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Abstract

Coordinate descent with random coordinate
selection is the current state of the art for
many large scale optimization problems. How-
ever, greedy selection of the steepest coordi-
nate on smooth problems can yield conver-
gence rates independent of the dimension n,
and requiring up to n times fewer iterations.

In this paper, we consider greedy updates
that are based on subgradients for a class of
non-smooth composite problems, which in-
cludes Ll-regularized problems, SVMs and
related applications. For these problems we
provide (i) the first linear rates of convergence
independent of n, and show that our greedy
update rule provides speedups similar to those
obtained in the smooth case. This was pre-
viously conjectured to be true for a stronger
greedy coordinate selection strategy.

Furthermore, we show that (ii) our new se-
lection rule can be mapped to instances of
maximum inner product search, allowing to
leverage standard nearest neighbor algorithms
to speed up convergence. We demonstrate the
validity of the approach through extensive nu-
merical experiments.

1 Introduction

In recent years, there has been increased interest in
coordinate descent (CD) methods due to their sim-
plicity, low cost per iteration, and efficiency (Wright,
2015). Algorithms based on coordinate descent are the
state of the art for many optimization problems (Nes-
terov, 2012; Shalev-Shwartz and Zhang, 2013b; Lin
et al., 2014; Shalev-Shwartz and Zhang, 2013a, 2016;
Richtarik and Takac, 2016; Fercoq and Richtérik, 2015;
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Nesterov and Stich, 2017).Most of the CD methods
draw their coordinates from a fixed distribution—for
instance from the uniform distribution as in uniform
coordinate descent (UCD). However, it is clear that
significant improvements can be achieved by choosing
more important coordinates more frequently (Nesterov,
2012; Nesterov and Stich, 2017; Stich et al., 2017a,b;
Perekrestenko et al., 2017). In particular, we could
greedily choose the ‘best’ coordinate at each iteration
i.e. the greedy or steepest coordinate descent (GCD).

GCD for composite problems. Consider the

smooth quadtratic function f(a) &f lHAoz—ng.

There are three natural notions of the ‘best’ coordi-
nate.! One could choose (i) GS-s: the steepest coordi-
nate direction based on (sub)-gradients, (ii) GS-r: the
coordinate which allows us to take the largest step, and
(iii) GS-q: the coordinate that allows us to minimize
the function value the most. For our example (and
in general for smooth functions), the three rules are
equivalent. When we add an additional non-smooth
function to f, such as g(a) = A|la|;, however, the
three notions are no more equivalent. The performance
of greedy coordinate descent in this composite setting
is not well understood, and is the focus of this work.

Iteration complexity of GCD. If the objective f
decomposes into n identical separable problems, then
clearly GCD is identical to UCD. In all but such ex-
treme cases, Nutini et al. (2015) give a refined analysis
of GCD for smooth functions and show that it outper-
forms UCD. This lead to a renewed interest in greedy
methods (e.g. (Karimi et al., 2016; You et al., 2016;
Diinner et al., 2017; Song et al., 2017; Nutini et al.,
2017; Stich et al., 2017a; Locatello et al., 2018; Lu et al.,
2018)). However, for the composite case the analysis
in (Nutini et al., 2015) of GCD methods for any of
the three rules mentioned earlier falls back to that of
UCD. Thus they fail to demonstrate the advantage
of greedy methods for the composite case. In fact it
is claimed that the rate of the GS-s greedy rule may

* Equal contribution.
'Following standard notation (cf. (Nutini et al., 2015))
we call them the Gauss-Southwell (GS) rules.



Efficient Greedy Coordinate Descent for Composite Problems

even be worse than that of UCD. In this work we pro-
vide a refined analysis of GCD for a certain class of
composite problems, and show that all three strategies
(GS-s, GS-r, and GS-q) converge on composite problems
at a rate similar to GCD in the smooth case. Thus for
these problems too, greedy coordinate algorithms are
provably faster than UCD other than in extreme cases.

Efficiency of GCD. A nalve implementation of
GCD would require computing the full gradient at a
cost roughly n times more than just computing one co-
ordinate of the gradient as required by UCD. This seems
to negate any potential gain of GCD over UCD. The
working principle behind approzimate GCD methods
is to trade-off exactness of the greedy direction against
the time spent to decide the steepest direction (e.g.
(Stich et al., 2017a)). For smooth problems, Dhillon
et al. (2011) show that approzimate nearest neighbor
search algorithms can be used to provide in sublinear
time an approximate steepest descent direction. We
build upon these ideas and extend the framework to
non-smooth composite problems, thereby capturing a
significantly larger class of input problems. In particu-
lar we show how to efficiently map the GS-s rule to an
instance of maximum inner product search (MIPS).

Contributions. We analyze and advocate the use of
the GS-s greedy rule to compute the update direction
for composite problems. Our main contributions are:

i) We show that on a class of composite problems,
greedy coordinate methods achieve convergence
rates which are very similar to those obtained for
smooth functions, thereby extending the applicabil-
ity of GCD. This class of problems covers several
important applications such as SVMs (in its dual
formulation), Lasso regression, L1-regularized logis-
tic regression among others. With this we establish
that greedy methods significantly outperform UCD
also on composite problems, except in extreme cases

(cf. Remark 4).

ii) We show that both the GS-s as well as the GS-r rules
achieve convergence rates which are (other than in
extreme cases) faster than UCD. This sidesteps the
negative results by Nutini et al. (2015) for these
methods through a more fine-grained analysis. We
also study the effect of approximate greedy direc-
tions on the convergence.

iii) Algorithmically, we show how to precisely map the
GS-s direction computation as a special instance of
a maximum inner product search problem (MIPS).
Many standard nearest neighbor algorithms such
as e.g. Locality Sensitive Hashing (LSH) can there-
fore be used to efficiently run GCD on composite
optimization problems.

iv) We perform extensive numerical experiments to
study the advantages and limitations of our greedy
descent combined with a current state-of-the-art
MIPS implementation (Boytsov and Naidan, 2013).

Related Literature. Coordinate descent, being one
of the earliest known optimization methods, has a rich
history (e.g. (Bickley, 1941; Warga, 1963; Bertsekas
and Tsitsiklis, 1989, 1991)). A significant renewal in
interest followed the works of Nesterov (2012) who
provided a simple analysis of the convergence of UCD,
and (Shalev-Shwartz and Zhang, 2013b) who apply
UCD on the dual problems (called SDCA). In practice,
many solvers (e.g. (Ndiaye et al., 2015; Massias et al.,
2018)) combine UCD with active set heuristics where
attention is restricted to a subset of active coordinates.
These methods are orthogonal to, and hence can be
combined with, the greedy rules studied here.

Greedy coordinate methods can also be viewed as
an ‘extreme’ version of adaptive importance sampling
(Stich et al., 2017a; Perekrestenko et al., 2017). For
the smooth case, greedy methods choose the coordi-
nate of the gradient with the largest absolute value
while importance sampling methods sample coordinates
proportional to the absolute value of the gradient coor-
dinate (or its power). Thus, new greedy algorithms can
directly be translated into new importance sampling
schemes. However unlike greedy methods, even in the
smooth case, there are no easily characterized function
classes for which the importance sampling schemes or
the active set methods are provably faster than UCD.
The work closest to ours, other than the already dis-
cussed Nutini et al. (2015), would be that of Dhillon
et al. (2011). The latter show a sublinear O(1/t) con-
vergence rate for GS-r on composite problems. They
also propose a practical variant for L1-regularized prob-
lems which essentially ignores the regularizer and is
hence not guaranteed to converge.

2 Setup

We consider composite optimization problems of the
structure

a€eR™

min [F(a) = fla) + igi(ai)}» (1)

where n is the number of coordinates, f: R" — R is
convex and smooth, and the g;: R — R, ¢ € [n] are
convex and possibly non-smooth. In this exposition, we
further restrict the function g(ar) := Y"1 | gi(ey) to ei-
ther enforce a box constraint or an L1 regularizer. This
comprises many important problem classes, for instance
dual SVM or Lasso regression, see Appendix A.3.

We further assume that the smooth component f is
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coordinate-wise L smooth: for any «, v and 1,
2

flatre) < fla) + Viflan + - (@)

Sometimes we will assume that f is in addition also
strongly convex with respect to the H||p norm, p €
{1,2}, that is,

flor+ Aa) > f(e) + (Vf(@), da) + 12 | aaf2 (3)
for any @ and a@ + A« in the domain of F'. In general

it holds p1 € [pa/n, pe]. See Nutini et al. (2015) for a
detailed comparison of the two constants.

3 GCD for Non-Smooth Problems

Here we briefly recall the definitions of the GS-s, GS-r
and GS-q coordinate selection rules and introduce the
approximate GS-s rule that we will consider in detail.

GS-s(a) := arg;nax Lrélggj |V,f(a) + s|} , @)

GS-r(a) := arg max|v;| , (5)
j€[n]

GS-q(a) = arg max Ix; ()], (6)
JEIN

for an iterate a € R", V;f(a) := (Vf(a),e;) for
standard unit vector e;. Here x;(a) and ; are defined
as the minimum value and minimizer respectively of

. L~?
min | YV, f(@) + ==+ g;(e +7) — gi(ay)
We relax the requirement for an exact steepest selection,
and define an approximate GS-s rule.

Definition 1 (©-approximate GS-s). For given «, the
coordinate j is considered to be a ©-approximate steep-
est direction for © € (0,1] if

min |V, f(a) + s| > ©max | min |V, f(a) + s|| .
s€dy; % s€0g;

3.1 GCD for Ll-regularized problems

We now discuss the GS-s rule for the concrete example of
L1 problems, and collect some observations that we will
use later to define the mapping to the MIPS instance.
A similar discussion is included for box constrained
problems in Appendix B.

Consider L1-regularized problems of the form

in |F = .
in [F(e) = f(a) + Al ] (7)
The GS-s steepest rule (4) and update rules can be sim-
plified for such functions. Let sign(z) denote the sign
function, and define S (x) as the shrinkage operator

Sy (x) = x —sign(z)A, if |z| > A
M0 otherwise .

Further, for any «, let us define s(a) as

L S

i= 8
V.if(a) + sign(a;)A  otherwise. ®

Lemma 1. For any «, the GS-s rule is equivalent to

max {min IVif(a) + s@ = max|s(a);| . (9)
i s€0y; i

Our analysis of GS-s rule requires bounding the number
of ‘bad’ steps (to be detailed in Section 4). For this,
we will slightly modify the update of the coordinate
descent method. Note that we still always follow the
GS-s direction, but will sometimes not perform the stan-
dard proximal coordinate update along this direction.
To update the i;-th coordinate, we either rely on the
standard proximal step on the coordinate,

1
of =5, <a§.j> - Lvitf(a(t))> . (10)

or we perform line-search
at = argminF(a(t) + (v - a(t))eit) (11)

i it
Y

Finally, the i;-th coordinate is updated as
+  ifata® >0
o+ = {0‘1 i = (12)
Our modification or ‘post-processing’ step (12) ensures
that the coordinate «; can never ‘cross’ the origin.
This small change will later on help us bound the
precise number of steps needed in our convergence rates

(Sec. 4). The details are summarized in Algorithm 1.

! 0, otherwise

Algorithm 1 L1 Greedy Coordinate Descent

: Initialize: o := 0 € R".

: for t =0,1,...,until convergence do
Select coordinate i; as in GS-s, GS-r, or GS-q.
Find o via gradient (10) or line-search (11).
Compute aEfH) as in (12).

end for

A 2 o v

3.2 GCD for Box-Constrained Problems
Using similar ideas, we can also derive the greedy coor-
dinate update for problems with box constraints, such
as for the dual SVM. The detailed approach is provided
in Appendix B.

4 Convergence Rates

In this section, we present our main convergence re-
sults. We illustrate the novelty of our results in the
important Ll-regularized case: For strongly convex
functions f, we provide the first linear rates of conver-
gence independent of n for greedy coordinate methods
over Ll-regularized problems, matching the rates in
the smooth case. In particular, for GS-s this was con-
jectured to be impossible (Nutini et al., 2015, Section
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H.5, H.6) (see Remark 4). We also show the sublinear
convergence of the three rules in the non-strongly con-
vex setting. Similar rates also hold for box-constrained
problems.

4.1 Linear convergence for strongly convex f

Theorem 1. Consider an L1-reqularized optimization
problem (7), with f being coordinate-wise L smooth,
and py strongly convexr with respect to the L1 norm.
After t steps of Algorithm 1 where the coordinate iy is
chosen using either the GS-s , GS-r, or GS-q rule,

Fla)-F(a*) < (1- &) o (F(a®) ~ F(a")) .

Remark 2. The linear convergence rate of Theorem 1
also holds for the ©-approximate GS-s rule as in Defi-
nition 1. In this case the py will be multiplied by ©2.

Remark 3. All our linear convergence rates can
be extended to objective functions which only satisfy
the weaker condition of proximal-PL strong converity
(Karimi et al., 2016).

Remark 4. The standard analysis (e.g. in Nesterov
(2012)) of UCD gives a convergence rate of

E [F(a®)]-F(a*) < (1 - %)t (F(a<0>) - F(a*)) .

n

Here o is the strong convexity constant with respect to
the L2 norm, which satisfies py € [ua/n, u2]. The left
boundary py = pa/n marks the worst-case for GCD,
resulting in convergence slower than UCD. It is shown
in Nutini et al. (2015) that this occurs only in extreme
examples (e.g. when f consists of n identical separable
functions). For all other situations when py > 2ua/n,
our result shows that GCD 1is faster.

Remark 5. Our analysis in terms of puy works for
all three selection rules GS-s, GS-r, or GS-q rules. In
(Nutini et al., 2015, Section H5, HG) it was conjectured
(but not proven) that this linear convergence rate holds
for GS-q, but that it cannot hold for GS-s or GS-r.
Ezample functions were constructed where it was shown
that the single step progress of GS-s or GS-r is much
smaller than 1 —po/(nL). However these example steps
were all bad steps, as we will define in the following
proof sketch, whose number we show can be bounded.

We state an analogous linear rate for the box-
constrained case too, but refer to Appendix B for the
detailed algorithm and proof.

Theorem 2. Suppose that f is coordinate-wise L
smooth, and w1 strongly convex with respect to the L1
norm, for problem (1) with g encoding a boz-constraint.
After t steps of Algorithm 2 (the box analogon of Al-
gorithm 1) where the coordinate i; is chosen using the
GS-s , GS-r, or GS-q rule, then

f(a) = f(a)

e 0
« :
au.a)(——l-—.—’. ............ - 91‘7 mcs 92
: a &
bad éteps good éteps

Figure 1:
updates S%(ai -

The arrows represent proximal coordinate
1V;f(a)) from different starting
points a. Updates which ‘cross’ (b1) or ‘end at’ (bs)
the origin are bad, whereas the rest (g1, g2) are good.

1 p1\\2 (0) N
< (1 e (22)) 10 - s,
While the proof shares ideas with the L1-case, there
are significant differences, e.g. the division of the
steps into three categories: i) good steps which give a
(1 — w1 /L) progress, ii) bad steps which may not give
much progress but are bounded in number, and a third
iii) cross steps which give a (1 — 1/n) progress.

Remark 6. For the box case, the greedy methods con-
verge faster than UCD if uy > 2us/n, as before, and
if po/L < 1/4. Typically, pz/L is much smaller than
1 and so the second condition is almost always satis-
fied. Hence we can expect greedy to be much faster
in the box case, just as in the unconstrained smooth
case. It remains unclear if the 1/n term truly affects
the rate of convergence. For example, in the separated
quadratic case considered in (Nutini et al., 2015, Sec.
4.1), u1/L < 1/n and so we can ignore the 1/n term
in the rate (see Remark 16 in the Appendiz).

Proof sketch. While the full proofs are given in the
appendix, we here give a sketch of the convergence of
Algorithm 1 for L1-regularized problems in the strongly
convex case, as in Theorem 1. The key idea is to
partition the iterates into two sets: good and bad steps
depending on whether they make (provably) sufficient
progress. Then we show that the modification to the
update we made in (12) ensures that we do not have too
many bad steps. Since Algorithm 1 is a descent method,
we can focus only on the good steps and describe its
convergence. The “contradiction” to the convergence
of GS-s provided in (Nutini et al., 2015, Section H.5,
H.6) are in fact instances of bad steps.

The definitions of good and bad steps are explained in
Fig. 1 (and formally in Def. 11). The core technical
lemma below shows that in a good step, the update
along the GS-s direction has an alternative characteri-
zation. For the sake of simplicity, let us assume that
O =1 and that we use the exact GS-s coordinate.

Lemma 2. Suppose that iteration t of Algorithm 1
updates coordinate ¢ and that it was a good step. Then

(t+1)y _ (t) i (t) —_o®
Fla )— F(c )Swmel]é;n{<Vf(a ) w — a >
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L
+ Sl = a® [+ Al — o)}

Proof sketch. We will only examine the case when
a > 0 here for the sake of simplicity. Combin-
ing this with the assumption that iteration t was a
good step gives that both «; > 0, oz;" > 0, and
of = a; — +(V,f(a) + A). Further if o > 0, the
GS-s rule simplifies to arg max;¢p,) |V, f(a) + Al

Since f is coordinate-wise smooth (2),
Flat) - F(a) <

2

(Vi f(@)(Vif(e) + )+
L

573 (V5 7(@) + A — 2(V;f(@) + )

1 2
= — 5 (V@) + 27,

But the GS-s rule exactly maximizes the last quantity.
Thus we can continue:

F@ﬁ)—F&ﬂS—E%HVﬂa)+Aw;

(V; /(@) (aF — o) + Z(aF — an) + MaF | — o))
1

=~

L
:%${wﬂ®+ALw—®+§ww—aﬁ}

) L 2
= min {(Vf(a),w —a)+ B} |w — ol
+A((1,w) — (1,a))} .

Recall that a > 0 and so ||a|; = (e, 1). Further for
any ¢ € R, |z| > 2 and so (1,w) < ||w||;. This means

AL w) = (1)) < A(Jwlly, = ledly) -

Plugging this into our previous equation gives us the
lemma. See Lemma 8 for the full proof. O]

If A =0 (i.e. F is smooth), Lemma 2 reduces to the
‘refined analysis’ of Nutini et al. (2015). We can now
state the rate obtained in the strongly convex case.

Proof sketch for Theorem 1. Notice that if a;, = 0, the
step is necessarily good by definition (see Fig. 1). Since
we start at the origin 0, the first time each coordinate
is picked is a good step. Further, if some step ¢ is bad,
this implies that aZ ‘crosses’ the origin. In this case
our modified update rule (12) sets the coordinate «;,
to 0. The next time coordinate 4; is picked, the step
is sure to be good. Thus in ¢ steps, we have at least
[t/2] good steps.

As per Lemma 2, every good step corresponds to opti-
mizing the upper bound with the L1-squared regular-
izer. We can finish the proof:

F(a'"Y) — F(a®) < min {<Vf(a(t),w - a(t)>

weR?
L )2 (1)
+ 5w = a3+ A(Jwl, ~ || )}

< in {<Vf(a(t),w—a(t)>

L weRn

M
+ Ejw — a2 + Aoy — [od?

)}

—~

2%{me—meg.

Inequality (a) follows from Karimireddy et al. (2018,
Lemma 9), and (b) from strong convexity of f. Rear-
ranging the terms above gives us the required linear
rate of convergence. O

4.2 Sublinear convergence for general f

A sublinear convergence rate independent of n for GCD
can be obtained when f is not strongly convex.

Theorem 3. Suppose that F is coordinate-wise L
smooth and convez, for g being an L1-regularizer or a
boz-constraint. Also let Q* be the set of minima of F
with a minimum value F*. After t steps of Algorithm 1
or Algorithm 2 respectively, where the coordinate i; is
chosen using the GS-s, GS-r, or GS-q rule,
LD?
md%-ﬁgo(t),

where D is the L1-diameter of the level set. For the
set of minima Q*,

- ' —a* < O
D= max min {|w—a’|, |F(w) < Fa®)}

While a similar convergence rate was known for the
GS-r rule (Dhillon et al., 2011), we here establish it for
all three rules—even for approximate GS-s.

5 Maximum Inner Product Search

We now shift the focus from the theoretical rates to the
actual implementation. A very important observation—
as pointed out by Dhillon et al. (2011)—is that finding
the steepest descent direction is closely related to a ge-
ometric problem. As an example consider the function

fla) d:ef% | Aa — b||? for a data matrix A € R4*™. The
gradient takes the form Vf(a) = AT q for ¢ = (Aa—b)
and thus finding steepest coordinate direction is equal
to finding the datapoint with the largest (in absolute
value) inner product (A,,q) with the query vector q,
which a priori requires the evaluation of all n scalar
products. However, when we have to perform multiple
similar queries (such as over the iterations of GCD), it
is possible to pre-process the dataset A to speed up the
query time. Note that we do not require the columns
A; to be normalized.

For the more general set of problems we consider here,
we need the following slightly stronger primitive.

Definition 7 (S-MIPS). Given a set of m, d-
dimensional points py,...,pm € R?, the Subset Maxi-
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mum Inner Product Search or S-MIPS problem is to
pre-process the set P such that for any query vector q
and any subset of the points B C [m], the best point
JEB,
S-MIPSz(q; B) := argggax{(pj,qﬂ ,
J

can be computed with o(m) scalar product evaluations.

State-of-the-art algorithms relax the exactness assump-
tion and compute an approximate solution in time
equivalent to a sublinear number of scalar product eval-
uations, i.e. o(n) (e.g. (Charikar, 2002; Lv et al., 2007;
Shrivastava and Li, 2014; Neyshabur and Srebro, 2015;
Andoni et al., 2015)). We consciously refrain from stat-
ing more precise running times, as these will depend on
the actual choice of the algorithm and the parameters
chosen by the user. Our approach in this paper is trans-
parent to the actual choice of S-MIPS algorithm, we
only show how GCD steps can be ezactly cast as such
instances. By employing an arbitrary solver one thus
gets a sublinear time approximate GCD update. An
important caveat is that in subsequent queries, we will
adaptively change the subset B based on the solution to
the previous query. Hence the known theoretical guar-
antees shown for LSH do not directly apply, though
the practical performance does not seem to be affected
by this (see Appendix Fig. 13, 17). Practical details of
efficiently solving S-MIPS are provided in Section 7.

6 Mapping GS-s to MIPS

We now move to our next contribution and show how
the GS-s rule can be efficiently implemented. We aim
to cast the problem of computing the GS-s update as
an instance of MIPS (Maximum Inner Product Search),
for which very fast query algorithms exist. In contrast,
the GS-r and GS-q rules do not allow such a mapping.
In this section, we will only consider objective functions
of the following special structure:

. aet TS oo
min {F(@)®(4a) +cTa +_§;gz<az>} . (13)
f(e) b

The usual problems such as Lasso, dual SVM, or lo-
gistic regression, etc. have such a structure (see Ap-
pendix A.3).

Difficulty of the Greedy Rules. This section will
serve to strongly motivate our choice of using the GS-s
rule over the GS-r or GS-q. Let us pause to exam-
ine the three greedy selection rules and compare their
relative difficulty. As a warm-up, consider again the

smooth function f(a) < 5 | Aa — b|? for a data ma-
trix A € R¥™ as introduced above in Section 5. We

have observed that the steepest coordinate direction is

argmax |V, f(a)] = argmax max (sA;,v). (14)
j€[n] j€ln] s€{-1.1}
The formulation on the right is an instance of MIPS

over the 2n vectors =A;. Now consider a non-smooth
problem of the form F(a) & 1 Aa— b|* + Al
For simplicity, let us assume o« > 0 and L = 1. In this

case, the subgradient is ATv + A1 and the GS-s rule is
argmax min |V, f(a) + s
j€ln]  s€8layl
= argmax max
j€ln)  s€{-1,1}

The rule (15) is clearly not much harder than (14), and
can be cast as a MIPS problem with minor modifica-

tions (see details in Sec. 6.1).

(sAj,v)+sA. (15)

Let a;r denote the proximal coordinate update along

the j-th coordinate. In our case, a;r = Sx(a;—(A;,v)).

The GS-r rule can now be ‘simplified’ as:

aj, if Jaj = (Aj0)] <A
arg max (16)
i€l (sign(e; — (Aj, v)), otherwise.

It does not seem easy to cast (16) as a MIPS instance.
It is even less likely that the GS-q rule which reads

argl[rn]in {ij(a)(aj—aj)+%(a;r—aj)2+)\(|a;r|—aj)}
JjE|n

can be mapped as to MIPS. This highlights the sim-
plicity and usefulness of the GS-s rule.

6.1 Mapping L1-Regularized Problems

Here we focus on problems of the form (13) where
g(a) = \||e||;. Again, we have Vf(a) = ATVi(v)+c
where v = Aau.

For simplicity, let a # 0. Then the GS-s rule in (9) is
arg max |s(a);| = argmax [(A;, VI(v))+c;+sign(a;)A|
j€ln] j€ln

= argmax max s [(A;, VI(v)) + ¢; + sign(a;)A] .
F€n] sexl

(17)

We want to map the problem of the above form to a
S-MIPS instance. Define for some 5 > 0, vectors

- T
AT = (£8, Bey, Aj) (18)
and form a query vector q as
.
q:= (%, 1, Vl(v)) (19)

A simple computation shows that the problem in (17)
is equivalent to

Tsign(a;)
arjger[r;]axx Imax <sAj ’ ,q> .

Thus by searching over a subset of vectors in {:I:A;t},
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we can compute the GS-s direction. Dealing with the
case where a;; = 0 goes through similar arguments, and
the details are outlined in Appendix E. Here we only
state the resulting mapping.

The constant 8 in (18) and (19) is chosen to ensure
that the entry is of the same order of magnitude on
average as the rest of the coordinates of A;. The need
for B only arises out of the performance concerns about
the underlying algorithm to solve the S-MIPS instance.
For example, 5 has no effect if we use exact search.

Formally, define the set P := {j:A]jE : j € [n]}. Then

at any iteration ¢ with current iterate ¥, we also
define B; as B, = B} U B? U B} U B}, where
Bl = {A; : a;t) > 0} , B = {—Ajr : Ozgt) > 0} ,
3_Ji-.,0 4 _ A— . ®
Bi={A;:a" <0}, Bl={-4;:al <0}.
(20)

Lemma 3. At any iteration t, for P and By as defined
in (20), the query vector q; as in (19), and s(a) as
in (9) then the following are equivalent for f(a) is of
the form l(Aa) + ¢ a:

S-MIPSp(qys; By) = arg max [s(e);] -

The sets By and By differ in at most four points since
a® and attY) differ only in a single coordinate. This
makes it computationally very efficient to incrementally
maintain B,y and a**1 for Ll-regularized problems.

6.2 Mapping Box-Constrained Problems

Using similar ideas, we demonstrate how to efficiently
map problems of the form (13) where g enforces box
constraints, such as for the dual SVM. The detailed
approach is provided in Appendix B.1.

7 Experimental Results

Our experiments focus on the standard tasks of Lasso
regression, as well as SVM training (on the dual ob-
jective). We refer the reader to Appendix A.3 for
definitions. Lasso regression is performed on the rcvi
dataset while SVM is performed on wla and the ijcnnl
datasets. All columns of the dataset (features for Lasso,
datapoints for SVM) are normalized to unit length,
allowing us to use the standard cosine-similarity algo-
rithms nms1ib (Boytsov and Naidan, 2013) to efficiently
solve the S-MIPS instances. Note however that our
framework is applicable without any normalization, if
using a general MIPS solver instead.

We use the hnsw algorithm of the nms1ib library with
the default hyper-parameter value M and other pa-
rameters as in Table 1, selected by grid-search.? More

2 A short overview of how to set these hyper-parameters

Table 1: Datasets and hyper-parameters: Lasso is run
on rcvl, and SVM on wia and ijcnnl. (d, n) is
dataset size, the constant § from (18), (19) is set to
50/4/n, nmslib hyper-parameter M is set as a default,
efC = 100. p is the density of the optimal solution.

Dataset n d o efS post
rcvl, A=1 47,236 15,564 19% 100 2

revl, A =10 47,236 15,564 3% 400 2
wla 2,477 300 100 0
ijcnni 49,990 22 50 0

rcvl reg 1, LASSO

== dhillon
steepest

rcvl reg_10, LASSO

t
104 +9=0--0—0—0-0—0 -0- 0 -0 -o—

104 . —=dhillon

steepest

2~0 00 -0 0-0-0-0—0-

suboptimality
suboptimality

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
epochs epochs

Figure 2: Evaluating dhillon: steepest which is
based on the GS-s rule outperforms dhillon which
quickly stagnates. Increasing the regularization, it
stagnates in even fewer iterations.

details such as the meaning of these parameters can
be found in the nmslib manual (Naidan and Boytsov,
2015, pp. 61). We exclude the time required for pre-
processing of the datasets since it is amortized over the
multiple experiments run on the same dataset (say for
hyper-parameter tuning etc.). All our experiments are
run on an Intel Xeon CPU E5-2680 v3 (2.50GHz, 30
MB cache) with 48 cores and 256GB RAM.

First we compare the practical algorithm (dhillon)
of Dhillon et al. (2011), which disregards the regu-
larization part in choosing the next coordinate, and
Algorithm 1 with GS-s rule (steepest) for Lasso regres-
sion. Note that dhillon is not guaranteed to converge.
To compare the selection rules without biasing on the
choice of the library, we perform exact search to an-
swer the MIPS queries. As seen from Fig. 2, steepest
significantly outperforms dhillon. In fact dhillon
stagnates (though it does not diverge), once the error
f(a) becomes small and the L1 regularization term
starts playing a significant role. Increasing the regu-
larization A further worsens its performance. This is
understandable since the rule used by dhillon ignores
the L1 regularizer.

Next we compare our steepest strategy (Algo-
rithms 1 and 2 using the GS-s rule), and the corre-
sponding nearest-neighbor-based approximate versions
(steepest-nn) against uniform, which picks coordi-
nates uniformly at random. In all these experiments,

can be found at https://github.com/nmslib/nmslib/
blob/master/python_bindings/parameters.md.
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G 0—0—0-0-0-0-0—0-0-0 -9
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S40f —— steepest ‘,0-0—" L < ’
2 - e
] == steepest-nn «® T 2000 / == uniform
207 1 .‘./ 3 ! o~¥ —— steepest
| gaeeee P recpest
ol &* ol &= steepest-nn
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epochs epochs
Figure 3: steepest as well steepest-nn significantly

outperform uniform in number of iterations.

A € {1,10} for Lasso and at 1/n for SVM. Fig. 3 shows
the clearly superior performance in terms of iterations
of the steepest strategy as well as steepest-nn over
uniform for both the Lasso as well as SVM problems.
However, towards the end of the optimization i.e. in
high accuracy regimes, steepest-nn fails to find di-
rections substantially better than uniform. This is
because towards the end, all components of the gra-
dient V f(a) become small, meaning that the query
vector is nearly orthogonal to all points—a setting in
which the employed nearest neighbor library nmslib
performs poorly (Boytsov and Naidan, 2013).

Fig. 4 compares the wall-time performance of the
steepest, steepest-nn and uniform strategies. This
includes all the overhead of finding the descent direction.
In all instances, the steepest-nn algorithm is compet-
itive with uniform at the start, compensating for the
increased time per iteration by increased progress per
iteration. However towards the end steepest-nn gets
comparable progress per iteration at a significantly
larger cost, making its performance worse. With in-
creasing sparsity of the solution (see Table 1 for spar-
sity levels), exact steepest rule starts to outperform
uniform and steepest-nn.

Wall-time experiments (Fig. 4) show that steepest-nn
always shows a significant performance gain in the im-
portant early phase of optimization, but in the later
phase loses out to uniform due to the query cost and
poor performance of nmslib. In practice, the recom-
mended implementation is to use steepest-nn algo-
rithm in the early optimization regime, and switch to
uniform once the iteration cost outweighs the gain. In
the Appendix (Fig. 13) we further investigate the poor
quality of the solution provided by nmslib.

Repeating our experiments with other datasets, or
using FALCONN (Andoni et al., 2015), another popular
library for MIPS, yielded comparable results, provided
in Appendix G.

rcvl, A=1, LASSO rcvl, A=10, LASSO

== uniform 10° ~ 1
106 '\ m— S~ao
) \\ I steepest 2 *'r._ _______ -
& '\ : —— steepest-nn 105 \
= I 2
Q L - Q
8 LI SRS 3
5 poo-eeoe <10
a 1 a
105 1 -
S—
0 25 50 75 100 125 150 0 25 50 75 100 125 150
time (s) time (s)
— ‘f"lf—",ivf'n — iicnnl, SVM
80 et el
c -, P
S60 he 4000 o~ —%e®
g / o !
240 / S '] & .
K] ,’ [ == uniform < 2000 ) , — = uniform
©201 1y — = steepest 3 ,I X ~~ steepest
o - = steepest-nn o —— steepest-nn
0.00 0.05 0.10 0.15 0.20 0.25 0 1 2
time (s) time (s)
Figure 4: steepest-nn is very competitive and some-

times outperforms uniform even in terms of wall
time especially towards the beginning. However even-
tually the performance of uniform is better than
steepest-nn. This is because nms1ib performs poorly
as the norm of the gradient becomes small.

8 Concluding Remarks

In this work we advocate the use of approximate GS-s
selection rule for coordinate descent, and show its con-
vergence for several important classes of problems for
the first time, furthering our understanding of steepest
descent on non-smooth problems. Our results demon-
strate that significant speedups can be achieved by
using the subgradient (4) to efficiently select the most
‘important’ coordinate at each iteration. Prior to our
work, the analysis of greedy coordinate methods for
composite functions mostly reverted to that of UCD
or made unreasonable assumptions (e.g. Nutini et al.
(2015); Zhang and Xiao (2017); Lei et al. (2017)). This
is in stark contrast with smooth functions where many
algorithms provably have rates better than UCD (e.g.
Nutini et al. (2015, 2017); Nesterov and Stich (2017)).
We believe our proof techniques can help bridge this
gap between the analysis of greedy methods on smooth
and non-smooth functions.

Our extensive numerical experiments also showcase the
strengths and weaknesses of current state-of-the-art
libraries for computing a ©-approximate GS-s direction.
As n grows, the cost per iteration for nmslib remains
comparable to that of UCD, while the progress made
per iteration increases. This means that as problem
sizes grow, GS-s implemented via S-MIPS becomes an
increasingly attractive approach. However, when the
norm of the gradient becomes small, current state-of-
the-art methods struggle to find directions substantially
better than uniform. Alleviating this, and leveraging
some of the very active development of recent alter-
natives to LSH as subroutines for our method is a
promising direction for future work.
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Appendix

A Setup and Notation

In this section we go over some of the definitions and notations which we had skipped over previously. We will
also describe the class of functions we tackle and applications which fit into this framework.

A.1 Function Classes

Definition 8 (coordinate-wise L-smoothness). A function f:R™ — R is coordinate-wise L-smooth if
Ly?
f(a+'7ei) < f(OL) +’Yvif(a)+ T

for any a € R™, v € R, i € [n], and e; is a coordinate basis vector.

We also define strong convexity of the function f.

Definition 9 (u-strong convexity). A function f: R™ — R is p-strongly convex with respect to some norm ||-|| if
I 2
fla+Aa) 2 fla) +(Vf(a), Aa) + 5 [|Ac]
for any a and o+ A in the domain of f (note that f does not necessarily need to be defined on the entire space
R™).

We will frequently denote by uo the strong convexity constant corresponding to the usual Euclidean norm, and by
11 the strong convexity constant corresponding the L1 norm. In general it holds : pq € [u2/n, pe]. See (Nutini
et al., 2015) for a detailed comparision of the two constants.

Theorem 4. Suppose that the function is twice-differentiable and

L> m?>]<[V2f (@)]ii
1€n

for any a in the domain of f i.e. the mazimum diagonal element of the Hessian is bounded by L. Then f(c) is
coordinate-wise L-smooth. Additionally, for any Aa € R™

Flot Aa) < f(a) + (V(a), Aa) + 5 Ao

Proof. By Taylor’s expansion and the intermediate value theorem, we have that for any o, Aa € R"™, there exists
a « € [0,1] such that for v = a + aA«,

fla+ Aa) = fla) + (Vf(a), Aa) + %AaTVQf(v)Aa. (21)

Now if Aax = ~ye; for some v > 0 and coordinate 4, the equation (21) becomes

2
S+ ves) = f@) + 7 Vif(a) + V2 (0)]i

The first claim now follows since L was defined such that L > V2f (v);;. For the second claim, consider the
following optimization problem over A,

max {Z?fv? )Aa oAa)} . (22)

12e], <2
We claim that the maximum is achieved for Aa = e; for some i € [n]. For now assume this is true. Then we
would have that
T2 2 AT 02 o\ A e
Aa' ' Vif(v)Aa = [|Aa|] Aa Vf(v)Aa
< |Aalfe] V2 f(v)e;
= |Aali [V2f ()]
<|lAafi L.
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Using this result in equation (21) would prove our second claim of the theorem. Thus we need to study the
optimum of (22). Since f is a convex function, Q is also a convex function. We can now appeal to Lemma 4 for
the convex set ||x||; < 1. The corners of the set exactly correspond to the unit directional vectors e;. With this
we finish the proof of our theorem. O

Remark 10. This result states that if we define smoothness with respect to the L1 norm, the resulting smoothness
constant is same as the coordinate-wise smoothness constant. This is surprising since for a general convex function
g, using the update rule

L 2
oY = arg min <Vf(a(t)), s — a(t)> + 3 Hs — a(t)Hl +9(s),
S

does not necessarily yield a coordinate update. We believe this observation (though not crucial to the current
work) was not known before.

Let us prove an elementary lemma about maximizing convex functions over convex sets.

Lemma 4 (Maximum of a constrained convex function). For any convex function Q(x), the mazimum over a
compact convex set B is achieved at a ‘corner’. Here a ‘corner’is defined to be a point * € B such that there do
not exist two points y € B and z € B, y # x,z # x such that for some v € [0,1], (1 —y)y + vz = .

Proof. Suppose that the maximum is achieved at a point & which is not a ‘corner’. Then let y, z € B be two
points such that for v € [0, 1], we have (1 — )y + vz = @. Since the function is convex,

max(Q(y), Q(z)) > (1 -7)Q(y) +7Q(2) > Q((1 =)y +z) = Q(=x) . (23E)]

We also assume that the proximal term g(a) = >, g;(c) is such that g;(;) is either |a;| or enforces a
box-constraint.

A.2 Proximal Coordinate Descent

As argued in the introduction, coordinate descent is the method of choice for large scale problems of the form (1).

We denote the iterates by a® € R”, and a single coordinate of this vector by a subscript al(.t), for i € [n]. CD

methods only change one coordinate of the iterates in each iteration. That is, when coordinate ¢ is updated at
(t+1)

iteration ¢, we have a; = a§t) for j # 4, and

3

1
™ = sy, [of? - Lista®)], (249

vg,[y] = arg min 3 (z — y)? +~gi(2).
xR

where prox

Combining the smoothness condition, and the definition of the proximal update (24), we get the progress made
X; () is
Lv?

v (@) = min [vvjf(a(t)) + =5+ as(af +7) - gj<a§“>] > F(a) ~ min For+ 7e;). (25)

A.3 Applications

There is a number of relevant problems in machine learning which are the form

n
. def T
Fla)=l(Aa)+ ¢ « (o
Ortrglgb{ (a) (Aa) + +z;gz(az)}a
i=

where the non-smooth term g(c) either enforces a box constraint, or is an Ll-regularizer. This class covers several
important problems such as SVMs, Lasso regression, logistic regression and elastic net regularized problems. We
use SVMs and Lasso regression as running examples for our methods.



Sai Praneeth Karimireddy”, Anastasia Koloskova®, Sebastian U. Stich, Martin Jaggi

SVM. The loss function for training SVMs with A as the regularization parameter can be written as

def 1 A
w) = =31 bw al++2|w||§], (26)
=1

n

min
w

where {(a;,b;)}"; for a; € R and b; € {1} the training data. We can define the corresponding dual problem
for (26) as

I 1
D) LS 0 - L4l 2
s, D@ 03 0 - 5 (27)
where A € RX™ for the data matrix of the columns b;a; (Shalev-Shwartz and Zhang, 2013b). We can map this
to (1) with {(a) :== —D(a), with ¢ := —%1, and g;(c;) := 1{4,e[0,1)} the box indicator function, i.e.
def 1 - -
Fla) = )\ s A ||§*ﬁzai+zl{aie[o,1]}
i=1 i=1

It is straight-forward to see that the function f is coordinate-wise L-smooth for L = 15 max;e[, || A; ||

We map the dual variable a back to the primal variable as w(a) = ﬁAa and the duality gap defined as

gap() = P(w(a)) — D(av).

Logistic regression. Here we consider the L1-regularized logistic regression loss which is of the form
d
min | F(a) d:ef210g (1+exp(=bia’a;)) + Allef, | , (28)
i=1
where {(a;,b;)}L, for a; € R” and b; € {&1} is the training data. The data matrix A € R¥*" is composed with

a; as the rows. Denote A; to be the ith column of A. As in the Lasso regression case, the regularizer A ||||; is
g(a) and the sigmoid loss corresponds to I(e) which is coordinate-wise L-smooth for

1
L= 1 ?Elﬁf]( ||AiH2

Lasso regression. The objective function of Lasso regression (i.e. Ll-regularized least-squares) can directly be
mapped to formulation (1) as

of 1
min | F(0) = 4~ bl + Al (29)

Here [(a) = 1 | A — b||§, g(a) = A|laf|, and f is coordinate-wise L-smooth for L = max;e[n) | As|?

Elastic net regression. The loss function used for Elastic net can similarly be easily mapped to (1) as

def 1

. A
min | Fa)® e~ bl + 32 ol + Al (30)

Here [(a) = 1 | A — b||§ + % ||o¢||§7 g(a) = A||a||;. The function f is coordinate-wise L-smooth for
L = max || A;|* + A2,
i€[n]

as well as Aa-strongly convex. Similarly, {(a) could also include an L2-regularization term for logistic regression.

Note that in the SVM case n represents the number of data points with d features whereas the roles are reversed
in the regression problems. In all the above cases, g was either a box-constraint (in the SVM) case or was an
L1-regularizer.
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B Algorithms for Box-Constrained Problems

In this section, we give an outline of the GS-s strategy as it applies to box constrained problems as well as derive
a reduction to the MIPS framework. Assume that the minimization problem at hand is of the form?

min  f(a). (31)

acl0,1]m

The proximal coordinate update (24) for updating coordinate i; simplifies to
1
oy, := min <1, [ag” - Vi,f(a(t))} ) . (32)
t L t n

At any iteration ¢, let us define an active set of coordinates A; C [n] as follows
agt) € (0,1), or

ozl(»t) =0 and Vif(a(t)) <0, or (33)
ol =1 and V;f(a®) > 0.

Ay =i €[n] st.

Then, the following lemma shows that we can also simplify the rule (4) for selecting the steepest direction.

Lemma 5. At any iteration t, the GS-s rule is equivalent to

Vif(a®) +SH = max Vif(a(t))‘ 7 (34)

max | min
i SEDg;

assuming that the right side evaluates to 0 if Az is empty.

While we will see a formal proof later in Section E, let us quickly get some intuition for why the above works.
When the ith coordinate is on the border i.e. «; € {0,1}, there is only one valid direction to move—inside the
domain. The set A; just maintains the coordinates for which the negative gradient direction leads to a valid
non-zero step.

We summarize all the details in Algorithm 2. Note that we have not specified how to perform steps 3 (coordinate
selection) and 7 (updating the active set). This we will do next in Section B.1. Our algorithm also supports
performing an optional explicit line search to update the coordinate at step 5.

Algorithm 2 Box Greedy Coordinate Descent (Box-GCD)
1: Initialize: o + 0 € R", and Ay + {i | V;f(a®) < 0}.
2: for t =0,1,...,until convergence do
3:  Select coordinate i; as in GS-s, GS-r, or GS-q. (34).

Find «;, according to (32).
(Optional line search:)
a, = minsepo) fla® + (v —af)er).
a§f+1) — Qg -
Update A;4+1 according to (33).
end for

B.1 Mapping Box Constrained Problems

For this part, just as in the Ll-regularization case in Section 6, we will only look at functions having the special
structure of (13), which for g(a) being the box indicator function becomes the constrained problem

d
min {f(a) d:efl(Aoz) +cla= Zli(AlTa) + cTa} .

0,1]"
o€[0,1] i=1

3If the constraints are of the form «; € [as, b;] for i € [n], we simply rescale and shift the coordinates.
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For this case the selection rule in equation (34) in Algorithm 2 becomes
T
max IVif(a)| = max |A] VI(Aa) + ¢
We see that the above is nearly in the form suited for MIPS oracle already, which as we recall from Def. 7, is

S-MIPSx(q; B) := argngax{(pj,qﬂ .
je

The bulk of our work is now to efficiently maintain the active set 4; as per (33). We will make two changes to
the formulation above to make it amenable to the S-MIPS solvers: i) get around the extra c;a; term, and ii) get
around the [-|.

First to tackle the extra c;«; term, we modify the columns of the matrix A as follows

A = (ﬁ) . (35)

@ (w(f@(ﬂ)) ‘ (36)

Aith = AiTVl(Aa) + cia .
The constant (3 is chosen to ensure that the entry is of the same order of magnitude on average as the rest of the
coordinates of A; and can in general be set to % The 3 affects the distribution of the data points, as well as

Now define the query vector q; as

It is easy to see that

the input query vector. Depending on the technique used to solve the S-MIPS instance, tuning 8 might be useful
for the practical performance of the algorithm.

Now to get rid of the absolute value, we use the fact that |z| = max(z, —z). Define the set P = {iAi}. Then,

max
i€[n]

qut) =maxa' gq;.
acP

To remove the coordinate j from the search space for the equation on the left, it is enough to remove the vector
argmax, ., 4. a'q; from P. In this manner, by controlling the search space B; C P, we can effectively restrict
the coordinates over which we search. Formally, let us define

P =Pt UP™, where

PE = {iAl,...,iAn}. (37)

The active set A contains only the ‘valid’ directions. Hence, if o; = 0 then j € A, only if V; f(oy) = A;-rqt <0.

This can be accomplished by removing Aj and keeping only —A; in P. In general, at any iteration ¢ with current
iterate a®), we define B; := B;” U B;” where

B = {fi] :aét) > 0} ,
- (38)
B i={-4;:00 <1} .

Lemma 6. At any iteration t, for P and By as defined in (37), (38), the query vector q; as in (36), and A; as
in (33) then the following are equivalent for f(cx) is of the form l(Aa) + ¢’ a:

S-MIPSp(gy; By) = arg max ‘ij(a(t))‘ .
JEAL

Finally note that the since the vector a(**1) and a® differ in a single coordinate (say 4;), the set By, and B;
differs in at most two points and can be updated in O(1) time.

C Theoretical Analysis for L1-regularized Problems

In this section we discuss our main theoretical contributions. We give formal proofs of the rates of convergence
of our algorithms and demonstrate the theoretical superiority of the GS-s rule over uniform coordinate descent.
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e 0
«a
B S NN SO B/ S 2
: a &
bad éteps good éteps

Figure 5: Characterizing steps for the L1 case: The arrows represent proximal coordinate updates S 2 (o —

+V;f(a)) from different starting points c. Updates which ‘cross’ (by) or ‘end at’ (b) the origin are bad whereas
the rest (g1, g2) are good.

Recall the definitions of smoothness and strong convexity of f.

L?
2 )

where e; for ¢ € [n] is a coordinate basis vector and that for any Aa € R,

fla+Aa) = (f() + (Vf(@),Aa) = T [Aal?

fla+ve;) < fla) +yVif(a) +

In our proofs we will only focus on the GS-s rule, but they are true for the GS-r or GS-q rules too.

C.1 Good and Bad Steps

The key to the convergence analysis is dividing the steps into good steps, which make sufficient progress, and bad
steps which do not.

Definition 11 (good and bad steps for L1 case). At any step t, let iy be the coordinate to be updated. Then if
either i) a; - (S% (o — %V,-f(a))) >0, or i) a; = 0, then the step is deemed a good step (see Figure 5). The

steps where «; - (S (o — %sz(a))) < 0 are called bad steps.

A
L

In general there is no guarantee that all steps are good. However our algorithms exploit the structure of the
proximal function g to ensure that at least a constant fraction of total steps are good. Recall that the algorithm 1
performs the following update step to update the ith coordinate as in (10) and (12):

af = Sa <a§t) — 2Vz‘f(a,(;t))> and

(t4+1) _ a:r, if ajaz(-t) >0
! 0, otherwise

(0%

From here on we will stop indicating the iteration number ¢ when obvious.

Lemma 7 (Counting good steps). After t iterations of Algorithm 1, out of the t steps, at least [t/2] steps are
good.

Proof. The definition 11 says that the only bad steps are those for which i) agt) # 0 and ii) aiaj < 0. However

by our modification to the update rule (12) ensures that in this case, aEtH) = 0. This ensures that the next time
coordinate i is picked, we are guaranteed a good step. Since we start at the origin, we have our lemma. O

C.2 Progress Made in good and bad Steps

Below is the core technical lemma in the convergence proof. We show that if the step was good, then the update
chosen by the GS-s rule actually corresponds to optimizing an upper-bound on the function with the usual
L2-squared regularizer replaced by an L1-squared regularizer. We of course also have only an approximate GS-s
coordinate.

Recall that we had defined

def . L’Y2
Xs(e) Emin |79, 7(e) + 2=+ Mg+, ~ llagll)|
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Lemma 8 (good steps make a lot of progress). Suppose that the ©-approximate GS-s rule (recall Definition 1)
chose to update the ith coordinate, and further suppose that it was a good step. Then the following holds:

L
xi(@) <O min |(Vf(a), Aa) + 5 [Aaf} + A(le + Ae| — )| -

Proof. Recall from Section 3.1 that the GS-s rule for the L1 case was to find a coordinate 7 such that

|s(a);| > ©argmax |s(a);]| .
J

The vector s(a) (by expanding the definition of the shrinkage operator) can equivalently be defined as

0, if aj =0,|V;f(a)] <A
s(a); = Vifla) = A, if aj =0,V;f(a) >\
T Vif(@) + if a; = 0,V f(a) < —A

V,f(a) +sign(a;)\ otherwise.
Let us define the folowing vector ¢ € [—1,1]™ as
G = (s(@)j = Vif(@))/A.

Examining the four cases listed above shows indeed that (; € [—1,1]. We will use the fact that for any 8 € [—1,1],
|z| > Bx. We have that

la+Aal 2 (¢ a+ Aa) = (¢, a) + ((, Aa).
This implies that for any vector Aax € R",

{P(aAa) (Y f(e), Aa) + ¢ [Aal? + Ao+ Ao, - |a||1>}
> (Vf(), Aa) + 5 [ Aallf + A(Ga+ Aa) e,
= (Vi(e) + 2. Aa) + 5 |1Aal +A((C, @) ~ [l

= (s(a), Aa) + 5 Al +A((¢ )  lal,).

In the last step we used the definition of . Let us examine the expression (¢ ; — |o;|). If a; = 0, each of
the terms in the expression is 0 and so it evaluates to 0. If a;; # 0, then by the definition, ¢; = sign(ca;) and
¢joj = |oyj|. In this case too, the expression is 0. Thus,

L
Pij(e, Aa) > (s(a), Aey) + 3 [[Aax][§ +A((C, @) — [lex]y)
L .
—{(s().20) + 5 120 £ Pefar 2o |
Minimizing P¢ (e, Aax) over Aa gives us that

: L 2 1 2

This exactly corresponds to the GS-s rule. Since 7 was a ©-approximate GS-s direction,

. L 2 1 2
m o AO{ + — AO{ > o)
faé%” <S( )7 > 9 || ||1 = 2[@2 (S( )74)

Further since this is a good step, by Lemma 9, we can replace the right side of the above equation with x; ().
Putting these observations together we have that for any a € R"”

min Pj(a,Aa) > min Pe(a, Acr)
AaeRn AacRn

1
> @Xi(a)-

Rearranging the terms gives the proof of the lemma. O

Lemma 9 (Characterizing a good step). Suppose that we update the ith coordinate and that it was a good step.
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Then
1 9 1

xila) =~ (af = ai)? = == (s(a)i)?.

Proof. By the definition of the coordinate proximal update,

) Lv?
Xi(@) = min [V f (@) + 2 + Al + 9] — o)
vER 2

= (of — ) V(@) + 5 (af — )+ M(|a] ~fa).

Now first suppose that a; # 0. Since this is a good step, sign(a;") = sign(a;). Without loss of generality, let us
assume that a; > 0. Then (o) = a; — (V;f(a) + A\)/L). Using this in the above expression,

K2

STy

xil@) = (0F — a)Vif(a) + = (aF — an)? + Ao | — Jaa])

2

(Vaf (@) + A)(Vaf () + o5 (Vi (@) + 2~ (Vif(e) + )

= 2 (Vif(@) + A(Vif(@) +0) + 57 (Vi (@) + )

The proof for when «; < 0 is identical. Now let us see the case when «; = 0. Since this is not a bad step, we
have that o # 0 meaning that |V, f(a)| > A. Without loss of generality, assume that «;" > 0—the other case is
identical. Then (o = —1 (V;f(a) + X)) and (s(a); = V; f(c) + A). Doing the same computations as before,

xi(@) = (of — a)Vif(e) + 2 (0F — o) + Aflaf | - Ja)
1 L A
= —E(Vz’f(a) + A (Vif(e) + 312 (Vif (@) + 2)* - E(Vif(a) +A)
_ L , R 2
1
= _ﬁ(vif(a) +2)?
1
- (o —a)?
_ 1 2
= (@)
Such simple calculations shows that indeed the lemma holds in all cases. O

Remark 12. Lemma 9 shows that for a good step, the GS-s, GS-r, and GS-q rules coincide. Thus even though
we explicitly write the analysis for the GS-s rule, it also holds for the other updates. Note that while the three
rules coincide for a good step, they can be quite different during the bad steps. Further the computations required
for the three rules is not the same since we a priori do not know if a step is going to be good or bad.

We have characterized the update made in a good step and now let us look at the bad steps.

Lemma 10 (bad steps are not too bad). In any step of Algorithm 1 including the bad steps, the objective value
never increases.

Proof. If the step was good, since the update (10) is just a proximal coordinate update, it is guaranteed to not
increase the function value. The modification we make when the step is bad (12) makes the lemma slightly less
obvious. Without loss of generality, by symmetry of L1 about the origin, let us assume that a; > 0. Since the
step was bad, this implies that o = a; — +(V;f(c) + A) < 0 for (12). Then

L
F(at+1) _ F(a(t)) < _Vif(a)ai + 50412 - A |ai|
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= oy (-Vz‘f(a) + gai - /\)

< Lg; (—;sz(a) + Oéi/2 — i)\)

= Lo ((a _ %[Vif(a) 4 A]) - ai/2>
< La; (0+0) . O

C.3 Convergence in the Strongly Convex Case

Theorem 5. Aftert steps of Algorithm 1 where in each step the coordinate was selected using the ©-approzimate
GS-s rule, let Gy C [t] indicate the good steps. Assume that the function was L-coordinate-wise smooth and
strongly convex with respect to the L1 norm. The size |G¢| > [t/2] and

F(a"Y) - F(a*) < (1 - @2‘“) - (F(a) - F(a")) .

We have almost everything we need in place to prove our convergence rates for the strongly convex, and the
general convex case. Recall that the function f is p; strongly convex with respect to the L1 norm. This implies
that

Fla") = fla) + (Vf(a), o —a) + % lo* — a[[§ + g(e).

We will need one additional Lemma from (Karimireddy et al., 2018) to relate the upper bound we minimize in
Lemma 8.

Lemma 11 (Relating different regularizing constants (Karimireddy et al., 2018)). For any vectors g, € R™,
and constants L > p > 0,

: 2
min {A(Ilwll ) + (g, — ) + £ Jw — anl} <
weR

[T Iz 2
7 min (M, ~ lad) + (g.w - )+ & jw — e}

Proof. The function A(Jw| —|a|) + (g, w — a) is convex and is 0 when w = «, and ||w — |, is a convex positive
function. Thus we can apply Lemma 9 from (Karimireddy et al., 2018). O

The proof of the theorem now easily follows.

Proof of Theorem 5. First, by Lemma 7, we know that there are at least as many good steps as there are
bad steps. This means that |G| > [t/2] for any ¢t. Now suppose that ¢ was a good step and updated the ith
coordinate. Now by the progress made in a proximal update (25) and Lemma 8,

)}

F(a(t“)) < F(a(t)) + Xi(a(t))
2
Aol [t

2 t
4 Al — [|a®

weR?

= F(a™) + ©? min {<Vf(oz(t)),w - a(t)> + % Hw —al

2
< F(aW) + @Lm min {<Vf(a(t)),w — a(t)> + % Hw —a®

weR?

)}

In the last step we used Lemma 11. We will now use our definition of strong convexity. We have shown that
F(@"V) - F(a*) < F(a) - F(a")
2 2
N (O T )
weR? 1

< F(a'9) — F(a*)+

% (<Vf(a(t)),a* ) % o — a0

2
Al ol

)

2
Ay = ot
1

L
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< F(aW) — F(a*) +
. 0%

@2
L (fla) = £(@®) + 2], - o

)
-1 ) (Fal) = F(am)) .

We have shown that we make significant progress every good step. Combining this with Lemma 10 which shows
that the function value does not increase in a bad step finishes the proof. O

Remark 13. We show that the GS-s rule has convergence rates indepedent of n for Ll-regularized problems. As
long as the update is kept the same as in Algorithm 1 (with the modification), our proof also works for the GS-r
and the GS-q rules. This answers the conjecture posed by (Nutini et al., 2015) in the affirmative, at least for
L1-regularized problems.

C.4 Convergence in the General Convex Case

Theorem 6. Aftert steps of Algorithm 1 where in each step the coordinate was selected using the ©-approzrimate
GS-s rule, let Gy C [t] indicate the good steps. Assume that the function was L-coordinate-wise smooth. Then the
size |G| > [t/2] and

LD?
Fa") - Fla*) < ——— |
(@)~ Fla) € g
where D is the L1-diameter of the level set. For the set of minima Q~,

_ . o (0)
D gune%garggg*{llw alll(F(w)SF(a )}~

Proof. We start exactly as in the strongly convex case. First, by Lemma 7, we know that there are at least as
many good steps as there are bad steps. This means that |G;| > [t/2] for any t. Now suppose that ¢ was a good
step and updated the ith coordinate. Now by the progress made in a proximal update (25) and Lemma 8,

Flalt) < Fla) + xi(a)

L 2
< fla® 2 Y 2 — o® 7H —a®
< fla)+ 6% min {(Vr(a),0 - a®) + o - a®| 4 Afwl,
< fla®) + 2 min <Vf(a<t>) w—oz(t)>+£Hw—a(t) * 2w
- w:(lffy)a(t){»'ya* ’ 2 1 1

Ly

2
5 +>\H(1 —v)a® +ya*
1

— (t) 2 i (t) x _ (1)
~ f(a)+ 0 %{ﬂw(a ot —a) 4

o

g

2
< fla)+ 6 mip {1(7@") = fla) + 55 o = [ a0 =) 0] 42l }

vER

In the last step we used the convexity of f and of |-|. Now denote the suboptimality h; = F(a?)) — F(a*). We
have shown that

hip1 = F(a) — F(a*)
< f(a®) - F(a?)

L2 2
+e%min {5(7(@") - fl@®)) + 7 o~ a4 21 <) [0

+xllatl )

= f(a®)+ A Ha(t)

) — F(a®)

2 2
+ ©%min {A/(f(a*) + A et = fla®) —+x Ha(t)H )+ Ly Ha* _ a(t)H }
YER 1 2 1

L 2

:ht+®231€1£_7ht+72§Ha*_a(t)

1
LD?
2

< hy + ©*min —vh; + 42
vER

 20%h3

—h— 2t
tLD?
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Now we know that the function value is non-increasing both during the good and bad steps from Lemma 10.
Hence h? > hyhyt 1. Using this inequality and dividing the entire equation by hihsyq gives

2 .
< {htl-H — 712/%2 lf t e gt

1
hy — hl 0. W.
t+1

Summing this up gives that
1 S 1 |Ge 1] 202 > |Gi41] 202
hiv1 — ho LD2 — LD?
Inverting the above equation gives the required theorem. O

Remark 14. We show that the GS-s rule has convergence rates independent of n for L1-reqularized problems.
As long as the update (12) is kept the same as in Algorithm 1, our proof also works for the GS-r and the GS-q
rules. Previously only the GS-r was analyzed for this case by Dhillon et al. (2011). A careful reading of their
proof gives the rate

8LD?
he < ranl

Thus we improve the rate of convergence by a factor of 8 even for GS-r, and show a convergence result for the
first time for GS-s.

D Theoretical Analysis for Box-constrained Problems

In this section we examine the algorithm for the box-constrained case. We give formal proofs of the rates of
convergence and demonstrate the theoretical superiority of the GS-s rule over uniform coordinate descent.

Recall the definition of coordinate-wise smoothness of f:
Ly?
2

where e; for i € [n] is a coordinate basis vector. Using strong convexity, for any Aa € R™ gives:

fla+8a) > (o) + (VF(a), Aa) + £ [aall} .

fla+ve;) < fla) +7Vif(a) +

D.1 The Good, the Bad, and the Cross Steps

Unlike in the L1 case, we need to divide the steps into three kinds. Differentiating between the three kinds is key
to our analysis.

Definition 15 (good, bad, and cross steps). At any step t, let i be the coordinate being updated. Then if
(o; — +Vif(e)) € (0,1) it is called a good step. If (c; — +V;f(ax)) ¢ (0,1), and o; € (0,1) the step is considered
bad. Finally if (a; — +V;f(a)) ¢ (0,1) and o; € {0,1}, we have a cross step. See Figure 6 for illustration.

We would like to bound the number of bad steps. This we can do thanks to the structure of the box constraint.

Lemma 12 (Counting bad steps). After t iterations of Algorithm 2, we have atmost |t/2]| bad steps.

Proof. Suppose we are updating the ith coordinate. As is clear from the definition (and Fig. 6), a bad step occurs
when we start in the interioir (a; € (0,1)) and attempt to move outside. But in this case, our update ensures
that agtﬂ) € {0,1}. Thus the next time coordinate ¢ is picked, it cannot be a bad step. Since we start at the

origin 0™, in the first ¢ steps we can have atmost [t/2]| bad steps. O

D.2 Progress Made in One Step

This section is the core technical part of the proof. The key to our rate is realizing that the three kinds of steps
have to be dealt with separately, and proposing a novel analysis of the cross step. Recall that we had defined

X (o) < in {ij(a) + W} )
v+a;€[0,1] 2
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A A

ba g1
— P
c
by g2
<
Bad Steps Good Steps Cross steps

Figure 6: Characterizing steps in box-constrained case (for n = 2): The bad steps correspond to those which
start in the interior and the update —%Vif(a) is interrupted by the boundary of the box constraint (as in steps
by and by). The good steps are those which end in the interior of the box (g; and g¢5), and the cross steps such
as ¢ are those which both start and end at the boundary.

Let us also recall the update step used in Algorithm 2. The update used is

o = min (1, [ozi _ ivif(a)L) .

The GS-s rule used to choose the coordinate 7 € A such that
IVif(a)| > ©max |V, f(a)|
jeEA

where the active set A C [n] consists of the coordinates which have feasible update directions:

j € Aif 3y > 0 such that (a; —vV;f(a)) €[0,1].

Before we begin, we should verify if the algorithm is even feasible—make sure that A is never empty.

Lemma 13 (A is not empty). If A =0, then « is the optimum.

Proof. f A = (, it means that none of the negative gradient directions are feasible i.e. for any j € [n] and
v € [0,1], (V;f(a)(v— ¢ ) > 0). This means that for any vector v € [0,1]",

(Vf(a) =) Vif(@)(v; —a;) > 0.

J€[n]

This implies that a is the optimum. O

Now let us first look at the good steps.

Lemma 14 (good steps make a lot of progress). Suppose that the ©-approzimate GS-s rule (recall Def. 1) chose
to update the ith coordinate, and further suppose that it was a good step. Then,

. L 2
w6, min (Vi@ 20+ % [2alt}

Aa€0,1]" —a

Proof. Define the right hand side above to be P(Aa) defined for Aax € R™ such that A + o € [0, 1]™:
def L
P(Aa) € (Vf (), Aar) + 7 [Acl} .

Suppose we are given some v in the domain. Let us construct a vector © € R™ such that

9; =20, ifa;=1, and V;f(a) <0

v;, otherwise.

Note that we can instead rewrite © as 0; = v; if j € A, or else is 0. Also we have [[v||, > ||0]];.
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For a coordinate j € [n] such that o; = 0, it holds that v; € [0,1]. Then V; f(a) > 0 implies that V; f(a)v; > 0.
Similarly if o =1 and V; f(a) < 0, then it holds that V; f(a)v; > 0. Thus we have
P(v) < P(v).

This means that if we want to minimize P, we can restrict our search space to coordinates in ([n] \ A). We
will use Aax € [0,1]" — o, Aa[A] = 0 to mean the set Aa € R™ such that Aa+ o € [0,1]" and for all j € A,
Aaj = 0. We then have that
min  P(Aa) = min P(Aax)
Aa€l0,1]"—a Aa€0,1]” —a,AafA]=0

> min P(Aa)
AaeR™ Aa[A]=0

; L 9
AacRmAaA]=0 {<Vf(a)’ )+ 5|l 041}

1
=37 I}lg\vjf(a)l

@2
57 IVif(e)] -

The last step is because i was defined to be a O-approximate GS-s direction. Now we also know that the update
was a good step. This means that (a; — V;f(a)/L) € [0, 1] which means that

Vv

Ly?
ila) = i Vi +—
wloy = wmin {39+ 5}
L
< (0 = ai)Vif(e) + S (of —ai)?
1
= 57 IVif(@)
1
< = i Aa).
S 82 sl o B
This finishes the proof of the lemma. O

We now turn our attention to the cross step which crosses from one end to the other.

Lemma 15 (cross steps also make a lot of progress). Suppose that the ©-approximate GS-s rule chose to update
the ith coordinate, and further suppose that it was a cross step. Then,

S} .
(@) < 5 min {(Vf(@).v—a)}.

Proof. Since the update was a cross step, this means that (a; — V;f(a)) # [0,1] and that o € {0,1}. In
particular this imlpies that when solving for the optimal  in the below problem, it is greater than 1:

2
1< argznain {'y(Vif(a))(az‘-" — ;) + L%(aj — aj)2}
(Vi) — ay)
N L(ozi+ —;)? ’

Now using this inequality in x;(a) we get

xi(@) = (Vif (@) (o — i) + 4 (of )’
< (Vif(a))(of — o) — 3 (Vif(e))(af — a)
= S (Vif(@))(af —a)

1
=3 IVif(a)l .
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The last step is because in a cross step, a;r — ai| =1 and is in the opposite direction of the gradient coordinate.
Now since i was a ©-approximate GS-s direction,

xi(@) < — Vi (@)

S)
< - .
< -5 max|V; f(a)]
< —opa) 2, (V@) e —v)
<2 win (Vi(e)v-a) ]
~ 2n ve(0,1]n ’ .

Finally let us check how bad the bad steps really are.

Lemma 16 (bad steps are not too bad). In any step of Algorithm 2 including the bad steps, the objective value
never increases.

Proof. This directly follows from the fact that we always minimize an upper bound on the function f(a) at every
iteration. O

D.3 Convergence in the Strongly Convex Case

Theorem 7. Aftert steps of Algorithm 2 where in each step the coordinate was selected using a ©-approximate
GS-s rule, let By C [t] indicate the bad steps. Assume that the function f is L-coordinate-wise smooth and py
strongly convex with respect to the L1 norm. Then the size of |B| < [t/2] and

@) = fla) < (1= nin (5 @2’“>>t_'&' (F@®) - f(e)) .

on’ L
As is standard, f(a*) = mingepo,1n f(av).
We have almost everything we need in place to prove our convergence rates for the strongly convex, and the

general convex case. Recall that the function f is u; strongly convex with respect to the L1 norm. This implies
that

f(@) = fla) + (Vf(),a" —a) + o' — ol .

We will need one additional Lemma from (Karimireddy et al., 2018) to relate the upper bound we minimize in
Lemma 14.

Lemma 17 (Relating different regularizing constants (Karimireddy et al., 2018)). For any vectors g, w € R",
and constants L > pu > 0,

. L 2 I . 1% 2
Lo {gw-a) s §lw-alth <% min {gw-afle-al}.

Proof. The function (g, w — ) is convex and is 0 when w = a, the set [0,1]" is also convex, and ||lw — «|; is a
convex positive function. Thus we can apply Lemma 9 from (Karimireddy et al., 2018).

The proof of the theorem now easily follows.

Proof of Theorem 7. First by Lemma 12, we know that |B;| < |t/2]. Now suppose that ¢ was a good step
and updated the ith coordinate. The progress made in a proximal update using (25) and Lemma 14,

F@) < fa) + xi(a™)
L 2
< fla® 2 D) 2y — a® £ gy — o®
< fle)+ 0 wg[léﬂ]n{<Vf(a ), w—« >—|—2Hw ol
0%u p
< Haby L DM Y gy — D) *IH _a®
< @)+ O win L(950 )00+ 2 o

J
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In the last step we used Lemma 17. We will now use our definition of strong convexity. We have shown that

@2 @2 2
) ) = 10— )+ L iy ({5000 0=+ P -}
2
)

2 2
< Jla) ~ flar) + 21 <<Vf(a(t’)7 o' —alt) + O ot a0

@2,“1
L

= (1= = (@) = f(an) -

Now instead suppose that the step ¢ was a cross step. In that case Lemma 15 tells us that

F@!™D) < fal) + xi(al)

S}
< (t) ] —
< f(a'Y) + 5 wg[lolﬂ]n(Vf(aLw a)

< J@) + (T f(a),o" — a)

< fla®) + 2 (f(a") - f(a)) .

2n
In the last step, we used the convexity of f. Subtracting f(a*) and rearranging gives that
(C]
a0 = fla) < (1= ) (st - (@)
n
Finally if the step was bad, we know form Lemma 16 that the function value does not decrease. Putting these
three results about the different cases together gives us the theorem. O

Remark 16. In the box-constrained case, we do not quite get the straightforward linear rate involving the condition
number ﬁ which we were expecting. We instead get a rate which depends on max (ﬁ,n) The new n term is

because of the cross steps. In the case of separable quadratics which a diagonal Hessian:
V2f(a) = diag(\i, ..., \n)-

In such a case, Nutini et al. (2015)[Section 4.1] show that the constant py is

-1
n

p1 = Z/\i

=17
Since L in our case was defined to be the max diagonal element of the Hessian, we have that
n

L 1 A
— = [ max \; — | > 2 =n.
(je{n] J) ;Aj - ;Aj

M1

This means that, at least in the separable quadratic case, ML] > n and the rate of convergence depends only on the
condition number.

D.4 Convergence in the General Convex Case

Theorem 8. Aftert steps of Algorithm 2 where in each step the coordinate was selected using the ©-approzimate
GS-s rule, let By C [t] indicate the bad steps. Assume that the function was L-coordinate-wise smooth. Then the
size |By| < [t/2] and

8LD?
(t+1)y _ N«
(81 « )
f( ) f( )_@2(t*‘6t|)
where D is the L1 diameter of the level set. For the set of minima Q~,
D= max min {||w—a*||1 If(w) < f(a<0>)} .

we[0,1]" a*€Q*

Proof. This essentially follows from the proof of (Dhillon et al., 2011)[Lemma 8]. As we saw before, in good steps
all three rules GS-s, GS-r and GS-q coincide. For cross steps, by definition we take the largest step possible and so
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is also a valid GS-r step. Thus we can fall back onto to the analysis of GS-r even for the GS-s rule. One could also
derive a rate directly from Lemma 14 and Lemma 15, but we would not achieve a significantly better rate. [

E Proofs of Mapping Between GS.s and MIPS

In this section we will discuss the proof of our claims that our formulation of casting the problem of finding the
steepest GS-s direction as an instance of the S-MIPS problem.

Proof of Lemma 5 [Box case]: We want to show that

max [min Vif(a(t))-ks” = max Vif(a(t))‘ ’
1EAL

7 s€Dg;

where the active set A; is defined as

) ¢ (0,1), or

Z@ =0 and V;f(a'?) <0, or
(

!
At =<1 E [n] st. «
o” =1 and Vif(a?)>0.

Let us examine the subgradient of the indicator function 1y 1jy. If az(-t) € (0,1), the subgradient of the indicator
function is 0. If agt) = 0, the subgradient is dg; = (—o0, 0] and if agt) = 1, the subgradient is dg; = [0, 00).
Thus minseay, |Vif(a®) + s| equals |V;f(a®)| if a; € (0,1), or if ol = 0and V;f(a®) < 0, or o =

1 and V;f(a®) > 0. In all other cases, it is 0. This proves the lemma.

Proof of Lemma 1 [L1 case]: We want to show that

Vz-f(a(t)) + s” = max |s(e);]

max | min
7 s€Dg;

If agt) # 0, 0g; = Asign(ait)). If az(.t) = 0, 9g; = [-\,A]. Thus the value of

mingeag, |Vif(a®) + s| is ‘Vif(a(t)) +)\Sign(a§t))‘ if agt) # 0. If agt) = 0, then minsepy, |Vif(a®) + s
Vif(a®) + s’ exactly evaluates to s(a(*)). This finishes the

7

Here gi(a@) = )\‘agt) .

evaluates to ‘SA(Vif(a(t)))‘. In short, min,egy,
proof of the lemma.

Proof of Lemma 6 [Box case]: We want to show that

max <fij7qt> = arg max ‘ij(a(t))‘ .
AjEBt JEA:

Given the structure of f(cx), we can rewrite V; f(aV) = (A;, VI(Aa)) + ¢;. Further we can write

arg max ’ij(a(t)) = argmax max ( {<Aj, Vl(Aa(t))> + Ci} , {<—Aj,Vl(Aa(t))> - cl}) . (39)

JjEAL JEA:
Let us examine at the cases we need to ignore i.e. the points not in A;: i) aq(;t) =0 and V;f(a®) > 0
or ii) az(.t) = 1 and V;f(a®) < 0. Suppose some coordinate j/ falls into case (i). Instead of excluding

it from A;, we could instead keep only the (—A;,VI(Aa))) — ¢; in the right hand side of (39) in place
of max ((A;, VI(Aa®)) + ¢;, (—A;, VI(AaW))) — ¢;. This automatically excludes j' from the argmax if
Vi(Aa®) + ¢; > 0 or equivalently if V; f(a®) > 0. Similarly if j/ falls in case (ii), we will keep only
the (A, VI(Aa™) + ¢;) term which excludes j’ from the argmax if VI(AaY) 4+ ¢; < 0 or equivalently if

Vj/f(a(t)) < 0. This is exactly what the term max g cp, <Aj, qt> does.

Proof of Lemma 3 [L1 case]: We want to show that

max <Aj,qt> = argmax |s(a);]| .
AjEB; 7
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Given the structure of f(a), we can rewrite V; f(a®) = (A;, VI(Aa™®))+c;. Further we can use the equivalence
in Lemma 1 to reformulate the required statement as

max <Aj7qt> = argmax| min <Aj,Vl(Aa(t))> +cj+ As| . (40)
AjeBy J 368|a_§.t)’

Drawing from the proof of Lemma 1, we look at the following cases:

1. When «; > 0: In this case ('“)‘a;-t)‘ evaluates to 1 and the right side of (40) becomes
max ((A;, VI(AaM)) + ¢; + A, (—A;, VI(AaW)) — ¢; — )).

2. When a; < 0: In this case 0 a§t> evaluates to -1 and the right side of (40) becomes
max ((A;, VI(Aa®)) + ¢; = X\, (—A;, VI(Aa™)) — c; + \).

3. When o; = 0 and (A;,Vi(Aa®)) + ¢ > O The right side of (40) becomes
max ((A;, VI(Aa®)) 4+ ¢; — X, 0).

IN
o

4. When o; = 0 and (A;,VI(Aa®)) + ¢; The right side of (40) becomes

max ((—A;, VI(Aa®)) — ¢; — X,0).

Comparing the four cases above to the definition of B; shows that the lemma holds.

F Further Extensions of the Steepest and MIPS Framework

In this section we show that the steepest rules GS-s can be extended to take into account different smoothness
constants along different coordinate directions and that the new rules are also instances of our MIPS framework.
Further we show that the steepest rule for L2-regularized problems can also be cast as an MIPS instance.

F.1 Coordinate Specific Smoothness Constants

The GS-s and the GS-q strategies as described in this work reduce to the GS rule when the function is smooth and
g = 0. However if the smoothness constants (Definition 8) highly varies along different coordinate directions, then
the GS-L rule which accounts for this variation enjoys better theoretical convergence properties. We can similarly
modify the GS-s and the GS-q strategies to account for coordinate specific smoothness constants.

Suppose that we modify Definition 8 as in Nutini et al. (2015) and let L; be the smoothness constant along
coordinate direction i. Then we rescale the ith coordinate by 1/L;. This step is equivalent to normalizing the
columns of the data matrix A when f(a) is of the form I(Aa). The rescaling will make the smoothness constants
of all the coordinates equal (in fact equal to 1). Now we can apply the techniques in this work to obtain steepest
rules which implicitly take advantage of the coordinate specific smoothness constants L;. Of course this would
change the regularization parameter A along the coordinates, and we will have a coordinate-wise regularization
constants A\;. Our algorithms and proofs can easily be extended to this setting.

F.2 Block Coordinate Setting

Just as in the smooth case, it might be possible to also extend the theoretical results here for the block coordinate
case using new norms in place of the L1 norm in which the analysis is currently done. Define x|.; to mean a the ¢
largest absolute values of  and @|;;) to mean the n — i smallest absolute values. If we want to pick the top x
coordinates for e.g., we could define a new norm using which the analysis could extend

2 def

2 2
||:BH[H] = w[:nJrl*H]Hl + Hw[”+1*“:}|‘2 :

F.3 Solving /> Regularized Problems using S-MIPS
Suppose we are given a problem of the form

A
I(Aa) + 5 e



Efficient Greedy Coordinate Descent for Composite Problems

1071 sector reg_1, LASSO sector reg 10, LASSO
—~dhillon *
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Figure 7: Evaluating dhillon: steepest which is based on the GS-s rule consistently outperforms dhillon
which quickly stagnates.

In this case, the GS-s rule simplifies to

argmax [(A;, VI(Aa)) + Aoy .
j€[n]

We can cast this in the MIPS framework. We need to add n new components to the d dimensional vector A; as

follows:
i Se;
A; = ( WE (41)

The constant [ is tuned to ensure good performance of the underlying MIPS algorithm, and is typically chosen to
be O(1/4/n). Then, define

P :=PT UP~ where,
pE = {iAl,...,:I:fin} .

Finally, construct the query vector q; as

o= (w%:szt))) ' (43)

Then it is easy to verify the following equivalence -

MIPSp(q,) = argmax |(A;, VI(Aa)) + Aoy .
jeln]

However we are now dealing with vectors of size d + n instead of just d which is usually too expensive (n > d).
Handling A; is easy since it has at most d + 1 non-zero entires. To get around the computational cost of hashing
g:, we note that the hyperplane hashing only requires computing (w, q;) for some vector w. This can be broken
down as

(w,q) = %<’w1, Oé(t)> + <'w2, Vl(Aa(t))> .

At iteration ¢ 4 1, we will need to recompute the second part in time O(d). However since a®*) and a(*) differ
in only 1 component (say i;), updating the first part of the hash computation can be done efficiently as

A
(w, qi41) = B(<w1, a(t)> + wi, (v, — i) + <w2, Vl(Aa(t+1))> .

This can also be combined with ideas from Section 6 to solve problems which have both an L2-regularizer and
are box-constrained or Ll-regularized. This is important for example for solving elastic net regression.

G Additional Experiments

G.1 Consistent poor performance of dhillon

Here we run dhillon on the sector datasets. Figure 7 illustrates consistent poor performance of dhillon rule.
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Table 2: Parameters for sector dataset. (d, n) is dataset size, § is tunable constant from (18), (19), p is sparsity
of the solution.

Dataset n d /ngB efC efS post p
sector, A=1 55,197 6,412 10 100 100 2 10%
sector, A = 10 55,197 6,412 10 400 200 0 3%

sector, A =1, LASSO sector, A = 10, LASSO sector, A=1, LASSO sector, A =10, LASSO
107 ¢ 0-0-0-0--0-9-0—0--0-0—0 T e-e-—o o o-0-—0-0-90-0 107 Sy —— uniform 107 oo .
1 -0 — — — - n I [INEN
2 \\.. 5 105 1“ ®—0--0-0—-0—0--0-0—-0—0 > n H —— steepest > 1N |l
glos | T e-e-0-0--0-0~0-0-0-9 T “e. E 1 \\ : —— steepest-nn ,—E\, | N H
E 2 .. £ “S\ Eq06] N !
g Z 10 2108 o~ g10 .~ - o+ --—--
S Q Q ~,+ . Q 1
2 8 e 2 < 2
S 5 * E E ————
@103 2101 . a @ N
\ ) 10° Te=a
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 0 5 10 15 20 25
epochs epochs time (s) time (s)

Figure 8: The performance of steepest-nn for sector dataset is similar to that on rcvi.

G.2 nmslib on sector dataset

We perform additional evaluation of steepest-nn algorithm on sector dataset for the LASSO. nmslib hyper-
parameters and sparsity levels could be found in Table 2. Figure 8 shows that steepest-nn for sector dataset
has the same strengths and weaknesses.

G.3 Make regression

We also use the make regression function from Sk-learn (Pedregosa et al., 2011)* to create tunable instances for
Lasso. Here we keep the number of informative features fixed at 100, fix d = 1000, and vary n in {104, 105, 106}.
From Fig. 9, we can see that as n increases, steepest-nn starts significantly outperforming uniform in terms of
wall clock time. This is to be expected since the cost per iteration of steepest-nn remains roughly fixed, whereas
the gain in progress over uniform grows with n.

make regression, n = 10%, LASSO make regression, n = 10°, LASSO make regression, n =108, LASSO
108] ¢ * *.

Baes eens s ve e e o e e 7]\ %1

> 105] ~-e—a, '?10 i il el S L L LT o 1

& \ Le—0—-0-0-0-0-o © S —————— ——————— © :

E 102 £ \, E s

=1 S 10 \ =l | T

a \ Q N Q 1 ~.

810 \ — = uniform L N 8107 \

S \ =3 =3

(LI . steepest 0103 S o \\

10 —— steepest-nn e o—o-—o--o—-o—-o—-o—o—o;:—:
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
time (s) time (s) time (s)

Figure 9: Performance on make-regression with n € {10%,10%,10°}. The advantage of steepest-nn over
uniform and steepest increases with increasing problem sizes.

G.4 Extreme Sparse Solution

Here we experiment with LASSO on sector dataset in extreme case, with A = 100. The solution has only 5
non-zero coordinates. Figure 10 shows comparison of steepest-nn (implemented with nmslib), uniform and
steepest rules. steepest converges to the true optimum in less than 10 iterations while steepest-nn and
uniform strugling to find a good coordinate. As in other experiments, steepest-nn shows its usefulness in early
stage of optimization.

G.5 Test Accuracy

For SVM experiments we randomly split the datasets to create train (75%) and test (25%) subsets. Figure 11
shows the primal function value, dual function value, duality gap, and accuracy on the test set for wla and ijcnnl

‘http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
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8772000 sector, A =100, LASSO 8772000 sector, A =100, LASSO
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Figure 10: The solution is extremely sparse. steepest converges in less than 10 iterations. steepest-nn has a
small gain over uniform, but both of them extremely bad compared to steepest even in wall-time.

datasets. Even measured against wall time, steepest-nn is very competitive with uniform in all the metrics.
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Figure 11: Primal function, dual function, duality gap and accuracy: Even measured against wall time,
steepest-nn is very competitive with uniform in all the metrics.

G.6 Density of the solution

In Figure 12, we plot the number of non-zero coordinates of current solution as a function of time for datasets
sector, rcvl for Lasso and wla, ijcnnl for SVM. Recall from Figures 4 and 11 that steepest-nn is competitive
(and sometimes much better) than uniform in terms of optimization error or accuracy especially at the start.
Figure 12 shows that the solutions obtained by steepest-nn are much sparser at the start. So if we want a quick,
sparse and accurate solution, then steepest-nn could be the algorithm of choice. For SVMs sparsity translates
to a small set of support vectors.
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Figure 12: Density: The solutions obtained by steepest-nn are much sparser than uniform, especially towards
the beginning.

G.7 Effect of Adaptivity

Here we investigate whether our adaptive choosing of the subsets has any adverse effect on the performance of
nmslib to solve the MIPS problem. At each iteration during the course of our algorithm, we compute the value
of dot product of the query vector with i) the optimal point over all candidates (MIPS), ii) the optimal point over
only the subset of the candidates (S-MIPS), iii) result of running nms1ib on all candidates (MIPS-nn), and vi) the
result of running LSH on the masked subset (S-MIPS-nn). Comparing (i) and (iii) shows the performance of the
nmslib algorithm, and comparing (ii) and (iv) shows how well the nms1ib algorithm handles our adaptive queries.
The results in Figure 13 show that indeed the influence of adaptivity is negligible - both (MIPS-nn) and (MIPS)
are close to (S-MIPS-nn) and (S-MIPS) respectively. What is surprising though is the overall poor performance
of the nms1ib algorithm even after spending significant effort tuning the hyper-parameters as evidenced by the
gap between (MIPS-nn) and (MIPS). This strongly suggests that improving the underlying algorithm for solving
our S-MIPS instances could lead to significant gains.
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Figure 13: Adaptivity: (MIPS-nn) and (MIPS) are close to (S-MIPS-nn) and (S-MIPS) respectively indicating
that choosing subsets adaptively does not affect nmslib algorithm substantially. However the gap between
(MIPS-nn) and (MIPS) indicates the general poor quality of the solutions returned by nmslib.

G.8 GS-s implementation using FALCONN library
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Figure 14: steepest as well steepest-1sh significantly outperform uniform in number of iterations.

We repeat experiments from section 7 using FALCONN library, which is an efficient implemenation of LSH. Used
FALCONN hyper-parameters could be found in the Table 3. Figure 14 shows the superiority of steepest-1sh and
steepest over uniform in terms of iterations. Figure 15 shows their wall-time comparison. Qualitatively, the
behaviour of steepest-1sh is similar to the nms1ib results, whereas quantitive results are better using nms1ib
library for the SVM and a bit worse for the LASSO.
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Figure 15: steepest-1sh is very competitive and sometimes outperforms uniform even in terms of wall time
especially towards the beginning. However eventually the performance of uniform is better than steepest-1sh.
This is because as the norm of the gradient becomes small, the hyperplane LSH algorithm used performs poorly.
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Figure 16: Performance on make-regression with n € {10*,10°,105}. The advantage of steepest-1lsh over
uniform consistently increases with increasing problem sizes, eventually significantly outperforming it.
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Figure 17: Adaptivity: (MIPS-LSH) and (MIPS) are close to (S-MIPS-LSH) and (S-MIPS) respectively indicating
that choosing subsets adaptively does not affect LSH algorithm substantially. However the gap between (MIPS-
LSH) and (MIPS) indicates the general poor quality of the solutions returned by LSH.

Table 3: Datasets and FALCONN hyper-parameters: Lasso is run on rcvl and sector, and SVM on wla and
ijennl. L is fixed at 10, and k& = |log(n) — h].
Dataset n d Vvnf m
sector 55,197 6,412 3 10
rcvl 47,236 15,564 1 50
wla 2,477 300 10 50
ijcnnl 49,990 22 3 10
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