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Abstract

This paper is concerned with a feature subset
selection problem for the multinomial logit
(MNL) model. There are several convex
approximation algorithms for this problem,
but to date the only exact algorithms are
those for the binomial logit model. In this
paper, we propose an exact algorithm to
solve the problem for the MNL model. Our
algorithm is based on a mixed-integer op-
timization approach with an outer approxi-
mation method. We prove the convergence
properties of the algorithm for more general
models including generalized linear models
for multiclass classification. We also propose
approximation of loss functions to acceler-
ate the algorithm computationally. Numer-
ical experiments demonstrate that our exact
and approximation algorithms achieve better
generalization performance than does an L1-
regularization method.

1 Introduction

Sparse estimation is an important task for multi-class
classification. By reducing the complexity of models,
we can obtain good predictors for unobserved data. In
particular, a number of papers have been published
on feature subset selection for the multinomial logit
(MNL) model (McFadden, 1973), whose criterion is
based on the likelihood of observed data.

The MNL model is used to predict not only which
category is chosen by samples but also the probabil-
ity of choosing each category; for example, it can be
used to predict the purchase behavior of a customer in
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marketing (Guadagni and Little, 1983; Louviere and
Woodworth, 1983) and the failure of a bank in financial
modeling (Lau, 1987; Johnsen and Melicher, 1994). In
practice, modelers often use maximum likelihood esti-
mation to estimate the MNL model. However, because
this method often causes over-fitting to observed data
and the lack of interpretability of the model, such an
estimator does not work well for unobserved data.

To avoid the aforementioned difficulties, it is worth
considering the problem of feature subset selection.
We can define this optimization problem as the maxi-
mization of likelihood under the cardinality constraint
that the number of features that have nonzero coeffi-
cients for at least one category does not exceed a given
number k. The complexity of the model is therefore
bounded, and we expect to obtain a high-quality model
that overcomes the two aforementioned shortcomings.

However, the feature subset selection problem is an
NP-hard combinatorial optimization problem (Kohavi
and John, 1997). To solve it approximately, several
convex approximations have been proposed, including
L-regularization and elastic net regularization. Some
of these methods do not consider a group sparse struc-
ture (e.g., Krishnapuram et al. (2005); Friedman et al.
(2010)), whereas others do (e.g., Simon et al. (2013);
Vincent and Hansen (2014)). While all of these meth-
ods are relatively fast, their approximation accuracy
is not particularly high.

In contrast to such approximation methods, there
is renewed interest in solving the feature subset se-
lection problem exactly via mixed-integer optimiza-
tion (MIO). This is due to improved computational
power and the development of high-performance MIO
algorithms. There have been several studies on MIO
approaches for linear regression models (Miyashiro
and Takano, 2015; Bertsimas et al., 2016). Hastie
et al. (2017) showed that the estimators obtained by
the MIO approaches are more useful than those ob-
tained by Lji-regularization when the signal-to-noise
ratio is high.
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For binary classification, there have been similar stud-
ies involving the binomial logit model and a support
vector machine (Sato et al., 2016; Bertsimas et al.,
2017; Bertsimas and King, 2017). Similar to Hastie et
al. (2017), Bertsimas and King (2017) have confirmed
that their estimators have better generalization abil-
ity than do some heuristics such as Lj-regularization
methods. However, it is difficult to solve the contin-
uous relaxation problem for many multi-class classi-
fication models, including the binomial logit model,
because of the nonlinearity of the loss functions to be
minimized. It is therefore more difficult to construct
efficient algorithms for these models than for the linear
regression models, whose objective is defined as a con-
vex quadratic function. In fact, Bertsimas and King
(2017) have empirically observed that a naive branch-
and-bound method is useless for solving the problem
within practical computational time for the binomial
logit model.

Because of such difficulty, most previous studies mod-
ified the objective function to apply their methods to
large data while maintaining the quality of their esti-
mator. To accelerate the branch-and-bound method
by removing the nonlinearity of continuous relax-
ations, a convex quadratic approximation (Tanaka and
Nakagawa, 2014) and a piecewise linear approximation
(Sato et al., 2016, 2017) have been proposed. It was
also shown by Bertsimas et al. (2017) that the outer
approximation method is applicable to larger data for
these models with Ls-regularization. However, these
studies only considered the binary or ordinal classifica-
tion problems; to the best of our knowledge, no study
has yet dealt with the feature subset selection problem
of the MNL model via an MIO approach.

We extend a state-of-the-art method for the feature
subset selection problem for the binomial logit model
(Bertsimas et al., 2017) to the same problem but for
the MNL model. Our method can generate a sparse
solution as fast as existing heuristics under a certain
regularization. Furthermore, we propose a new ap-
proximation of the loss function to accelerate our al-
gorithm and confirm that the proposed approximation
method also provides high-quality solutions.

In this paper, we make the following contributions to
show the efficacy of our proposal.

e The work of Bertsimas et al. (2017) is extended
to multi-class classification; for the feature subset
selection problem with Lo-regularization, an MIO
formulation and an algorithm based on the outer
approximation method are proposed.

e Sufficient conditions for the convergence of our
algorithm are described; the loss function of the
MNL model is proven to satisfy these conditions.

e A novel approximation of the loss function is
derived; this is shown to be advantageous over
Tanaka and Nakagawa (2014) and Sato et al.
(2016).

e Empirical properties of our method are shown; in
particular, the method has both good generaliza-
tion ability and fast convergence speed when the
value of the Ls-regularization parameter is small.

2 Formulations

Let n, p, and m be the numbers of samples, features,
and categories of data, respectively. Suppose that we
are given X = (z;;) € R"P and y € [m]", where
[m] = {1, 2,..., m}. First, we consider sparse esti-
mation of the MNL model. Specifically, parameters
be R™and W = (wy;) € R™*? are estimated so
that the likelihood of observed data is maximized and
nonzero elements in W are sparse. The likelihood is
derived by the following softmax probability:

exp(7;r)
PY=r|n)=cm 7 (1)
Zs:l eXP(nis)
where 1 = [1, 1, ..., 1", n = (0is)(i,)em)x[m]
XWT +1b", ni = i1, iz, Mim] |, and 0.5 =
[7]157 25y« nnS}T'

In particular, feature subset selection of the MNL
model is defined as the selection of a feature subset
that maximizes the likelihood under a constraint that
the cardinality of the subset does not exceed given k.
We formulate this as the following MIO problem:

minimize
b,W,n,zeS}

> ANy, ms)
1=1

subject to m;. = Wax,. + b, Vi€ [n], (2)
zj=0 = w.,; =0, Vjelp, (3)
1Tw.; =0, Vielpl, (4)
176 =0, (5)

where S? = {z € {0,1} | 172 < k}, and (M is a
loss function defined by the negative log-likelihood as
exp(ny)
(y,m) =—log =~
> (ns)

s=1 €XPp

EMNL

=—ny+ log Z eXp(T/s)§ (6)

s=1

zj € {0, 1} is defined as a binary variable that deter-
mines whether j-th feature is selected. For example,
constraint (3) can be implemented as a linear inequal-
ity using the big-M method. This constraint expresses
the group sparseness for features so that a common set
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of variables is selected among all categories. In addi-
tion, the columns of (b, W) are centered through con-
straints (4) and (5) to ensure the uniqueness of optimal
solutions (Simon et al., 2013).

Next, we consider the feature subset selection prob-
lem based on the maximum likelihood estimation with
Lo-regularization. This problem can be formulated as
follows (formulation (FS)):

n 1 m

Uy i) + — Wi 2
> tm) + 53 el
(2),(3),

where v > 0 is a regularization parameter and £ :
[m] x R™ — [—00, +00] is a general loss function (e.g.,
the negative log-likelihood of generalized linear models
(Nelder and Wedderburn, 1972)). We can remove the
redundancy of coefficients by adding constraints (4)
and (5) to problem (FS).

minimize
b,W,n,zeS}

subject to

3 Outer Approximation Method

To construct an algorithm for solving (FS), we first
define (P) as the (FS) with fixed z € [0,1]P. Let us
denote the optimal value of (P,) by ¢(z) as

() = min {Zay Wat +)+ 5.3 - } ,

where x% = [212:1, 22%42, - - -, ZpTip) | . Note that con-
straints (4) and (5) do not affect the value of ¢(z) when
¢ is MNL

It is clear that an optimal solution z* to (FS) is ob-
tained by solving the following bilevel optimization
problem:

mlilelgzlze c(z). (7)
In addition, optimal coefficients (b*, W*) can be ob-
tained by solving the continuous optimization prob-
lem (P«). Herein, we compute (7) by applying the
outer approximation method (Bertsimas et al., 2017)
to the problem (see Algorithm 1); Bonami et al. (2008)
proposed this algorithm for general mixed-integer non-
linear optimization problems and reported that it is
more useful than branch-and-bound methods for some
instances.

The steps of Algorithm 1 are as follows. First, we ex-
press ¢(z) as its first-order approximation at a given
integer point zy. Because the minimization prob-
lem (7) then becomes a mixed-integer linear optimiza-
tion problem, we can easily solve it and obtain a new
integer point z;411. Next, we add a new constraint of
the first-order approximation at z;;1. These proce-
dures are iterated until the true objective value ¢(z;)

becomes less than or equal to (;, which is the optimal
value of the problem after the linear constraints are
added ¢ times.

Algorithm 1 Outer approximation method

Require: (X,y), k€ Z;,v>0, zo € S},

z1 < 2o, Cl(**OO,t(*].

while (; < ¢(z;) do
Zi11, Gey1 < argmin, {C: 2z € S, (> c(zi) +

Ve(z) T (z — 2i), i € [t]}

t—t+1

end while

return z;

To accelerate this algorithm, we use a warm-start tech-
nique. Specifically, running this algorithm in ascend-
ing order of k € {0, 1,..., p}, we can use the optimal
solution obtained at the (k — 1)-th execution as the
initial solution zg at the k-th iteration.

4 Theoretical Results

In this section, we discuss the convergence of our al-
gorithm. To ensure that an optimal solution z* is ob-
tained by Algorithm 1 in a finite number of iterations,
the loss function £ is subject to certain assumptions.
First, we claim that the algorithm converges under
these assumptions for a general case. Next, we prove
that the loss function defined by (6) satisfies these as-
sumptions.

4.1 Results for General Loss Functions

First, we consider a general loss function ¢ : [m] X
R™ — [—o0, +00] with categories y; € [m] and n;. =
(w,.@;. 4+ by)refm). For this loss function, we also con-
sider the following optimization problem (P):

n 1 m
Zﬁ(yi,m.) +o- Z [, |13
i=1 2=

subject to (2),
7. € dom {(y;, +),

minimize
(b, W)eRmx(p+1)

Vi € [n],

where dom £(y, «) = {n € R™ | {(y, 7) < o0} for all
y € [m]. To prove the convergence of Algorithm 1, we
consider the following assumptions about ¢ and (P):

1. the loss function £(y, +) is proper convex for all
y € [m], and (P) is bounded and has an interior
feasible solution;

2. the Fenchel conjugate £(y, +) is continuous on its
effective domain and strictly convex for all y €
[ml;
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3. dom f(y, +) is nonempty, bounded and closed for
all y € [m];

where {(y, +) : R™ — [—o00, +00] is the Fenchel conju-
gate of (y, ) and is defined as

Uy, @) = sup{a"n — l(y, n) | n € R™}.
n

We note that £(y, «) is proper convex if Assumption 2
holds; this is because the conjugate of a proper convex
function is also proper convex.

For the analysis, we derive the dual expression for ¢(z)
by the following theorem:

Theorem 1. The dual problem (D) of problem (P) is
formulated as

m

n
; g
=2y ei) = 5 D IX Tl
i=1

maximize
acRnxm —)
subject to 1" a., =0, Vreim], (8)
a; € dom {(y;,+), Vi € [n]. 9)

Moreover, the strong duality holds when the loss func-
tion £ and (P) satisfy Assumption 1.

The proof is given in the supplement. The strong du-
ality of problem (P,) holds for arbitrary z € [0, 1]? un-
der Assumption 1 by Theorem 1. Indeed, problem (P)
can be formulated to transform (P.) by x.; == z;x. ;.
We can thus redefine the nonlinear function ¢ as the
optimal value of the following maximization problem
named (D):

¢(z) = maximize

n p
=)~ 235 T e
i=1 j=1
(10)

subject to  (8), (9).

By using this dual expression of ¢(z), the following two
lemmas are established. Their proofs are given in the
supplement.

Lemma 2. Under Assumptions 2 and 3, ¢ is continu-

ously differentiable on [0, 1]?, whereupon the differen-

tial is derived as
dc(z) _ v

5o, =2t (@) 5, Vi€ b,

(11)

where a*(z) is the optimal solution to (D).
Lemma 3. The function ¢ is a convex function on
[0, 17

From these lemmas, the following theorem is obtained
with regard to the convergence of Algorithm 1.

Theorem 4. Under Assumptions 1-8, Algorithm 1
converges to an optimal solution to (7) in a finite num-
ber of iterations.

The proof is also given in the supplement.

Here we discuss the convergence properties mentioned
in Bertsimas et al. (2017) and in the present paper.
Because Bertsimas et al. (2017) considered only m = 2,
our result is more general. We also note that they
assumed only the convexity of £. However, even when
m = 2, Lemma 2 dictates that we cannot differentiate
¢ if the conjugate £ is not strictly convex; as such, our
result is stricter than that of Bertsimas et al. (2017).

4.2 Results for Multinomial Logit Model

To show the convergence of Algorithm 1 for the MNL
model, Assumptions 1-3 should be satisfied. We be-
gin by deriving the conjugate /MNL and its effective
domain by Proposition 3 in Lapin et al. (2018) as

) ZS#} o, log as+
MLy o) = (1+ay)log(l + o) if a € AJINE
400 otherwise,

ASANL ={aecR"|1Ta=0,aV c A},

where A = {v | v > 0,1Tv < 1} and v\ =
[V1,...,0i_1,Vit1,...,Vs] | for arbitrary v € R™.
Herein, we use this definition to analyze properties and
to provide problem (D). The following three propo-
sitions are established. Their proofs are given in the
supplement.

Proposition 5. The function (MNY(y, ) is proper

convez for all y € [m], and problem (P) is bounded
and has an interior feasible solution when ¢ is (MNV.

Proposition 6. The Fenchel conjugate KMNL(y, .) is
continuous on AZINL and strictly convez for all y €
[m].

Proposition 7. The effective domain Ag/INL 15
nonempty, bounded, and closed for all y € [m)].

From Propositions 57, Assumptions 1-3 are satisfied
for the MNL model and therefore the following corol-
lary holds by Theorem 4.

Corollary 8. Algorithm 1 converges to an optimal so-
lution to (7) for the MNL model in a finite number of
iterations.

5 Approximations for Faster
Computation

In Algorithm 1, the gradient of ¢ defined by (11) must
be calculated at each iteration. This means that the
nonlinear optimization problem (D) must be solved
many times, which is computationally expensive. In
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this section, we suggest an efficient approximation for
the nonlinear optimization problem to accelerate the
calculation.

5.1 Methods for Binomial Logit Model

For simplicity, we begin by considering the binomial
logit model, which is a special case of the MNL model
with m = 2. We define the following function f :
R— R:

f(n) = log(1 + exp(n)).

When m = 2, the loss function /BN is formulated as
follows from the definition (6):

ZBNL(% n) = f(ulnz —m)),

where u =1 for y = 1, and u = —1 for y = 2.

The primal problem (P) can thus be reformulated as

n 2
1
mbi’n‘%[rfrylize E flui(miz —min)) + 727 E |w, ||§

n

i=1 r=1
subject to m; = Wax;. + b, Vi € [n],
where u; = 1 for y; = 1, and u;, = —1 for y; = 2.

Similarly, we reformulate the dual problem (D) as

— 3 Fo) = 5 D IX e
®). (9.

where the conjugate f
lated as

p {aloga—l— (1—-a)log(l —a) if a€]0, 1],

maximize
aeRnx2

subject to

: R — [—o0,+00] is formu-

fle) = +00 otherwise.

That is, if we approximate f by a convex quadratic
function, subproblem (D) in Algorithm 1 becomes a
convex quadratic optimization problem.

To accomplish this, we construct a polynomial re-
gression model, and minimize the residual sum of
squares as

1 2
minimize/ (g(a; p) — f(oz)) de,
PER3 0

where §(a; p) = pza® + poa + p;. This optimiza-
tion problem can be solved analytically, and the op-
timal solution is p* = (-1/12, =5/2,5/2)". Fig-
ure 1(a) shows that this approximated function fits
well to f(a).

The approximation BN'(y,a) = f(-a,) =
§(—ay; p*) is therefore effective in approximating the

0.0 F@) \ fm ‘ /
9@ p") | quadratic V4
— piecewise linear A
-0.4 2 g p") Yy
-0.6 1 ~_ ,¢’/
0] em——

4 3 2 1 0 1 2 3 41

(b) f(n)

00 05 10 @

(a) f(a)

Figure 1: Comparison with Various Approximation
Methods for the Loss Function of the Binomial Logit
Model

subproblem in Algorithm 1 as a convex quadratic op-
timization problem when m = 2. This approxima-
tion makes our algorithm more efficient because convex
quadratic optimization problems can be solved much
faster than can nonlinear optimization problems.

5.2 Interpretation of Proposed
Approximation

We next consider the relationship between our approx-
imation and existing approximation methods. Tanaka
and Nakagawa (2014) and Sato et al. (2016) approx-
imated the function f, and so we also consider the
primal problem here. By Theorem 1, the primal prob-
lem is derived by calculating a double conjugate from
the conjugate §(a; p).

be the conjugate of
The function g(n; p)

Proposition 9. Let g(n; p)
g(a; p), and assume p3 > 0.
is given by

—p1 if n < D2,
(n—p2)?/4ps —p1 if n € [p2, p2 + 2ps],
17— (p1 +p2 +p3) otherwise.

g(n; p) =

The proof is given in the supplement. In particular,

1/12 if n<—5/2,
g(n; p*) =< (n+5/2)2/10 + 1/12 if |n| < 5/2,
n+1/12 otherwise.

Consequently, replacing f with the convex quadratic
function g corresponds to the following approximation
of f:

f(n) = g(n; p).

This replacement reveals that our method has the ad-
vantages of the approximations proposed by Tanaka
and Nakagawa (2014) and Sato et al. (2016). Sato et
al. (2016) approximated the function f by a piecewise
linear function [piecewise linear in Figure 1(b)]. Be-
cause the gradient df/dn changes little when || > 0,
this approximation is good when |n| > 0. However,
the approximation is poor around n = 0, where the
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gradients change sharply. By contrast, Tanaka and
Nakagawa (2014) used a Maclaurin expansion of f
[quadratic in Figure 1(b)]. This approximation fits
well around n = 0 but is quite poor when |n| > 0.
Proposition 9 shows that our method approximates f
by a quadratic function around n = 0 and by linear
functions when |n| > 0 (Figure 1(b)). The above dis-
cussion implies that our method has the advantages of
these two existing methods, thus we expect that our
quadratic approximation is effective for the subprob-
lem in Algorithm 1.

5.3 Methods for Multinomial Logit Models

Finally, we discuss how to apply our approximation to
the MNL model. As mentioned above, the posterior
probability of categories is formulated as (1). The fol-
lowing approximation for the probability was derived
by Titsias (2016):

exp(w, z; +b,)
S exp(wla. +b,)
exp(w,. ;. +b,)

~ SEIT exp(w, x; + b)) + exp(wlx; +bs)

Then, by using this approximation, we approximate
the loss function (MNE to fTitsias aq

P(Y =1 |z, W,b) =

m

N (y,m) = —ny +log Y exp(ns)
s=1
~ Y log[1+exp(ns —ny)] = €75 (y,m). (12)
s#y

Titsias (2016) observed empirically that this approxi-
mation is helpful for the maximum likelihood estima-
tion of the MNL model. We expect that his approx-
imation is also useful for the feature subset selection
problem and consider applying the approximation to
the loss function.
Proposition 10. For the loss function gTitsias —4pe
Fenchel conjugate {7125 qnd its effective domain are
derived as

Zs;ﬁy[as log s+
éTitSiaS(y O{) —

400 otherwise,
A = o e R™ [1Ta=0,0 < aVV <1}

The proof is given in the supplement.

From this result, our approximation is applicable to
the conjugate function for all a € dom @Tltms(y, +) as

lZTitsias<y’ a) — Z f(as>
s#Y

~ Y dlas; p) = 1"y, @), (13)
s#Y

(1 - as) 10g(1 — as)] ifa € Ag‘itsias

where /924 js the approximated function. We then
obtain the following result for the convergence of Al-
gorithm 1.

Theorem 11. Let the conjugate function 0 be favad,
An optimal solution to (FS) can then be obtained in a
finite number of iterations by Algorithm 1 when ps > 0.

The proof is also given in the supplement. Conse-
quently, we can approximate subproblem (D.) by a
convex quadratic optimization problem for the MNL
model. From the discussion in Section 5.2 and empir-
ical results by Titsias (2016), this is expected to be a
high-quality approximation to the original model.

6 Numerical Experiments

To demonstrate effectiveness of our methods, we per-
form experiments with synthetic and real data. All
experiments were conducted on a 64-bit machine with
Intel Xeon 2.10 GHz processors, 8 cores, and 128 GB
main memory. We implemented our methods in Ju-
lia 0.6.4 (Lubin and Dunning, 2015; Bezanson et al.,
2017). Problem (D,) was solved by IPOPT 0.4.0
(Wichter and Biegler, 2006), and the approximated
problem of (D.) and the mixed-integer linear op-
timization problem in Algorithm 1 were solved by
Gurobi 8.0.0 (Gurobi Optimization, 2018). The pro-
posed methods were compared with the L;-regularized
classification using the GLMNet package (Friedman et
al., 2018). All outer approximation methods were im-
plemented as a single tree search (Bonami et al., 2008)
for computational efficiency. To implement these, we
used the so-called lazy constraint callback of Gurobi.

6.1 Synthetic Data

The synthetic data were generated based on Simon et
al. (2013). The numbers of samples, features, and cate-
gories of data are denoted by n, p, and m, respectively.
A design matrix X € R™*P was generated from the
Gaussian distribution of N(0, 33), where 0;; = p for i #
j and 0;; = 1 otherwise. The matrix Weracle ¢ Rmxp
is an oracle coefficient matrix; we set w?;ade =0 if
j ¢ {Lp(k— 1)/korac1eJ +1 ‘ ke [komcle]}7 where koracle
is the cardinality of the oracle feature subset, and each
nonzero coefficient was sampled from N(0,10/m?). A
chosen category was given as y; = min{r € [m] | t; <
NI PY = s |z, Weradle 0)}, where ¢; was drawn
from a uniform distribution U(0, 1).

First, we confirm the relationship between computa-
tional time and incumbent objective values. As stated
previously, Algorithm 1 tries to update its incumbent
solution in each iteration. If the algorithm generates
a good solution early on, a practical strategy is to ter-
minate the algorithm at that time.

The proposed methods were compared with the L;-
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regularization method and a naive outer approxima-
tion method for solving (FS) based on Bertsimas and
King (2017). The latter method is easily applied to
the MNL model. The L;-regularization method was
performed for all A € {0.001,0.002,...,1.000}, and a
feature subset that has k°'2°® nonzero elements was
selected. We ran our methods with k = k°racle,

In the following Figures 2-8, OA un. and OA jquaa
correspond to Algorithm 1 with the exact loss (6) and
that with the approximated loss (13), respectively.
Similarly, Li-regularization and naive OA corre-
spond to the Li-regularization method and the ex-
tended method of Bertsimas and King (2017), respec-
tively.

Figures 2 and 3 show results for n = 200,p €
{30, 50}, m € {2,5}, k¢ = 5 and p = 0.2.
Clearly, either an optimal solution or at least a so-
lution whose objective value is close to optimal was
obtained within seconds, thereby making early termi-
nation a good strategy for large instances. In addi-
tion, these figures show that the optimal solution can
be obtained from the approximated model; moreover,
it was found much faster than from the exact model.

Next, we investigated how the hyperparameter -~
affects the computational time and the feature sub-
set selection ability. Figures 4 and 5 show results for
n =250,p=20,m =5,k = 5 and p = 0.2.
The results were averaged over 20 repetitions. When
~ was small, Algorithm 1 with the exact loss (6) and
that with the approximated loss (13) ran as fast as did
the Li-regularization method; this is because Algo-
rithm 1 required relatively a few iterations. For all ~,
our approximated method was approximately 10 times
faster than our exact one. Figure 5 shows that the
generalization abilities of our methods were the best
when v = 107! and were greater than or equal to
that of the Li-regularization method. Also, Figure 4
shows that our exact method gave a high-quality solu-
tion within approximately 10 s whereas the extended
method of Bertsimas and King (2017) took approxi-
mately 102 s to obtain the same solution. Additionally,
the extended method of Bertsimas and King (2017)
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took almost the same computational time regardless
of v. That is, our methods are more appropriate for
problem (FS) than is their method.

An analogous experiment was conducted for n =
200, p = 30, m = 5, k°™!¢ = 5 and p = 0.2. The
computation of the proposed methods was terminated
deliberately after 600 s. As shown in Figure 6, the so-
lutions obtained with our methods have better gener-
alization ability than do those of the L;-regularization
method when v > 107!, These high-quality solu-
tions were obtained even though these algorithms did
not satisfy the termination condition ¢{; > ¢(z;) when
v > 100,

Finally, we confirm the relationship between the num-
ber of categories m and the feature subset selection
ability. Figures 7 and 8 show results for n = 200, p =
50, koacle = 8 p = 0.2 and for n = 200,p =
50, koracle — 8 p = (.6, respectively. The results were
averaged over 30 repetitions. The computation of the
proposed methods was terminated deliberately after
600 s. Except for the two cases of (m, p) = (7, 0.2)
and (8, 0.2), our proposed methods performed bet-
ter than did the Li-regularization method. However,
our approximated method performed poorer than did
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Figure 5: Proportion of True Features (n = 50, p =
20, m = 5, k°°le =5 p=0.2)
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the exact one when (m, p) = (8,0.6). This is be-
cause approximation (12) fits well when m is rela-
tively small. When p = 0.6, the efficiency of our
methods was clearer than when p = 0.2. Overall, the
proposed methods are thus more useful than is the
Li-regularization method, especially in the regime of
strong correlation.

6.2 Real Data

Finally, we assessed the generalization ability of our
methods with instances in the UCI Machine Learn-
ing Repository (Lichman, 2013) (Table 1). The
ratio of training and test samples was 8:2, respec-
tively, and we used a stratified sampling based on
categories y. We chose the best cardinality k* in
{0, 1,..., p} and the best Lo-regularization parameter
v* in {1074, 1073,..., 10?} by means of 5-fold cross
validation. Coefficients were estimated by likelihood
maximization for all methods. That is, we solved (P)
with z obtained based on the result of feature subset
selection; we set v = 10* at this time. The computa-
tion of the proposed methods was terminated deliber-
ately after 180 s.

Table 2 lists the average correct classifica-
tion rate (CCR) and the average likelihood
value (Likelihood) for each method. For all in-
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Figure 8: Proportion of True Features (n = 200, p =
50, koracle =8 p = 0.6)

stances, the prediction accuracies of our methods
OA vt and OAjquaa are greater than or equal
to that of the Lj-regularization method Li-reg.
Moreover, for the Vehicle S. and Flags instances,
our methods obtained sparser solutions than did the
Lq-regularization method.

Table 1: Real Data

Data n p m
Iris 150 4 3
Glass Identification (Glass 1.) 214 9 6
Zoo 101 16 7
Vehicle Silhouettes (Vehicle S.) 846 18 4
Image Segmentation (Image S.) 210 19 7
Cardiotocography (Card.) 2126 31 3
Flags 194 66 8

Table 2: Results for Real Data (boldface numbers de-
note the best values)

Data Method CCR Likelihood k*
II'iS OAZMNL 0966 0942 2
OAjquaa 0.966 0.942 2
Li-reg. 0.966 0.873 1
Glass I. OA[MNL 0628 0394 2
OAjquaa  0.641 0.371 2
Li-reg. 0.628 0.394 2
Z.00 OA jmnL 0.714 0.519 2
OAjquaa  0.762 0.344 2
Li-reg. 0.714 0.519 2
Vehicle 5.  OA;mnL 0.718 0.566 8
OAjquaa  0.741 0.596 7
Lirteg.  0.688 0.521 11
Image S. OA,un.  0.905 0.800 4
OAjquaa 0.857 0.692 3
Li-reg. 0.857 0.676 3
Card. OA@MNL 0984 0894 4
OA jquaa 0.984 0.894 4
Li-reg. 0.984 0.894 4
Flags OA,un.  0.641 0.363 3
OAjquaa  0.641 0.363 3
Li-reg. 0.590 0.350 4

7 Conclusions

In this paper, we proposed an MIO formulation and an
outer approximation algorithm for the feature subset
selection problem with Lo-regularization. The conver-
gence of the proposed algorithm was proved for gen-
eral loss functions, including the loss function for the
MNL model. Moreover, to accelerate our algorithm,
an approximation method for subproblem (D,) was
also proposed. By means of numerical experiments,
we showed that the generalization ability of the pro-
posed algorithm is greater than or equal to that of an
L-regularization method for synthetic and real data.
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