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Supplementary Materials
A Proofs

A.1 Theorem 1

(i) Case of C' =1

To avoid complicating the notation, we first consider the case of the single output (C' = 1). The general case is
shown after. The network output is denoted by f(t) here. We denote the Fisher information matrix with full
components as

[V f(6Vw ()T Vi f(OVf()T
F= Z{vvbvf VVVVVfUT Vo u ) | T A1)

t=1

where we notice that
Vi f(t) = 3L(t). (A2)
In general, the sum over the eigenvalues is given by the matrix trace, my = Trace(F')/P. We also denote the

average of the eigenvalues of the diagonal block as mg\W) for Vy fVw fT, and mg\b) for Vi, fVyfT. Accordingly,
we find

my = mg\W) + m(b). (A.3)

The contribution of mg\b) is negligible in the large M limit as follows. The first term is

T
= ZTrace Vw f(O)Vw F(t)T)/(TP) (A4)

T
:ZZZN RS (t)?/(TP). (A.5)

We can apply the central limit theorem to summations over the units Y, 6!(¢) and > hé-fl(t)2 indepen-
dently because they do not share the index of the summation. By taking the limit of M > 1, we obtain
P HOE > hl_l( t)2/M;_1 = @' ~'. The variable ¢ is computed by the recursive relation (9). Under the
Assumption 1, ¢!~ is given by the recursive relation (11). Note that this transformation to the macroscopic

variables holds regardless of the sample index ¢t. Therefore, we obtain

L
Q-1 A —
mg\W) =r1/M, K= Z qulql L (A.6)
=1

where o; comes from M; = a; M, and o comes from P = aM?2.

In contrast, the contributions of the bias entries are smaller than those of the weight entries in the limit of M > 1,
as is easily confirmed:
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m’ = " Trace(Vy f(H) V4 (1)T)/(TP) (A7)
=33 N e/ ap) (A.8)
t l i
=> §'/(aM?) (when M > 1). (A.9)
l

m") is O(1/M) while m'? is O(1/M?). Hence, the mean m'” is negligible and we obtain my = k1/M.
A A ’ by ghg

(ii) C > 1 of O(1)
We can apply the above computation of C' =1 to each network output Vfi (k =1,...,C):
Trace(ngkVkaT/T)/P = k1 /M. (A.10)

Therefore, the mean of the eigenvalues becomes

C

mx = Trace(VofiVofi /T)/P (A.11)
k

= Cr1 /M. (A.12)

A.2 Corollary 2

Because the FIM is a positive semi-definite matrix, its eigenvalues are non-negative. For a constant k& > 0, we
obtain

1
A <k N>k
1
>+ ‘Z Ai (A.14)
A >k
> %N()\ > k)k. (A.15)

This is known as Markov’s inequality. When M > 1, combining this with Theorem 1 immediately yields Corollary
2:

NA>k)<akCM/k. (A.16)
|

A.3 Theorem 3

Let us describe the outline of the proof. One can express the FIM as F' = (BBT)/T by definition. Here, let us
consider a dual matrix of F, that is, F* := (BT B)/T. F and F* have the same nonzero eigenvalues. Because the
sum of squared eigenvalues is equal to Trace(F*(F*)T), we have sy = th(F;“t)Q/P. The non-diagonal entry
F% (s #t) corresponds to an inner product of the network activities for different inputs 2(s) and z(t), that is,
ka. The diagonal entry FY, is given by x;. Taking the summation of (F},)? over all of s and ¢, we obtain the
theorem. In particular, when T'=1 and C' = 1, F'* is equal to the squared norm of the derivative Vg fy, that is,
F* = ||V fol|?, and one can easily check s) = ax?.

The detailed proof is given as follows.
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(i) Case of C' =1

Here, let us express the FIM as F' = Vo fVyfT /T, where Vg f is a P x T matrix whose columns are the gradients
on each input sample, i.e., Vo f(t) (t =1,...,T). We also introduce a dual matrix of F, that is, F™*:

F* = Vof'Vef/T. (A.17)

Note that F'is a P x P matrix while F* is a T' x T matrix. We can easily confirm that these F' and F™* have the
same non-zero eigenvalues.

The squared sum of the eigenvalues is given by Y, A2 = Trace(F*(F*)T) = Y ,(F%)? By using the Frobenius

norm |[Al|p := /32, A}, this is 30, A7 = |[F*[|%.. Similar to m,, the bias entries in F* are negligible because

the number of the entries is much less than that of weight entries. Therefore, we only need to consider the weight
entries. The st-th entry of F* is given by

F;;fZZvWZ )V f()/T (A.18)
fZMl 1\ Z(s,t) 25 (s, 1) /T, (A.19)

where we defined

l l l l l
I(s,1) Mth s)hL(t), Z'(s,t): Za )L (A.20)

We can apply the central limit theorem to A I=1(s,t) and Zl(s7 t) independently because they do not share the
index of the summation. For s # t, we have Z! = ¢!, + N'(0,4/M) and Z' = ¢, + N'(0,5/M) in the limit of
M > 1, where the macroscopic variables ¢., and g, satisfy the recurrence relations (10) and (12). Note that the
recurrence relation (12) requires the Assumption 1. 4 and 4 are constants of O(1). Then, for all s and t(# s),

Fi =Y Mi1(@ +O0(1/VM))(d " +0(1/VM))/T (A.21)
l
= akyM /T + O(VM)/T. (A.22)

Similarly, for s = ¢, we have Z! = ¢ + O(1/vM), Zt=g + O(1/v'M) and then F¥ = ak; M/T + O(VM)/T.
Thus, under the limit of M > 1, the dual matrix is asymptotically given by

,{"/1 Ii2 DY I{2
F*=aoMK/T + O(WM)/T, K := |" ™ (A.23)
K2
Ko [ Ko K1
Neglecting the lower order term, we obtain
T
sx= Y (F3)?/P (A.24)
s,t
T-1 1
. <T W2+ Tﬁ) (A.25)

Note that, when ¢!, = 0, k2 becomes zero and the lower order term may be non-negligible. In this exceptional
case, we have sy = ax?/T + O(1/M), where the second term comes from the O(v/M)/T term of Eq. (A.23).
Therefore, the lower order evaluation depends on the T'/M ratio, although it is outside the scope of this study.
Intuitively, the origin of ¢!, # 0 is related to the offset of firing activities h!. The condition of ., # 0 is satisfied
when the bias terms exist or when the activation ¢(-) is not an odd function. In such cases, the firing activities
have the offset E[h!(t)] # 0. Therefore, for any input samples s and ¢ (s # t), we have Y, hl(s)hL(t)/M; = ¢., #0
and then k2 # 0 makes sy of O(1).
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(ii) C > 1 of O(1)
Here, we introduce the following dual matrix F*:

F* = BTB/T, (A.26)
B := [Vofi Vefe -+ Vafcl, (A.27)

where Vg fi is a P X T matrix whose columns are the gradients on each input sample, i.e., Vo fi(t) (¢t =1,...,T),
and B is a P x CT matrix. The FIM is represented by F' = BBT /T. F* is a CT x CT matrix and consists of
T x T block matrices,

F*(k, k') := Vo ftVofu/T, (A.28)
for k, k' =1,...,C.

The diagonal block F*(k, k) is evaluated in the same way as the case of C = 1. It becomes aM K /T as shown in
Eq. (A.23). The non-diagonal block F*(k, k') has the following st-th entries:

F* (kK =YVt J& (5) Ve fiw (8)/T (A.29)

ij

= M1 (3 8% (8)0k () 21 (5, )/T. (A.30)

Under the limit of M > 1, while Z!(s, ) becomes ¢, of O(1), (3, 6,1”(5)52,2(0) becomes zero and its lower order
term of O(1/v/M) appears. This is because the different outputs (k # k') do not share the weights Wi? . We have
> 5,ﬁi(s)5,f,’i(t) = 0 and then obtain ), 5i,i(s)52,’i(t) =0 (l=1,...,L—1) through the backpropagated chain
(7). Thus, the entries of the non-diagonal blocks (A.28) become of O(v/M)/T, and we have

F*(k, k') = aMK/T6, 4 + O(VM)/T, (A.31)
where dj, 1 is the Kronecker delta.
After all, we have
c T
=> > (F*(k, k) (A.32)
kK st
L1, 1.
=Ca T2 + = T +CO(1/VvM)+C(C—-1)0(1/M), (A.33)

where the first term comes from the diagonal blocks of O(M) and the second one is their lower order term. The
third term comes from the non-diagonal blocks of O(v/M). As one can see from here, when C' = O(M), the thrid
term becomes non-negligible. This case is examined in Section 3.4. ]

A.4 Theorem 4

(i) Case of C' =1

Because F' and F'* have the same non-zero eigenvalues, what we should derive here is the maximum eigenvalue of
F*. As shown in Eq. (A.23), the leading term of F* asymptotically becomes aMK/T in the limit of M > 1.
The eigenvalues of aM K /T are explicitly obtained as follows: Apar = « (TT1I€2 + m) M for an eigenvector
e=(1,...,1), and A\; = a(k1 — k2) M/T for eigenvectors e; —e; (i = 2,...,T) where e; denotes a unit vector whose

entries are 1 for the i-th entry and 0 otherwise. Thus, we obtain \,,., = « (TT1K2 + Tm) M.

(i) C > 1 of O(1)

Let us denote F* shown in Eq. (A.31) by F'* := F* + R. F* is the leading term of F* and given by a CT x CT
block diagonal matrix whose diagonal blocks are given by aM K/T. R denotes the residual term of O(vM)/T.
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In general, the maximum eigenvalue is denoted by the spectral norm || - ||2, that is, Apar = ||F*||2. Using the
triangle inequality, we have ~
Amaz < ||F*||2 + ||RH27 (A~34)

We can obtain ||[F*||s = o (L2 k2 4+ £:k1) M because the maximum eigenvalues of the diagonal blocks are the
same as the case of C' = 1. Its eigenvector is given by a CT-dimensional vector e = (1,...,1). Regarding ||R||2,

this is bounded by [|R||2 < ||R||r = \/02 S (O(VM)/T)2 = O(CVM). Therefore, when C' = O(1), we can
neglect ||R||2 of O(v/M) compared to ||F*||y of O(M).

On the other hand, we can also derive the lower bound of A, as follows. In general, we have

Amaz = ﬁnﬁg{ vIF*v. (A.35)
vi||v||?=1

Then, we find

Amaz = V{F*Vly (A36)
where v; is a CT-dimensional vector whose first T' entries are 1/ VT and the others are 0, that is, v =
(1,...,1,0,...,0)/v/T. We can compute this lower bound by taking the sum over the entries of F*(1,1), which is
equal to Eq. (A.23):

T-1 1
Amaz = ( T Ko + T/fl) M. (A37)

Finally, we find that the upper bound (A.34) and lower bound (A.37) asymptotically take the same value of
O(M), that is, Apnae = (L5 k2 + K1) M.

A.5 Case of C = O(M)

The mean of eigenvalues m)y is derived in the same way as shown in Section A.1 (ii), that is, m} = C'kq /M.

Regarding the second moment s, the lower order term becomes non-negligible as remarked in Eq. (A.33). We
evaluate this s by using inequalities as follows:

s\ = |[F*|[%/P (A.38)
C C
= [ DoIVefiiVofulle + Y [IVofi Vofullz | /P (A-39)
k .k’
C
> IV fF Vo fill7/P. (A.40)
k

As shown in Section A.3, for any k, we obtain ||Vg f (s)Ve fe(t)||%/P = o (572K3 + Lk7) in the limit of M > 1.
Thus, the lower bound becomes the same form as sy, That is, sy = Ca(%n% + 7K

bound is given by

NI
_|_
S|

) . In contrast, the upper

s\ = ||F|[%/P (A.41)
C
=Y Fill7/P (A.42)
k
C
<O lIFF)?/P, (A.43)
k

where F}, denotes the FIM of the k-th output, i.e., Fy := >, Vo f(t)Vofr(t)T /T. Therefore, the upper bound
is reduced to the summation over sy of C = 1. In the limit of M > 1, we obtain s < C?||Fy||%/P =

2., (T=1,2 | 1,2y _
C?a (T RS + 763) = Csa.
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Next, we show inequalities for A,,q.. We have already derived the lower bound (A.37) and this bound holds in
the case of C'= O(M) as well. In contrast, the upper bound (A.34) may become loose when C' is larger than
O(1) because of the residual term ||R||2. Although it is hard to explicitly obtain the value of || R||2, the following
upper bound holds and is easy to compute by using sy of Eq. (14). Because the FIM is a positive semi-definite
matrix, A; > 0 holds by definition. Then, we have A\pae < /D, AZ. Combining this with s} = Do A2 /P, we have
Amaz < yJas\ M < v/aCsyM.

A.6 Theorem 5

The Fisher-Rao norm is written as

10l = Z Z Fuij),w,anW, Wab, (A.44)

l,37 U’ ,ab

where F{; ;;) (i,ab) Tepresents an entry of the FIM, that is, ch >t Vi fx (t)Verbfk (t)/T. Because F( ;). (1,ab)

includes the random variables W), and W,, we consider the following expansion. Note that W/, and W, are

ab’

infinitesimals generated by Eq. (8) Performing a Taylor expansion around Wl wt o =0, we obtam

OF 1,ij), (1 ab) 1 OF i), an) v
— L) gyl LAY gyt
oWl owl,

+ higher-order terms, (A.45)

Faijy,ar,a0)(0) = Fuijy,@ a0 (07) +

where 0* is the parameter set {W},,bl} with W}, = W!, = 0. By substituting the above expansion into the

17071
Fisher-Rao norm and taking the average (-)y, we obtain the following leading term:

(Flig),1,an)WiiWap)o = (Fa,ig). a0y (0 )W Wap)o (A.46)
= <F(l,ij),(l/’ab) (9*)> <Wl Wlb>{Wl ,Wl;)} (A47)

For, (1,ij) # (I',ab), the last line becomes zero because of (W}, W/ >{Wl Wiy = <Wilj>W-l.<W(i/b>Wl/b = 0. For

(1,35) = (I', ab), we have ((Wilj)2>{wgl} =02 /M;_;. After all, in the limit of M > 1, we obtain

ij
0 Z 6l 2 hl*l 2 0121) A4
ellende =3 S a0 om0 3 (A1)
i j -

C
_ 2};% Z (@1 (A.49)
=020 3§ *1, (A.50)
l

where the derivation of the macroscopic variables is similar to that of m), as shown in Section A.1. Since we
have 1 = Y, “23'¢' ™, it is easy to confirm (||||pr)s < CoZa/aminCrki. When all o; take the same value,
we have a/min = L -1 and the equality holds. |

A.7 Lemma 6
Suppose a perturbation around the global minimum: 6; = 6* + A;. Then, the gradient update becomes
App1 (I —=nF)A¢ + p(Ar — Apq), (A.51)

where we have used E(0*) =0 and 9E(0*)/00 = 0.
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Consider a coordinate transformation from A, to A, that diagonalizes F. It does not change the stability of the
gradients. Accordingly, we can update the i-th component as follows:

AtJrl’i — (1 — 77)‘1' + M)At,i — MAtfl,i- (A52)

Solving its characteristic equation, we obtain the general solution,
Api=AN, + B, A = (1= X+ p£ /(1 —nhi + )2 —4p) /2, (A.53)
where A and B are constants. This recurrence relation converges if and only if nA; < 2(1+ w) for all . Therefore,
1N < 2(1 4+ p)/Amaz is necessary for the steepest gradient to converge to 6*. [ ]

B Analytical recurrence relations

B.1 Erf networks

Consider the following error function as an activation function ¢(x):

erf(z) = % /01' exp(—t?)dt. (B.1)

The error function well approximates the tanh function and has a sigmoid-like shape. For a network with
¢(x) = erf(x), the recurrence relations for macroscopic variables do not require numerical integrations.

(i) ¢' and §¢': Note that we can analytically integrate the error functions over a Gaussian distribution:

/00 Dzerf(az)erf(bx) = 1 tan~! ﬂ. (B.2)
0 T Va2 +2+1/2
Hence, the recurrence relations for the feedforward signals (9) have the following analytical forms:
gt = 2 fan~! (ql+1 ) , ¢ =0l + o} (B.3)
u gt +1/4

Because the derivative of the error function is Gaussian, we can also easily integrate ¢'(x) over the Gaussian
distribution and obtain the following analytical representations of the recurrence relations (11):

~l+1 .2
~l 2(] Ow

~L
q = ;¢ =1 B4
m/¢ +1/4 (B4
(ii) ¢, and G
To compute the recurrence relations for the feedforward correlations (10), note that we can generally transform
I4la, b] into

Iyla,b] = /Dy (/ Dxz¢(Va — bx + \/By)>2. (B.5)

For the error function,

_ Vby
/Da:(b(\/a — bz +Vby) = erfm, (B.6)

and we obtain

2 2b
Igla,b] = = tan™* . (B.7)
T 2ar - (o
This is the analytical form of the recurrence relation for g,.
Finally, because the derivative of the error function is Gaussian, we can also easily obtain
4
I¢/ [a, b] = (BS)

/(14 2a)2 — (2b)2

This is the analytical forms of the recurrence relations for ¢.,.
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B.2 ReLU networks
We define a ReLU activation as ¢(z) =0 (¢ <0), = (0 <z). For a network with this ReLU activation function,

the recurrence relations for the macroscopic variables require no numerical integrations.

(i) ¢' and ¢': We can explicitly perform the integrations in the recurrence relations (9) and (11):

gt = lon/2+00/2, (B.9)
i = ¢*loy/2, - =1/2. (B.10)

(ii) ¢!, and g';: We can explicitly perform the integrations in the recurrence relations (10) and (12):

I4la,b] = Qi(\/l—c?+c7r/2+csinflc), (B.11)
m

Iyla,b] = Qi(w/2+sinflc), (B.12)
m

where ¢ = b/a.

B.3 Linear networks

We define a linear activation as ¢(x) = z. For a network with this linear activation function, the recurrence
relations for the macroscopic variables do not require numerical integrations.

(i) ¢' and ¢': We can explicitly perform the integrations in the recurrence relations (9) and (11):

¢ = ¢ 'l +a3, (B.13)
id = g3, G~ =1. (B.14)

(ii) ¢, and g',: We can explicitly perform the integrations in the recurrence relations (10) and (12):

art = gl +ai, (B.15)

iy = Gflon, Gh=1 (B.16)
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C Additional Experiments

C.1 Dependence on T
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Figure C.1: Statistics of FIM eigenvalues with fixed M and changing T' (L = 3,y = C = 1). The red line
represents theoretical results obtained in the limit of M > 1. The first row shows results of Tanh networks with
M =1000. The second row shows those with a relatively small width (M = 300) and higher T'. We set M = 1000
in ReLU and linear networks. The other settings are the same as in Fig. 1.

C.2 Training on CIFAR-10
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Figure C.2: Color map of training losses after one epoch of SGD training: Tanh, ReLLU, and linear networks
trained on CIFAR-10.
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