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Abstract

We study the problem of learning a mix-
ture model of non-parametric product dis-
tributions. The problem of learning a mix-
ture model is that of finding the component
distributions along with the mixing weights
using observed samples generated from the
mixture. The problem is well-studied in the
parametric setting, i.e., when the component
distributions are members of a parametric
family – such as Gaussian distributions. In
this work, we focus on multivariate mixtures
of non-parametric product distributions and
propose a two-stage approach which recovers
the component distributions of the mixture
under a smoothness condition. Our approach
builds upon the identifiability properties of
the canonical polyadic (low-rank) decompo-
sition of tensors, in tandem with Fourier and
Shannon-Nyquist sampling staples from sig-
nal processing. We demonstrate the effective-
ness of the approach on synthetic and real
datasets.

1 Introduction

Learning mixture models is a fundamental problem in
statistics and machine learning having numerous ap-
plications such as density estimation and clustering.
In this work, we consider the special case of mixture
models whose component distributions factor into the
product of the associated marginals. An example is
a mixture of axis-aligned Gaussian distributions, an
important class of Gaussian Mixture Models (GMMs).
Consider a scenario where different diagnostic tests are
applied to patients, and test results are assumed to be
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independent conditioned on the binary disease status
of the patient which is the latent variable. The joint
Probability Density Function (PDF) of the tests can
be expressed as a weighted sum of two components,
and each component factors into the product of uni-
variate marginals. Fitting a mixture model to an unla-
beled dataset allows us to cluster the patients into two
groups by determining the value of the latent variable
using the Maximum a Posteriori (MAP) principle.

Most of the existing literature in this area has fo-
cused on the fully-parametric setting, where the mix-
ture components are members of a parametric fam-
ily, such as Gaussian distributions. The most popu-
lar algorithm for learning a parametric mixture model
is Expectation Maximization (EM) (Dempster et al.,
1977). Recently, methods based on tensor decomposi-
tion and particularly the Canonical Polyadic Decom-
position (CPD) have gained popularity as an alterna-
tive to EM for learning various latent variable mod-
els (Anandkumar et al., 2014). What makes the CPD
a powerful tool for data analysis is its identifiability
properties, as the CPD of a tensor is unique under rel-
atively mild rank conditions (Sidiropoulos et al., 2017).

In this work we propose a two-stage approach based
on tensor decomposition for recovering the conditional
densities of mixtures of smooth product distributions.
We show that when the unknown conditional densi-
ties are approximately band-limited it is possible to
uniquely identify and recover them from partially ob-
served data. The key idea is to jointly factorize his-
togram estimates of lower-dimensional PDFs that can
be easily and reliably estimated from observed sam-
ples. The conditional densities can then be recovered
using an interpolation procedure. We formulate the
problem as a coupled tensor factorization and propose
an alternating-optimization algorithm. We demon-
strate the effectiveness of the approach on both syn-
thetic and real data.

Notation: Bold, lowercase, x, and uppercase letters,
X, denote vectors and matrices respectively. Bold, un-
derlined, uppercase letters, X, denote N -way (N ≥ 3)
tensors. We use the notation x[i], X[i, j], X[i, j, k] to
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refer to specific elements of a vector, matrix and ten-
sor respectively. We denote the vector obtained by
vertically stacking the columns of the tensor X into a
vector by vec(X). Additionally, diag(x) ∈ RM×M de-
notes the diagonal matrix with the elements of vector
x ∈ RM on its diagonal. The set of integers {1, . . . , N}
is denoted as [N ]. Uppercase, X, and lowercase let-
ters, x, denote scalar random variables and realizations
thereof, respectively.

2 Background

2.1 Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts
related to tensor decomposition. An N -way tensor
X ∈ RI1×I2×···×IN is a multidimensional array whose
elements are indexed by N indices. A polyadic decom-
position expresses X as a sum of rank-1 terms

X =

R∑
r=1

A1[:, r] ◦A2[:, r] ◦ · · · ◦AN [:, r], (1)

where An ∈ RIn×R, 1 ≤ r ≤ R, An[:, r] denotes the
r-th column of matrix An and ◦ denotes the outer
product. If the number of rank-1 terms is minimal,
then Equation (1) is called the CPD of X and R is
called the rank of X. Without loss of generality, we
can restrict the columns of {An}Nn=1 to have unit norm
and have the following equivalent expression

X =

R∑
r=1

λ[r]A1[:, r] ◦A2[:, r] ◦ · · · ◦AN [:, r], (2)

where ‖An[:, r]‖p = 1 for a certain p ≥ 1, ∀ n, r,

and λ = [λ[1], . . . ,λ[R]]
T

‘absorbs’ the norms of
columns. For convenience, we use the shorthand nota-
tion X = [[λ,A1, . . . ,AN ]]R. We can express the CPD
of a tensor in a matricized form. With � denoting the
Khatri-Rao (columnwise Kronecker) matrix product,
it can be shown that the mode-n matrix unfolding of
X is given by

X(n) =

 N
�
k=1
k 6=n

Ak

 diag(λ)AT
n , (3)

where
N
�
k=1
k 6=n

Ak = AN � · · · �An+1 �An−1 � · · · �A1.

The CPD can be expressed in a vectorized form as

vec(X) =

(
N
�
n=1

An

)
λ. (4)

It is clear that the rank-1 terms can be arbitrarily per-
muted without affecting the decomposition. We say
that a CPD of a tensor is unique when it is only sub-
ject to this trivial indeterminacy.

2.2 Learning Problem

Let X = {Xn}Nn=1 denote a set of N random variables.
We say that a PDF fX is a mixture of R component
distributions if it can be expressed as a weighted sum
of R multivariate distributions

fX (x1, . . . , xN ) =

R∑
r=1

wrfX|H(x1, . . . , xN |r), (5)

where fX|H are conditional PDFs and {wr}Rr=1 are

non-negative numbers such that
∑R
r=1 wr = 1, called

mixing weights. When each conditional PDF factors
into the product of its marginal densities we have that

fX (x1, . . . , xN ) =

R∑
r=1

wr

N∏
n=1

fXn|H(xn|r), (6)

which can be seen as a continuous extension of the
CPD model of Equation (2). A sample from the mix-
ture model is generated by first drawing a component
r according to w and then independently drawing sam-
ples for every variable {Xn}Nn=1 from the conditional
PDFs fXn|H(·|r). The problem of learning the mix-
ture is that of finding the conditional PDFs as well as
the mixing weights given observed samples.

2.3 Related Work

Mixture models have numerous applications in statis-
tics and machine learning including clustering and
density estimation to name a few (McLachlan and
Peel, 2000). A common assumption made in multi-
variate mixture models is a parametric form of the
conditional PDFs. For example, when the conditional
PDFs are assumed to be Gaussian, the goal is to re-
cover the mean vectors and covariance matrices defin-
ing each multivariate Gaussian component and the
mixing weights. Other common choices include cate-
gorical, exponential, Laplace or Poisson distributions.
The most popular algorithm for learning the param-
eters of the mixture is the EM algorithm (Dempster
et al., 1977) which maximizes the likelihood function
with respect to the parameters. EM-based methods
have been also considered for learning mixture mod-
els of non-parametric distributions1 by parameterizing
the unknown conditional PDFs using kernel density
estimators (Benaglia et al., 2009; Levine et al., 2011),
which lack however theoretical guarantees.

Tensor decomposition methods can be used as an al-
ternative to EM for learning various latent variable
models (Anandkumar et al., 2014). High-order mo-
ments of several probabilistic models can be expressed

1The term non-parametric is used to describe the case
in which no assumptions are made about the form of the
conditional densities.
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using low-rank CPDs. Decomposing these tensors re-
veals the true parameters of the probabilistic models.
In the absence of noise and model mismatch, algebraic
algorithms can be applied to compute the CPD un-
der certain conditions, see (Sidiropoulos et al., 2017)
and references therein, and (Hsu and Kakade, 2013)
for the application to GMMs. Tensor decomposition
approaches have been proposed for learning mixture
models but are mostly restricted to Gaussian or cate-
gorical distributions (Hsu and Kakade, 2013; Jain and
Oh, 2014; Gottesman et al., 2018). In practice, mainly
due to sampling noise the result of these algorithms
may not be satisfactory and EM can be used for re-
finement (Zhang et al., 2014; Ruffini et al., 2017). In
the case of non-parametric mixtures of product dis-
tributions, identifiability of the components has been
established in (Allman et al., 2009). The authors
have shown that it is possible to identify the condi-
tional PDFs given the true joint PDF, if the condi-
tional PDFs of each Xn across different mixture com-
ponents are linearly independent i.e., the continuous
factor “matrices” have linearly independent columns.
However, the exact true joint PDF is never given –
only samples drawn from it are available in practice,
and elements may be missing from any given sample.
Furthermore, (Allman et al., 2009) did not provide an
estimation procedure, which limits the practical ap-
peal of an interesting theoretical contribution.

In this work, we focus on mixtures of product distribu-
tions of continuous variables and do not specify a para-
metric form of the conditional density functions. We
show that it is possible to recover mixtures of smooth
product distributions from observed samples. The key
idea is to first transform the problem to that of learn-
ing a mixture of categorical distributions by decom-
posing lower-dimensional and (possibly coarsely) dis-
cretized joint PDFs. Given that the conditional PDFs
are (approximately) band-limited (smooth), they can
be recovered from the discretized PDFs under certain
conditions.

3 Approach

Our approach consists of two stages. We express the
problem as a tensor factorization problem and show
that if N ≥ 3, we can recover points of the unknown
conditional CDFs. Under a smoothness condition,
these points can be used to recover the true condi-
tional PDFs using an interpolation procedure.

3.1 Problem Formulation

We assume that we are given M N -dimensional
samples {xm}Mm=1 that have been generated from
a mixture of product distributions as in Equa-

tion (6). We discretize each random variable Xn

by partitioning its support into I uniform inter-
vals {∆i

n =
(
di−1
n , din

)
}1≤i≤I . Specifically, we

consider a discretization of the PDF and define
the probability tensor (histogram) X[i1, . . . , iN ] ,
Pr
(
X1 ∈ ∆i1

n , . . . , XN ∈ ∆iN
n

)
given by

X[i1, . . . , iN ] =

R∑
r=1

wr

N∏
n=1

∫
∆in
n

fXn|H(xn|r)dxn

=

R∑
r=1

wr

N∏
n=1

Pr
(
Xn ∈ ∆in

n

∣∣H = r). (7)

Let An[in, r] , Pr
(
Xn ∈ ∆in

n

∣∣H = r), λ[r] , wr.
Note that X is an N -way tensor and admits a CPD
with non-negative factor matrices {An}Nn=1 and rank
R, i.e., X = [[λ,A1, . . . ,AN ]]R. From equation (7) it is
clear that the discretized conditional PDFs are identi-
fiable and can be recovered by decomposing the true
joint discretized probability tensor, if N ≥ 3 and R is
small enough, by virtue of the uniqueness properties
of CPD (Sidiropoulos et al., 2017).

In practice we do not observe X but we have to deal
with perturbed versions. Based on the observed sam-
ples, we can compute an approximation of the proba-
bility tensor X by counting how many samples fall into
each bin and normalizing the tensor by dividing with
the total number of samples. The size of the proba-
bility tensor grows exponentially with the number of
variables and therefore the estimate will be highly in-
accurate even when the number of discretization inter-
vals is small. More importantly, datasets often contain
missing data and therefore its impossible to construct
such tensor. On the other hand, it may be possible
to estimate low-dimensional discretized joint PDFs of
subsets of the random variables which correspond to
low-order tensors. For example, in the clustering ex-
ample given in the introduction some patients may be
tested on a subset of the available tests. Finally, the
model of Equation (7) is just an approximation of our
original model, as our ultimate goal is to recover the
true conditional PDFs. To address the aforementioned
challenges we have to answer the following two ques-
tions

1. Is it possible to learn the mixing weights and dis-
cretized conditional PDFs from missing/limited
data?

2. Is it possible to recover non-parametric condi-
tional PDFs from their discretized counterparts?

Regarding the first question, it has been recently
shown that a joint Probability Mass Function (PMF)
of a set of random variables can be recovered from
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lower-dimensional joint PMFs if the joint PMF has
low enough rank (Kargas et al., 2018). This result
allows us to recover the discretized conditional PDFs
from low-dimensional histograms but cannot be ex-
tended to the continuous setting in general because of
the loss of information induced from the discretization
step. We further discuss and provide conditions under
which we can overcome these issues.

3.2 Identifiability using Lower-dimensional
Statistics

In this section we provide insights regarding the
first issue. It turns out that realizations of sub-
sets of only three random variables are sufficient to
recover Pr

(
Xn ∈ ∆in

n

∣∣H = r) and {wr}Rr=1. Un-
der the mixture model (6), a histogram of any
subset of three random variables Xj , Xk, X` de-
noted as Xjk`, with Xjk`[ij , ik, i`] = Pr(Xj ∈
∆
ij
j , Xk ∈ ∆ik

k , X` ∈ ∆i`
` ) can be written as

Xjk`[ij , ik, i`] =
∑R
r=1 λ[r]Aj [ij , r]Ak[ik, r]A`[i`, r],

which is a third-order tensor of rank R. A fun-
damental result on the uniqueness of tensor de-
composition of third-order tensors was given by
in (Kruskal, 1977). The result states that if X
admits a decomposition X = [[λ,A1,A2,A3]]R, with
kA1

+ kA2
+ kA3

≥ 2R+ 2 then rank(X) = R and the
decomposition of X is unique. Here, kA denotes the
Kruskal rank of the matrix A which is equal to the
largest integer such that every subset of kA columns
are linearly independent. When the rank is small
and the decomposition is exact, the parameters of the
CPD model can be computed exactly via Generalized
Eigenvalue Decomposition (GEVD) and related alge-
braic algorithms (Leurgans et al., 1993; Domanov and
Lathauwer, 2014; Sidiropoulos et al., 2017).

Theorem 1 (Leurgans et al., 1993) Let X be
a tensor that admits a polyadic decomposition
X = [[λ,A1,A2,A3]]R, A1 ∈ RI1×R, A2 ∈ RI2×R,
A3 ∈ RI3×R, λ ∈ RR and suppose that A1, A2 are
full column rank and kA3 ≥ 2. Then rank(X) = R,
the decomposition of X is unique and can be found al-
gebraically.

More relaxed uniqueness conditions from the field of
algebraic geometry have been proven in recent years.

Theorem 2 (Chiantini and Ottaviani, 2012) Let X
be a tensor that admits a polyadic decomposition X =
[[λ,A1,A2,A3]], where A1 ∈ RI1×F , A2 ∈ RI2×F ,
A3 ∈ RI3×F , I1 ≤ I2 ≤ I3. Let α, β be the largest in-
tegers such that 2α ≤ I1 and 2β ≤ I2. If F ≤ 2α+β−2

then the decomposition of X is essentially unique al-
most surely.

Theorem 2 is a generic uniqueness result i.e, all non-
identifiable parameters form a set of Lebesgue mea-
sure zero. To see how the above theorems can be
applied in our setup, consider the joint decomposi-
tion of the probability tensors Xjk`. Let S1, S2, and
S3 denote disjoint ordered subsets of [N ], with car-
dinality c1 = |S1|, c2 = |S2|, and c3 = |S3|, re-
spectively. Let Y be the c1 × c2 × c3 block tensor
whose (j, k, `)-th block is the tensor Xjk`, j ∈ S1,
k ∈ S2, ` ∈ S3. It is clear that the tensor Y
admits a CPD Y = [[λ, Â1, Â2, Â3]]R where Â1 =

[AT
S1(1), · · · ,A

T
S1(c1)]

T , Â2 = [AT
S2(1), · · · ,A

T
S2(c2)]

T ,

Â3 = [AT
S3(1), · · · ,A

T
S3(c3)]

T . By considering the joint
decomposition of lower-dimensional discretized PDFs,
we have constructed a single virtual non-negative
CPD model and therefore uniqueness properties hold.
For example, by setting S1 = {1, . . . , bN−1

2 c − 1},
S2 = {bN−1

2 c, . . . , N − 1}, S3 = {N} we have that

Y(1) =


AbN−1

2 c
...

AN−1

�
 A1

...
AbN−1

2 c−1


 diag(λ)AT

N .

According to Theorem 1, the CPD can be computed
exactly if R ≤ (bN−1

2 c − 1)I. Similarly, it is easy

to verify that by setting c1 = c2 = bN3 cI, i.e., α =

blog2(bN3 cI)c, the CPD of Y is generically unique for

R ≤ 22(α−1) according to Theorem 2. The later in-

equality is implied by R ≤ (bN3 cI+1)2

16 which shows that
the bound is quadratic in N and I.

Remark 1: The previous discussion suggests that
finer discretization can lead to improved identifiabil-
ity results. The number of hidden components may be
arbitrarily large and we may still be able to identify the
discretized conditional PDFs by increasing the dimen-
sions of the sub-tensors i.e., the discretization intervals
of the random variables. The caveat is that one will
need many more samples to reliably estimate these his-
tograms. Ideally, one would like to have the minimum
number of intervals that can guarantee identifiability
of the conditional PDFs.

Remark 2: The factor matrices can be recovered
by decomposing the lower-order probability tensors
of dimension N ≥ 3. It is important to note that
histograms of subsets of two variables correspond to
Non-negative Matrix Factorization (NMF) which is
not identifiable unless additional conditions such as
sparsity are assumed for the latent factors (Fu et al.,
2018). Therefore, second-order distributions are not
sufficient for recovering dense latent factor matrices.

3.3 Recovery of the Conditional PDFs

In the previous section we have shown that given
lower-dimensional discretized PDFs, we can uniquely
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identify and recover discretized versions of the condi-
tional PDFs via joint tensor decomposition. Recov-
ering the true conditional PDFs from the discretized
counterparts can be viewed as a signal reconstruction
problem. We know that this is not possible unless the
signals have some smoothness properties. We will use
the following result.

Proposition 1 A PDF that is (approximately) band-
limited with cutoff frequency ωc can be recovered from
uniform samples of the associated CDF taken π

ωc
apart.

Proof : Assume that the PDF fX is band-limited
with cutoff frequency ωc i.e., its Fourier transform
F(ω) = 0, ∀ |ω| ≥ ωc. Let FX denote the CDF of fX ,
FX(x) =

∫ x
−∞ fX(t)dt. We can express the integration

as a convolution of the PDF with a unit step func-
tion, i.e., FX(x) =

∫∞
−∞ fX(t)u(x − t)dτ . The Fourier

transform of a convolution is the point-wise product
of Fourier transforms. Therefore, we can express the
Fourier transform G(ω) of the CDF as

G(ω) = πδ(ω)F(0) +
F(ω)

jω
, (8)

where δ(·) is the Dirac delta. From Equation (8), it
is clear that the CDF obeys the same band-limit as
the PDF . From Shannon’s sampling theorem we have
that

FX(x) =

∞∑
n=−∞

FX(nT ) sinc

(
x− nT
T

)
, (9)

where T = π
ωc

. The PDF can then be determined by
differentiation, which amounts to linear interpolation
of the CDF samples using the derivative of the sinc
kernel. Note that for exact reconstruction of fX an
infinite number of data points are needed. In signal
processing practice we always deal with finite support
signals which are only approximately band-limited; the
point is that the bandlimited assumption is accurate
enough to afford high-quality signal reconstruction. In
our present context, a good example is the Gaussian
distribution: even though it is of infinite extent, it is
not strictly bandlimited (as its Fourier transform is an-
other Gaussian); but it is approximately bandlimited,
and that is good enough for our purposes, as we will
see shortly.

In section 3.2, we saw how lower-dimensional his-
tograms can be used to obtain estimates of the dis-
cretized conditional PDFs. Now, consider the condi-
tional PDF of the n-th variable given the r-th compo-
nent. The corresponding column of factor matrix An

is

An[:, r] = [FXn|H(d1
n|r)− FXn|H(d0

n|r), . . . ,
1− FXn|H(dI−1

n |r)]T .
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Figure 1: Illustration of the key idea on a univariate
Gaussian mixture. The CDF can be recovered from
its samples if Ts ≤ π
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Figure 2: KL divergence between the true mixture of
Gaussians and different approximations.

Since, FXn|H(d0
n|r) = 0, we can compute FXn|H(din|r),

∀i ∈ [I−1], n ∈ [N ]. We also know that FXn|H(xn|r) =
1, ∀xn ≥ dIn. Therefore, we can recover the conditional
CDFs using the interpolation formula

FX|H(xn|r) =

L∑
k=−L

FXn|H(kT |r) sinc

(
x− kT
T

)
, (10)

where T = din − di−1
n and L a large integer. The con-

ditional PDF fXn|H can then be recovered via differ-
entiation.

3.4 Toy example

An example to illustrate the idea is shown in Figure 1.
Assume that the PDF of a random variable is a mix-
ture of two Gaussian distributions with means µ1 =
−6, µ2 = 10 and standard deviations σ1 = σ2 = 5. It
is clear from Figure 1 that F(ω) ≈ 0 for |ω| ≥ ωc = 0.8
and therefore the PDF is approximately band-limited.
The CDF has the same band-limit, thus, it can be
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recovered from points being T = π
ωc
≈ 4 apart. In

this example we have used only 10 discretization in-
tervals as they suffice to capture 99% of the data. We
use the finite sum formula of Equation (10) to recover
the CDF and then we recover the PDF by differentiat-
ing the CDF. The recovered PDF essentially coincides
with the true PDF given a few exact estimates of the
CDF as shown in Figure 1.

Figure 2 shows the approximation error for different
methods when we do not have exact points of the CDF
but estimate them from randomly drawn samples. We
know that a histogram converges to the true PDF as
the number of samples grows and the bin width goes to
0 at appropriate rate. However, when the conditional
PDF is smooth, the interpolation procedure using a
few discretization intervals leads to a lower approxi-
mation error compared to plain histogram estimates
as illustrated in the figure.

4 Algorithm

In this section we develop an algorithm for recovering
the latent factors of the CPD model given the his-
togram estimates of lower-dimensional PDFs (Alg. 1).
We define the following optimization problem

min.
{An}Nn=1,λ

N∑
j=1

N∑
k>j

N∑
`>k

D
(
X̂jk`, [[λ,Aj ,Ak,A`]]R

)
s.t. λ ≥ 0,1Tλ = 1

An ≥ 0, n = 1 . . . N

1TAn = 1T , n = 1 . . . N

(11)

where D(·, ·) is a suitable metric. The Frobenious norm
and Kullback-Leibler (KL) divergence are considered
in this work. For probability tensors X,Y we define

DKL(X,Y) ,
∑
i1,i2,i3

X[i1, i2, i3] log
X[i1, i2, i3]

Y[i1, i2, i3]

DFRO(X,Y) ,
∑
i1,i2,i3

(
X[i1, i2, i3]−Y[i1, i2, i3]

)2
.

Optimization problem (11) is non-convex and NP-
hard in its general form. Nevertheless, sensible ap-
proximation algorithms can be derived, based on well-
appreciated nonconvex optimization tools. The idea is
to cyclically update the variables while keeping all but
one fixed. By fixing all other variables and optimizing
with respect to Aj we have

min.
Aj∈C

∑
k 6=j

∑
l 6=j
l>k

D
(
X

(1)
jk`, (A` �Ak)diag(λ)AT

j

)
, (12)

where C = {A | A ≥ 0,1TA = 1T }. Problem (12) is
convex and can be solved efficiently using Exponen-
tiated Gradient (EG) (Kivinen and Warmuth, 1997)

Algorithm 1 Proposed Algorithm

Input: A dataset D ∈ RM×N

1: Estimate Xjk` ∀j, k, ` ∈ [N ], ` > k > j from data.

2: Initialize {An}Nn=1 and λ.
3: repeat
4: for all n ∈ [N ] do
5: Solve opt. problem (12) via mirror descent.
6: end for
7: Solve opt. problem (14) via mirror descent.
8: until convergence criterion is satisfied
9: for all n ∈ [N ] do

10: Recover fXn|H by differentiation using Eq. (10)
11: end for

– which is a special case of mirror descent (Beck and
Teboulle, 2003). At each iteration τ of mirror descent
we update Aτ

j by solving

Aτ
j = arg min

Aj∈C
〈 ∇f

(
Aτ−1
j

)
,Aj〉+

1

ητ
BΦ

(
Aj ,A

τ−1
j

)
where BΦ(A, Â) = Φ(A)− Φ(Â)− 〈 A− Â,∇Φ(Â)〉
is a Bregman divergence. Setting Φ to be the nega-
tive entropy Φ(A) =

∑
i,j A(i, j) log A(i, j), the up-

date becomes

Aτ
j = Aτ−1

j ~ exp
(
−ητ∇f

(
Aτ−1
j

))
, (13)

where ~ is the Hadamard product, followed by column

normalization Aτ
j [:, r] =

Aj [:,r]
1TA[:,r]

. The optimization

problem with respect to λ is the following

min.
λ∈C

∑
j,k,`

D
(
vec(Xjk`), (A` �Ak �Aj)λ

)
. (14)

The update rules for λ are similar

λτ = λτ−1 ~ exp
(
−ητ∇f

(
λτ−1

))
. (15)

The step ητ can be computed by the Armijo rule (Bert-
sekas, 1999).

5 Experiments

5.1 Synthetic Data

In this section, we employ synthetic data simula-
tions to showcase the effectiveness of the proposed
algorithm. Experiments are conducted on synthetic
datasets {xm}Mm=1 of varying sample sizes, generated
from R component distributions. We set the number
of variables to N = 10, and vary the number of com-
ponents R ∈ {5, 10}. We run the algorithms using
5 different random initializations and for each algo-
rithm keep the model that yields the lowest cost. We
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Figure 3: KL divergence (Gaussian).
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Figure 4: Clustering accuracy (Gaussian).

evaluate the performance of the algorithms by calcu-
lating the KL divergence between the true and learned
model, which is approximated using Monte Carlo in-
tegration. Specifically, we generate {xm′}M

′

m′=1 test
points, M ′ = 1000 drawn from the mixture and ap-
proximate the KL divergence between the true and
learned model by

DKL

(
fX , f̂X

)
≈ 1

M ′

M ′∑
m′=1

log fX (xm′)/f̂X (xm′).

We also compute the clustering accuracy on the test
points as follows. Each data point xm′ is first assigned
to the component yielding the highest posterior prob-
ability ĉm = arg maxc fH|X (c|xm). Due to the label
permutation ambiguity, the obtained components are
aligned with the true components using the Hungar-
ian algorithm (Kuhn, 1955). The clustering accuracy
is then calculated as the ratio of wrongly labeled data
points over the total number of data points.For each
scenario, we repeat 10 Monte Carlo simulations and re-
port the average results. We explore the following set-
tings for the conditional PDFs: (1) Gaussian (2) GMM
with two components (3) Gamma and (4) Laplace.
The mixing weights are drawn from a Dirichlet dis-
tribution ω ∼ Dir(α1, . . . , αr) with αr = 10 ∀r. We
emphasize that our approach does not use any knowl-
edge of the parametric form of the conditional PDFs;
it only assumes smoothness.

Gaussian Conditional Densities: In the first ex-
periment we assume that each conditional PDF is a
Gaussian. For cluster r and random variable Xn we
set fXn|H(xn|r) = N (µnr, σ

2
nr). Mean and variance

are drawn from uniform distributions, µnr ∼ U(−5, 5),
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Figure 5: KL divergence (GMM).
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Figure 6: Clustering Accuracy (GMM).

σ2
nr ∼ U(1, 2). We compare the performance of our al-

gorithms to that of EM (EM GMM). Figure 3 shows
the KL divergence between the true and the learned
model for various dataset sizes and different number
of components. We see that the performance of our
methods converges to that of EM despite the fact that
we do not assume a particular model for the condi-
tional densities. Interestingly, our approach performs
better in terms of clustering accuracy as shown in Fig-
ure 4. We can see that although the joint distribution
learned by EM is closer to the true in terms of the KL
divergence, EM may fail to identify the true parame-
ters of every component.

GMM Conditional Densities: In the sec-
ond experiment we assume that each conditional
PDF is itself a mixture model of two univariate
Gaussian distributions. More specifically, we set

fXn|H(xn|r) = 1
2N

(
µ

(1)
nr , σ

(1)2
nr

)
+ 1

2N
(
µ

(2)
nr , σ

(2)2
nr

)
.

Means and variances are drawn from uniform distribu-
tions µ

(1)
nr ∼ U(0, 7), σ

(1)2
nr ∼ U(1, 4), µ

(2)
nr ∼ U(−7, 0),

σ
(2)2
nr ∼ U(1, 4). Our method is able to learn the

mixture model in contrast to the EM GMM which ex-
hibits poor performance, due to the model mismatch,
as shown in Figures 5, 6.

Gamma Conditional Densities: Another exam-
ple of a smooth distribution is the shifted Gamma
distribution. We set fXn|H(xn|r) = 1

βαΓ(α) (x −
µnr)

α−1 exp(−x−µnrβ ) with α = 5, µnr ∼ U(−5, 0),

βnr ∼ U(0.1, 0.5). As the number of samples grows
our method exhibits better performance, significantly
outperforming EM GMM as shown in Figures 7, 8.

Laplace Conditional Densities: In the last
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Figure 8: Clustering accuracy (Gamma).

simulated experiment we assume that each condi-
tional PDF is a Laplace distribution with mean
µnr and standard deviation σnr i.e., fXn|H(xn|r) =

1√
2σnr

exp
(√

2|xn−µnr|
σnr

)
. A Laplace distribution in

contrast to the previous cases is not smooth (at its
mean). Parameters are drawn from uniform distribu-
tions, µnf ∼ U(−5, 5), σ2

nf ∼ U(5, 10). We compare
the performance of our methods to that of the EM
GMM and an EM algorithm for a Laplace mixture
model (EM LMM). The proposed method approaches
the performance of EM LMM and exhibits better per-
formance in terms of KL and clustering accuracy com-
pared to the EM GMM for higher number of data sam-
ples, as shown in Figures 9, 10.

5.2 Real Data

Finally, we conduct several real-data experiments to
test the ability of the algorithms to cluster data. We
selected 7 datasets with continuous variables suitable
for classification or regression tasks from the UCI
repository. For each labeled dataset we hide the la-
bel and treat it as the latent component. For datasets
that contained a continuous variable as a response, we
discretized the response into R uniform intervals and
treated it as the latent component. For each dataset
we repeated 10 Monte Carlo simulations by randomly
splitting the dataset into three sets; 70% was used as a
training set, 10% as a validation set and 20% as a test
set. The validation set was used to select the number
of discretization intervals which was either 5 or 10. We
compare our methods against the EM GMM with di-
agonal covariance, EM GMM with full-covariance and
the K-means algorithm in terms of clustering accuracy.
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Figure 9: KL divergence (Laplace).
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Figure 11: Clustering accuracy on real datasets.

Note that although the conditional independence as-
sumption may not actually hold in practice, almost all
the algorithms give satisfactory results in the tested
datasets. The proposed algorithms perform well, out-
performing the baselines in 5 out of 7 datasets while
performing reasonably well in the remaining.

6 Discussion and Conclusion

We have proposed a two-stage approach based on
tensor decomposition and signal processing tools for
recovering the conditional densities of mixtures of
smooth product distributions. Our method does not
assume a parametric form for the unknown conditional
PDFs. We have formulated the problem as a cou-
pled tensor factorization and proposed an alternating-
optimization algorithm. Experiments on synthetic
data have shown that when the underlying conditional
PDFs are indeed smooth our method can recover them
with high accuracy. Results on real data have shown
satisfactory performance on data clustering tasks.
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