable confounding effects must
be unrealistically large to refute observational evidence
[6]. In our approach, we use the marginal sensitiv-
ity model (MSM) introduced by [37], which bounds
the potential impact of unobserved confounding on
selection into treatment. Specifically, it bounds the
ratio between the propensity for treatment when ac-
counting only for observables and when accounting
also for unobservables. This model is closely related to
the Rosenbaum sensitivity model [31], which bounds
the ratio between the propensity for treatment be-
tween any two realization of unobservables. While the
Rosenbaum sensitivity model is traditionally used in
conjunction with matching, [39] recently proposed an
empirical risk minimization approach to estimate the
CATE sensitivity bounds based on sieve estimation
methods and further provide ATE bounds. See [40]
for more on the relationship between the Rosenbaum
sensitivity model and the MSM considered in this pa-
per. [37, 40] consider the sensitivity of ATE estimates
under the MSM but not sharpness. [2] consider a re-
lated problem of bounding a population average un-
der observations with unknown but bounded sampling
probabilities and prove sharpness assuming discrete
outcomes. Instead of relying on a sensitivity model,
[23] consider sharp partial identification of ATE under
no or weak assumptions such as monotone response
and [22] consider corresponding minimax-regret policy
choice with discrete covariates. [24] consider sup-norm
bounds on propensity differences and show sharp par-
tial identification of bounds for CATE and ATE by
integrating partially identified bounds on the condi-
tional quantile treatment effect.

Personalized decision making. Optimal personal-
ized decision rules are given by thresholding CATE if
known and hence a natural approach to learning such
policies is to threshold CATE estimates [30]. This of
course breaks down if CATE is not estimable. Our
paper derives the appropriate extension to partially
identified CATE and shows that decision rules derived
from our estimates in fact achieve optimal minimax
regret. Under unconfoundedness, recent work has also
studied directly learning a structured decision policy
from observational data since best-in-class CATE esti-
mates (e.g., best linear prediction) need not necessarily
lead to best-in-class policies (e.g., best linear policy)
[4, 8, 14–16, 36, 41]. Recently, [17] studied the prob-
lem of finding such structured policies that are also
robust to possible confounding under a similar sensi-
tivity model. However, this approach produces only a
policy and not a CATE estimate, which itself is an im-
portant object for decision support as one would like
to interpret the policy relative to predicted effects and
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understand the magnitude of effect and uncertainties
in its estimation. Causal effect estimates are of course
also important for influencing other conclusions, di-
recting further the study of causal mechanisms, and
measuring conclusions against domain knowledge.

3 Problem Set-up

We assume that the observational data consists of
triples of random variables {(Xi, Ti, Yi) : i = 1, . . . , n},
comprising of covariates Xi ∈ X ⊆ Rd, assigned treat-
ments Ti ∈ {0, 1}, and real-valued outcomes Yi ∈ Y ⊆
R. Using the Neyman-Rubin potential outcome frame-
work, we let Yi(0), Yi(1) ∈ Y denote the potential out-
comes of each treatment. We let the observed out-
come be the potential outcome of the assigned treat-
ment, Yi = Yi(Ti), encapsulating non-interference and
consistency assumptions, also known as SUTVA [33].
Moreover, (Xi, Ti, Yi(0), Yi(1)) are i.i.d draws from a
population (X,T, Y (0), Y (1)).

We are interested in the CATE function:

τ(x) = E[Y (1)− Y (0) | X = x]

If X contained all confounders, then we could identify
CATE by controlling for it in each treatment group:

τ̃(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x].
(1)

If unconfoundedness held in that potential outcomes
are independent of assigned treatment given X, then
it’s immediate that τ̃ would equal τ . However, in
practice there will almost always exist unobserved con-
founders not included in X, i.e., unconfoundedness
with respect to X is violated. That is, in general, we
may have that

(Y (0), Y (1)) 6⊥⊥ T | X.

In such general settings, τ(x) 6= τ̃(x) and indeed τ(x)
may not be estimated from the observed data even
with an infinite sample size [31].

For t ∈ {0, 1}, let et(x) = P(T = t | X = x) be
the nominal propensity for treatment given only the
observed variables and et(x, y) = P(T = t | X =
x, Y (t) = y) be the complete propensity accounting
for all confounders. In this paper, we use the follow-
ing sensitivity model to quantify the extent of violation
of the unconfoundedness with respect to the observed
covariates X. The model measures the degree of con-
founding in terms of the odds ratios of the nominal
and complete propensities [37, 40].
Definition 1 (Marginal Sensitivity Model). There ex-
ists Γ ≥ 1 such that, for any t ∈ {0, 1}, x ∈ X , y ∈ Y,

1

Γ
≤ (1− et(x))et(x, y)

et(x)(1− et(x, y))
≤ Γ. (2)

Taking logs, eq. (2) can be seen as bounding the abso-
lute difference between the logits the nominal propen-
sity and the complete propensity by log Γ. When un-
confoundedness with respect to X holds, we have that
et(x) = et(x, y) and (2) holds with Γ = 1. When
Γ = 2, for example, then the true odds ratio for an
individual to be treated may be as much as double or
as little as half of what it is actually observed to be
given only X. As Γ increasingly deviates from 1, we
allow for greater unobserved confounding.

4 An Interval Estimator for CATE

4.1 Population estimands

We start by characterizing the population estimands
we are after, the population-level upper and lower
bounds on CATE. As discussed above, without un-
confoundedness, there is no single CATE function that
can be point identified by the data. Under the MSM
with a given Γ, we can conceive of the set of identified
CATE functions as consisting of all the functions that
are consistent with both the population of observa-
tional data (X,T, Y ) and the MSM. All such functions
are observationally equivalent in that they cannot be
distinguished from one another on the basis of obser-
vational data alone. This defines a particular interval
function that maps covariates to the lower and upper
bounds of this set and this is the function we wish to
estimate.

For t ∈ {0, 1} and x ∈ X , let ft(y | x) denote the
density of the distribution P(T = t, Y (t) ≤ y | X =
x) = P(T = t, Y ≤ y | X = x). Note that these distri-
butions are identifiable based on the observed data as
they only involve observable quantities. Further, de-
fine µt(x) = E[Y (t) | X = x], which is not identifiable
from data, such that τ(x) = µ1(x) − µ0(x), and note
that

µt(x) = µt(wt;x) =

∫
ywt(y | x)ft(y | x)dy∫
wt(y | x)ft(y | x)dy

(3)

where wt(y | x) = 1/et(x, y), which too is uniden-
tifiable. Eq. (3) is useful as it decomposes µt(x)
cleanly into its identifiable (ft(y | x)) and unidenti-
fiable (wt(y | x)) components. Based on the MSM (2),
we can determine the uncertainty set that includes all
possible values of wt(y | x) = 1/et(x, y) that agree
with the model, i.e., violate unconfoundedness by no
more than Γ:

Wt(x; Γ) = {wt(· | x) : wt(y | x) ∈ [αt(x; Γ), βt(x; Γ)] ∀y}
where αt(x; Γ) = 1/(Γet(x)) + 1− 1/Γ, (4)

βt(x; Γ) = Γ/et(x) + 1− Γ.
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These are exactly the wt(· | x) functions that agree
with both the known nominal propensities et(x) and
the MSM in eq. (2). Eq. (4) is derived directly from
eq. (2) by simple algebraic manipulation. We define
the population CATE bounds under the MSM corre-
spondingly.
Definition 2 (CATE Identified Set Under MSM).
The population bounds under the MSM with parameter
Γ for the expected potential outcomes are

µt(x; Γ) = sup
wt∈Wt(x;Γ)

µt(wt;x), (5)

µ
t
(x; Γ) = inf

wt∈Wt(x;Γ)
µt(wt;x), (6)

and the population bounds for CATE are

τ(x; Γ) = µ1(x; Γ)− µ
0
(x; Γ), (7)

τ(x; Γ) = µ
1
(x; Γ)− µ0(x; Γ). (8)

Therefore, the target function we are interested in
learning is the map from x to identifiable CATE in-
tervals:

T (x; Γ) = [τ(x; Γ), τ(x; Γ)].

4.2 The functional interval estimator

We next develop our functional interval estimator for
T (x; Γ). Toward this end, we consider the following
kernel-regression-based estimator for µt(x) based on
the unknown weights W∗

t = (W ∗ti)
n
i=1 according to the

complete propensity score, W ∗ti = 1/et(Xi, Yi(t)):

µ̂t(W
∗
t ;x) =

∑n
i=1 I(Ti = t)K(Xi−xh )W ∗tiYi∑n
i=1 I(Ti = t)K(Xi−xh )W ∗ti

, (9)

where K(Xi−xh ) = K(
Xi,1−x1

h )×· · ·×K(
Xi,d−xd

h ), K(·)
is a univariate kernel function, and h > 0 is a band-
width. In particular, all we require of K is that it
is bounded and

∫
uK(u)du = 0,

∫
u2K(u)du <∞ (see

Thm. 1). For example, we can use the Gaussian kernel
K(u) = exp(u2/2) or uniform kernel K(u) = I(|u| ≤
1
2 ). If we knew the true weights W∗

t , then basic results
on non-parametric regression and inverse-probability
weighting would immediately give that µ̂t(W

∗
t ;x) →

µt(x) as n → ∞ if h → 0 and nhd → ∞ [27], i.e.,
the estimator, eq. (9), would be consistent when the
complete propensity scores are known.

However, the estimator in eq. (9) is an infeasible one
in practice because 1/W ∗ti = et(Xi, Yi(t)) is unknown
and cannot be estimated from any amount of observed
data. Instead, we bracket the range of feasible weights
and consider how large or small eq. (9) might be. For
t ∈ {0, 1} and Γ ≥ 1, we define

Ŵt = {Wt : αt(Xi; Γ) ≤Wti ≤ βt(Xi; Γ) ∀i} ⊆ Rn,

where αt(·) and βt(·) are defined in (4). Our interval
CATE estimator is

T̂ (x; Γ) = [τ̂(x), τ̂(x)], where (10)

τ̂(x) = µ̂1(x)− µ̂
0
(x), τ̂(x) = µ̂

1
(x)− µ̂0(x), (11)

µ̂t(x; Γ) = sup
Wt∈Ŵt

µ̂t(W;x), (12)

µ̂
t
(x; Γ) = inf

Wt∈Ŵt

µ̂t(W;x). (13)

Note that αt(x), βt(x) depend on et(x). Since we
mainly focus on dealing with unobserved confound-
ing, we assume that we know the nominal propensity
scores et(x) for simplicity as it is in fact identifiable.

4.3 Computing the interval estimator

Our interval estimator is defined as an optimization
problem over n weight variables. We can simplify this
problem by characterizing its solution. Using opti-
mization duality, Lemma 2 in appendix shows that, in
the solution, each weight variable realizes its bounds
(upper or lower) and that weights are monotone when
sorted in increasing Yi value. This means that one
need only search for the inflection point. As summa-
rized in the following proposition, this means that the
solution is given by a simple discrete line search to
optimize a unimodal function, after sorting.
Proposition 1. Suppose that we reorder the data so
that Y1 ≤ Y2 ≤ · · · ≤ Yn. Define the following terms
for k ∈ {1, . . . , n}, x ∈ X , and Γ ≥ 1:

λ(k;x,Γ) =

∑
i≤k α̃

K
i (t, x; Γ)Yi +

∑
i≥k+1 β̃

K
i (t, x; Γ)Yi∑

i≤k α̃
K
i (t, x; Γ) +

∑
i≥k+1 β̃

K
i (t, x; Γ)

,

λ(k;x,Γ) =

∑
i≤k β̃

K
i (t, x; Γ)Yi +

∑
i≥k+1 α̃

K
i (t, x; Γ)Yi∑

i≤k β̃
K
i (t, x; Γ) +

∑
i≥k+1 α̃

K
i (t, x; Γ)

,

where

α̃Ki (t, x; Γ) = I[Ti = t]αt(Xi; Γ)K(
Xi − x
h

),

β̃Ki (t, x; Γ) = I[Ti = t]βt(Xi; Γ)K(
Xi − x
h

).

Then we have that

µ̂t(x) = λ(kH(x,Γ);x,Γ), µ̂
t
(x) = λ(kL(x,Γ);x,Γ),

where

kH(x,Γ) = inf{k = 1, . . . , n : λ(k;x,Γ) ≥ λ(k + 1;x,Γ)},
kL(x,Γ) = inf{k = 1, . . . , n : λ(k;x,Γ) ≤ λ(k + 1;x,Γ)}.

4.4 Sharpness guarantees

We next establish that our interval estimator is sharp,
i.e., it converges to the identifiable set of CATE values.
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That is to say, as a robust estimator that accounts for
possible confounding, our interval is neither too wide
nor too narrow – asymptotically, it matches exactly
what can be hoped to be learned from any amount of
observational data. The result is based on a new uni-
form convergence result that we prove for the weight-
parametrized kernel regression estimator, µ̂t(W ;x), to
the weight-parametrized estimand µt(wt;x). Although
the uniform convergence may not hold in general, it
holds when restricting to monotone weights, which is
where we leverage our characterization of the optimal
solution to eqs. (13) and (12) as well as a similar result
characterizing the population version in eqs. (5) and
(6) using semi-infinite optimization duality [35].
Theorem 1. Suppose that

i. K is bounded,
∫
K(u) <∞,

∫
uK(u)du = 0, and∫

u2K(u)du <∞,
ii. n→∞, h→ 0 and nh2d →∞,
iii. Y is a bounded random variable,
iv. et(x) and ft(y | x) are twice continuously differ-

entiable with respect to x for any fixed y ∈ Y with
bounded first and second derivatives,1

v. et(x, y) is bounded away from 0 and 1 uniformly
over x ∈ X , y ∈ Y, t ∈ {0, 1}.

Then, for t ∈ {0, 1},

µ̂t(x)
p→ µt(x), µ̂

t
(x)

p→ µ
t
(x),

τ̂(x)
p→ τ(x), τ̂(x)

p→ τ(x).

In words, Theorem 1 states that under fairly general
assumptions, if the bandwidth h is appropriately cho-
sen, our bounds for both conditional average outcomes
and CATE are pointwise consistent and hence sharp.

4.5 Personalized Decisions from Interval Esti-
mates and Minimax Regret Guarantees

We next consider how our interval CATE estimate can
be used for personalized treatment decisions and prove
that the resulting decisions rules are asymptotically
minimax optimal. Let us assume that the outcomes Yi
correspond to losses so that lower outcomes are better.
Then, if the CATE were known, given an individual
with covariates x, clearly the optimal treatment deci-
sion is t = 1 if τ(x) < 0 and t = 0 if τ(x) > 0 (and
either if τ(x) = 0). In other words, π(x) = I(τ(x) < 0)

1Note that we can also use αt(x; Γ) and βt(x; Γ) as
the bounds on Wti in the definition of our estimators in
eqs. (12) and (13). In this case, we don’t need derivative
assumptions on et(·). In practice, using x or Xi leads to
similar results.

minimizes the risk

V (π; τ) = E[π(X)Y (1) + (1− π(X))Y (0)]

= E[Y (1)] + E[π(X)τ(X)]

over π : X → {0, 1}. If τ(x) can be point-estimated,
an obvious approach to making personalized decisions
is to threshold an estimator of it. If the estimator
is consistent, this will lead to asymptotically optimal
risk.

This, however, breaks down when CATE is unidenti-
fiable and we only have an interval estimate. In par-
ticular, there is no single identifiable value of V (π; τ).
Instead, we focus on the worst case regret relative to
a default π0(x) given by the MSM:

Rπ0(π; Γ) = supτ(x)∈T (x;Γ) ∀x∈X (V (π; τ)− V (π0; τ))

The default represents the decision that would have
been taken in the absence of any of our observational
data. For example, in the medical domain, if there is
not enough clinical trial evidence to support treatment
approval, then the default may be to not treat, π0(x) =
0. At the population level, the uniformly best possible
policy we can hope for is the minimax regret policy:

π∗( · ; Γ) ∈ argminπ:X→{0,1}Rπ0
(π; Γ) (14)

Proposition 2. The following is a solution to
eq. (14):

π∗(x; Γ) = I(τ(x; Γ) ≤ 0) + π0(x)I(τ(x; Γ) < 0 < τ(x; Γ))

This minimax-optimal policy always treats when
τ(x; Γ) ≤ 0 and never treats when τ(x; Γ) ≥ 0 because
in those cases the best choice is unambiguous. When-
ever the bounds contain 0, the best we could hope for
is 0 regret, which we can always achieve by mimicking
π0.

Next, we prove that if we approximate the true
minimax-optimal policy, by plugging in our own in-
terval CATE estimates in place of the population es-
timands, then we will achieve optimal minimax regret
asymptotically.
Theorem 2. Let

π̂(x; Γ) = I(τ̂(x; Γ) ≤ 0)+π0(x)I(τ̂(x; Γ) < 0 ≤ τ̂(x; Γ)).

Then, under the assumptions of Theorem 1,

Rπ0
(π̂(·; Γ); Γ)

p→ min
π:X→{0,1}

Rπ0
(π; Γ) = Rπ0

(π∗(·; Γ); Γ)

4.6 Extension: interval estimates for the par-
tial conditional average treatment effect

In subsections 4.1 - 4.5, we consider CATE conditioned
on all observed confounders X. However, in many ap-
plications, we may be interested in heterogeneity of
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treatment effect in only a few variables, conditioning
on only a subset of variables XS , with S ⊂ {1, . . . , n}
as the corresponding index set. For example, in medi-
cal applications, fewer rather than more variables are
preferred in a personalized decision rule due to cost
and interpretability considerations [30]. Therefore, we
consider estimation of the partial conditional average
treatment effect (PCATE):

τ(xS) = µ1(xS)− µ0(xS), (15)

where µt(xS) = E[Y (t) | XS = xS ] for t ∈ {0, 1}.

Analogously, we define ft(y, xSc | xS) as the joint con-
ditional density function of (T = t, Y (t), XSc) given
XS = xS , where Sc = {1, . . . , n} \ S denotes the com-
plement of S. We further define the following for a
weight functional wPt (· , · | xS):

µt(w
P
t ;xS) =

∫∫
ywPt (xSc , y | xS)ft(y, xSc | xS)dydxSc∫∫
wPt (xSc , y | xS)ft(y, xSc | xS)dydxSc

(16)
Since µt(w

P
t ;xS) = µt(xS) when wPt (xSc , y | xS) =

1
et(xS ,xSc ,y) , we define the population interval esti-

mands for PCATE under the MSM as follows.
Definition 3 (PCATE Identified Set Under MSM).
The population bounds under the MSM with parame-
ter Γ for the partial expected potential outcomes and
PCATE are

µt(xS ; Γ) = sup
wPt ∈WP

t (xS ;Γ)

µ(wPt ;xS), (17)

µ
t
(xS ; Γ) = inf

wPt ∈WP
t (xS ;Γ)

µ(wPt ;xS), (18)

τ(xS ; Γ) = µ1(xS ; Γ)− µ
0
(xS ; Γ), (19)

τ(xS ; Γ) = µ
1
(xS ; Γ)− µ0(xS ; Γ). (20)

where µ(wPt ;xS) is defined in (16), and

WP
t (xS ; Γ) =

{
wPt : wPt (xSc , y | xS) ∈ [αt(xS , xSc ; Γ),

βt(xS , xSc ; Γ)],∀xSc ∈ XSc ,∀y ∈ Y
}
.

We can extend our interval estimators to the above:

µ̂t(Wt;xS) =

∑n
i=1 I(Ti = t)K(

Xi,S−xS
h )WtiYi∑n

i=1 I(Ti = t)K(
Xi,S−xS

h )Wti

,

(21)

µ̂t(xS ; Γ) = sup
Wt∈Ŵt

µ̂t(Wt;xS), (22)

µ̂
t
(xS ; Γ) = inf

Wt∈Ŵt

µ̂t(Wt;xS) (23)

These PCATE interval estimators use the partial co-
variates XS in the kernel function but the complete

observed covariates X in the nominal propensity score
(in αt(·) and βt(·)),2 compared to CATE interval es-
timators, eqs. (9) and (11), that use X in both the
kernel function and nominal propensity score. In ap-
pendix section D, we prove appropriate analogues of
Theorems 1 and 2 for our PCATE interval estimators
under analogous assumptions. In this way, we can use
the complete observed covariates X in the nominal
propensity scores to adjust for confounding as much
as possible, so that unobserved confounding is mini-
mal, while only estimating heterogeneity in a subset
of interesting covariates.

4.7 Practical Considerations

Boundary bias: For bounded space X , kernel-
regression-based estimators may have high bias at
points x near the boundaries. This can be alleviated by
truncating kernels at the boundary and replacing any
kernel term of the form K(Xi−xh ) by a re-normalized

version K(Xi−xh )/
∫
x′∈X K(Xi−x

′

h )dx′ so that all ker-
nel terms have the same integral over the bounded X
[9, 18]. We take this approach in our experiments.

Propensity score estimation: Although our the-
oretical results in section 4 assume that the nominal
propensity score et(x) is known, these results still hold
if we use a consistent estimator for it. Indeed, et(x)
is identifiable. If parametric estimators are used for
propensity score estimation, e.g., linear logistic regres-
sion, model misspecification error may occur. In this
case, we can interpret the marginal sensitivity model
as the log odds ratio bound between the complete
propensity score and the best parametric approxima-
tion of the nominal propensity score. Consequently,
the resulting CATE sensitivity bounds also incorpo-
rate model misspecifcation uncertainty. See [40] for
more details on marginal sensitivity model for para-
metric propensity score.

Selection of the sensitivity parameter Γ. The
parameter Γ bounds the magnitude of the effects of
unobserved confounders on selection, which is usually
unknown. [12] suggest calibrating the assumed effect
of the unobserved confounders to the effect of observed
covariates. For example, we can compute the effect of
omitting each observed covariate on the log odds ratio
of the propensity score and use domain knowledge to
assess plausible ranges of Γ to determine if we could
have omitted a variable that could have as large an
effect as the observed one.

2We could also use αt(xS , Xi,Sc ; Γ) and βt(xS , Xi,Sc ; Γ)
here. See also footnote 1.
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Figure 1: Bounds on CATE for differing values of Γ
(dashed), compared to original confounded kernel re-
gression (purple dashed) and true CATE (black).

5 Experiments

Simulated Data. We first consider an one-
dimensional example illustrating the effects of unob-
served confounding on conditional average treatment
effect estimation. We generate a binary unobserved
confounder u ∼ Bern(1/2) (independent of all else),
and covariate X ∼ Unif[−2, 2]. We fix the nominal
propensity score as e(x) = σ(0.75x+0.5). For the sake
of demonstration, we fix an underlying “true” Γ∗ value
and set the complete propensity scores as e(x, u) =

u
αt(x;Γ∗) + 1−u

βt(x;Γ∗) and sample T ∼ Bern(e(x, u)). This

makes the complete propensities achieve the extremal
MSM bounds corresponding to Γ∗, with u controlling
which bound we reach. We choose an outcome model
to yield a nonlinear CATE, with linear confounding
terms and noise randomly generated as ε ∼ N(0, 1):

Y (t) =(2t− 1)X + (2t− 1)− 2 sin(2(2t− 1)X)

− 2(2u− 1)(1 + 0.5X) + ε

When we learn the confounded effect estimate, τ̃(X),
from data as in eq. (1), we incur a confounding term
(τ̃(x)−τ(x)) that grows in magnitude with positive x:

2(2 + x)(Pr[u = 1 | X=x
T=1 ]− Pr[u = 1 | X=x

T=0 ]). (24)

In Fig. 1, we compute the bounds using our estimators,
eqs. (12) and (13), for varying choices of Γ on a dataset
with n = 2000 where log Γ∗ = 1. We use a Gaussian
kernel with bandwidths chosen by leave-one-out cross-
validation for the task of unweighted regression in each
treatment arm. The bounds are centered at the con-
founded kernel regression estimate of CATE (purple
long-dashed line).

By construction, the deviation of the confounded
CATE from the true CATE, eq. (24), is greater for
more positive x; our approach learns bounds whose

widths reflect the appropriate “size” of confounding
at each x. While the confounded estimation suggests
a large region, x ∈ [0, 1.25], where treatment π(x) = 1
is optimal, the true CATE suggests that treatment at
many of these x values is harmful, and our bounds
suggest that the benefit of treatment is ambiguous in
the confounded-optimal region.

In Section E.1 of the Appendix, we include a similar
example to illustrate how the bounds would change
for assessing partial CATE: additional confounding di-
mensions tend to increase the outcome variation , so
the bounds widen.

In Table 1, we compare the true policy values, V (π; τ),
achieved by the decision rules derived from our inter-
val CATE estimates, following Section 4.5 and letting
π0(x) = 0 (never treat). We consider 20 Monte Carlo
replications for each setting of Γ∗ and report 95% con-
fidence intervals. Any omitted confidence interval is
smaller than ±0.01. Note that on the diagonal of Ta-
ble 1, we assess a policy with a “well-specified” Γ equal
to Γ∗, which achieves the best risk for the correspond-
ing data generating process. The case of n = 5000
essentially gives the population-level optimal minimax
regret. Finally, for comparison, we include the pol-
icy values of both the thresholding policy based on
the confounded CATE learned by IPW-weighted ker-
nel regression using nominal propensities (ˆ̃τ(x)) and
the truly optimal policy based on the true (and un-
knowable) τ . The policy value of the confounded pol-
icy suffers in comparison to the policies from our es-
timated bounds. Specifying an overly conservative Γ
achieves similar risk in this setting, while underspeci-
fying Γ compared to the true Γ∗ incurs greater loss.

Assessment on Real-World Data: Hormone Re-
placement Therapy. To illustrate the impacts of
unobserved confounding, we consider a case study of
a parallel clinical trial and large observational study
from the Women’s Health Initiative [28]. Hormone
replacement therapy (HRT) was the treatment of in-
terest: previous observational correlations suggested
protective effects for onset of chronic (including car-
diovascular) disease. While the clinical trial was
halted early due to dramatically increased incidence
of heart attacks, the observational study evidence ac-
tually suggested preventive effects, prompting further
study to reconcile these conflicting findings based on
unobserved confounding in the observational study
[20, 29, 32]. Follow-up studies suggest benefits of HRT
for younger women [5].

We consider a simple example of learning an optimal
treatment assignment policy based on age to reduce
endline systolic blood pressure, which serves as a proxy
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Table 1: Policy risk for various policies under data generating processes with different Γ∗ (lower is better)

n = 1000 n = 5000 n = 1000 n =∞

log(Γ∗) π̂(x; e0.5) π̂(x; e1) π̂(x; e1.5) π̂(x; e0.5) π̂(x; e1) π̂(x; e1.5) I(ˆ̃τ(x) < 0) I(τ(x) < 0)

0.5 −1.65± 0.01 −1.64± 0.01 −1.63± 0.00 −1.68 −1.63 −1.63 −1.60± 0.00 −1.68
1 −1.58± 0.02 −1.64± 0.02 −1.64± 0.01 −1.62 −1.67 −1.63 −1.48± 0.04 −1.68
1.5 −1.51± 0.02 −1.60± 0.02 −1.63± 0.02 −1.52 −1.63 −1.67 −1.36± 0.04 −1.68

Figure 2: CATE estimated from unconfounded data
(CT) vs. confounded observational study data (OS):
confounding leads to opposite conclusions.

Figure 3: Bounds on CATE estimated from the WHI
observational study. The observational study is highly
sensitive to unobserved confounding.

outcome for protective effects against cardiovascular
disease. Thus we consider learning the PCATE for
S = {age} while controlling for all observed baseline
variables. The observed covariates are 30-dimensional
(after binary encodings of categorical variables) and
include factors such as demographics, smoking habits,
cardiovascular health history, and other comorbidities
(e.g., diabetes and myocardial infection). We restrict
attention to a complete-case subset of the clinical-trial
data (n = 14266), and a subset of the observational
study (n = 2657).

For comparing findings from the clinical trial and ob-

servational study, Fig. 2 plots estimates of the partial
conditional average treatment effect on systolic blood
pressure over age by a difference of LOESS regres-
sions. In the clinical trial (CT, orange) we used a
simple LOESS regression on age for each treatment
condition, and in the observational study (OS, blue)
we used IPW-weighted regression with propensities es-
timated using all observed baseline variables. A nega-
tive CATE suggests that HRT reduces systolic blood
pressure and might have protective effects against car-
diovascular disease. The clinical trial CATE is not
statistically significantly different from zero for ages
above 67. The observational CATE crucially displays
the opposite trend, suggesting that treatment is sta-
tistically significantly beneficial for women of ages 62-
73. We display 90% confidence intervals obtained from
a 95% confidence interval for individual regressions
within each treatment arm.

In Fig. 3, we apply our method to estimate bounds on
τ(Xage). We estimate propensity scores using logis-
tic regression. Our bounds suggest that the estimated
CATE from the observational study is highly sensitive
to potential unobserved confounding: for sensitivity
parameter as low as log(Γ) = 0.2 (Γ = 1.22), we see
that the sensitivity bounds contain 0 for nearly all in-
dividuals such that we would likely prefer to less inter-
vention. To interpret this value of Γ, we compute the
distribution of instance-wise Γi,j parameters between
the propensity estimated from all covariates for indi-
vidual i, and the propensity estimated under dropping

each covariate dimension j: Γi,j =
(1−eti (Xi))eti (Xi,−j)
eti (Xi)(1−eti (Xi,−j))

.

The maximal such Γ value is observed by dropping
the indicator for 1-4 cigarettes smoked per day, which
leads to a maximal Γ = 1.17 value.

6 Conclusion

We developed a functional interval estimator that pro-
vides bounds on individual-level causal effects under
realistic violations of unconfoundedness. Our estima-
tors, which we prove are sharp for the tightest bounds
possible, use a weighted kernel estimator with weights
that vary adversarially over an uncertainty set consis-
tent with a sensitivity model.
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