Efficient Greedy Coordinate Descent for Composite Problems

Sai Praneeth Karimireddy*

EPFL EPFL

Abstract

Coordinate descent with random coordinate
selection is the current state of the art for
many large scale optimization problems. How-
ever, greedy selection of the steepest coordi-
nate on smooth problems can yield conver-
gence rates independent of the dimension n,
and requiring up to n times fewer iterations.

In this paper, we consider greedy updates
that are based on subgradients for a class of
non-smooth composite problems, which in-
cludes Ll-regularized problems, SVMs and
related applications. For these problems we
provide (i) the first linear rates of convergence
independent of n, and show that our greedy
update rule provides speedups similar to those
obtained in the smooth case. This was pre-
viously conjectured to be true for a stronger
greedy coordinate selection strategy.

Furthermore, we show that (ii) our new se-
lection rule can be mapped to instances of
maximum inner product search, allowing to
leverage standard nearest neighbor algorithms
to speed up convergence. We demonstrate the
validity of the approach through extensive nu-
merical experiments.

1 Introduction

In recent years, there has been increased interest in
coordinate descent (CD) methods due to their sim-
plicity, low cost per iteration, and efficiency (Wright,
2015). Algorithms based on coordinate descent are the
state of the art for many optimization problems (Nes-
terov, 2012; Shalev-Shwartz and Zhang, 2013b; Lin
et al., 2014; Shalev-Shwartz and Zhang, 2013a, 2016;
Richtarik and Takac, 2016; Fercoq and Richtérik, 2015;

Proceedings of the 22" International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Anastasia Koloskova*

Sebastian U. Stich
EPFL

Martin Jaggi
EPFL

Nesterov and Stich, 2017).Most of the CD methods
draw their coordinates from a fixed distribution—for
instance from the uniform distribution as in uniform
coordinate descent (UCD). However, it is clear that
significant improvements can be achieved by choosing
more important coordinates more frequently (Nesterov,
2012; Nesterov and Stich, 2017; Stich et al., 2017a,b;
Perekrestenko et al., 2017). In particular, we could
greedily choose the ‘best’ coordinate at each iteration
i.e. the greedy or steepest coordinate descent (GCD).

GCD for composite problems. Consider the

smooth quadtratic function f(a) &f lHAoz—ng.

There are three natural notions of the ‘best’ coordi-
nate.! One could choose (i) GS-s: the steepest coordi-
nate direction based on (sub)-gradients, (ii) GS-r: the
coordinate which allows us to take the largest step, and
(iii) GS-q: the coordinate that allows us to minimize
the function value the most. For our example (and
in general for smooth functions), the three rules are
equivalent. When we add an additional non-smooth
function to f, such as g(a) = A|la|;, however, the
three notions are no more equivalent. The performance
of greedy coordinate descent in this composite setting
is not well understood, and is the focus of this work.

Iteration complexity of GCD. If the objective f
decomposes into n identical separable problems, then
clearly GCD is identical to UCD. In all but such ex-
treme cases, Nutini et al. (2015) give a refined analysis
of GCD for smooth functions and show that it outper-
forms UCD. This lead to a renewed interest in greedy
methods (e.g. (Karimi et al., 2016; You et al., 2016;
Diinner et al., 2017; Song et al., 2017; Nutini et al.,
2017; Stich et al., 2017a; Locatello et al., 2018; Lu et al.,
2018)). However, for the composite case the analysis
in (Nutini et al., 2015) of GCD methods for any of
the three rules mentioned earlier falls back to that of
UCD. Thus they fail to demonstrate the advantage
of greedy methods for the composite case. In fact it
is claimed that the rate of the GS-s greedy rule may

* Equal contribution.
'Following standard notation (cf. (Nutini et al., 2015))
we call them the Gauss-Southwell (GS) rules.

Efficient Greedy Coordinate Descent for Composite Problems

even be worse than that of UCD. In this work we pro-
vide a refined analysis of GCD for a certain class of
composite problems, and show that all three strategies
(GS-s, GS-r, and GS-q) converge on composite problems
at a rate similar to GCD in the smooth case. Thus for
these problems too, greedy coordinate algorithms are
provably faster than UCD other than in extreme cases.

Efficiency of GCD. A nalve implementation of
GCD would require computing the full gradient at a
cost roughly n times more than just computing one co-
ordinate of the gradient as required by UCD. This seems
to negate any potential gain of GCD over UCD. The
working principle behind approzimate GCD methods
is to trade-off exactness of the greedy direction against
the time spent to decide the steepest direction (e.g.
(Stich et al., 2017a)). For smooth problems, Dhillon
et al. (2011) show that approzimate nearest neighbor
search algorithms can be used to provide in sublinear
time an approximate steepest descent direction. We
build upon these ideas and extend the framework to
non-smooth composite problems, thereby capturing a
significantly larger class of input problems. In particu-
lar we show how to efficiently map the GS-s rule to an
instance of maximum inner product search (MIPS).

Contributions. We analyze and advocate the use of
the GS-s greedy rule to compute the update direction
for composite problems. Our main contributions are:

i) We show that on a class of composite problems,
greedy coordinate methods achieve convergence
rates which are very similar to those obtained for
smooth functions, thereby extending the applicabil-
ity of GCD. This class of problems covers several
important applications such as SVMs (in its dual
formulation), Lasso regression, L1-regularized logis-
tic regression among others. With this we establish
that greedy methods significantly outperform UCD
also on composite problems, except in extreme cases

(cf. Remark 4).

ii) We show that both the GS-s as well as the GS-r rules
achieve convergence rates which are (other than in
extreme cases) faster than UCD. This sidesteps the
negative results by Nutini et al. (2015) for these
methods through a more fine-grained analysis. We
also study the effect of approximate greedy direc-
tions on the convergence.

iii) Algorithmically, we show how to precisely map the
GS-s direction computation as a special instance of
a maximum inner product search problem (MIPS).
Many standard nearest neighbor algorithms such
as e.g. Locality Sensitive Hashing (LSH) can there-
fore be used to efficiently run GCD on composite
optimization problems.

iv) We perform extensive numerical experiments to
study the advantages and limitations of our greedy
descent combined with a current state-of-the-art
MIPS implementation (Boytsov and Naidan, 2013).

Related Literature. Coordinate descent, being one
of the earliest known optimization methods, has a rich
history (e.g. (Bickley, 1941; Warga, 1963; Bertsekas
and Tsitsiklis, 1989, 1991)). A significant renewal in
interest followed the works of Nesterov (2012) who
provided a simple analysis of the convergence of UCD,
and (Shalev-Shwartz and Zhang, 2013b) who apply
UCD on the dual problems (called SDCA). In practice,
many solvers (e.g. (Ndiaye et al., 2015; Massias et al.,
2018)) combine UCD with active set heuristics where
attention is restricted to a subset of active coordinates.
These methods are orthogonal to, and hence can be
combined with, the greedy rules studied here.

Greedy coordinate methods can also be viewed as
an ‘extreme’ version of adaptive importance sampling
(Stich et al., 2017a; Perekrestenko et al., 2017). For
the smooth case, greedy methods choose the coordi-
nate of the gradient with the largest absolute value
while importance sampling methods sample coordinates
proportional to the absolute value of the gradient coor-
dinate (or its power). Thus, new greedy algorithms can
directly be translated into new importance sampling
schemes. However unlike greedy methods, even in the
smooth case, there are no easily characterized function
classes for which the importance sampling schemes or
the active set methods are provably faster than UCD.
The work closest to ours, other than the already dis-
cussed Nutini et al. (2015), would be that of Dhillon
et al. (2011). The latter show a sublinear O(1/t) con-
vergence rate for GS-r on composite problems. They
also propose a practical variant for L1-regularized prob-
lems which essentially ignores the regularizer and is
hence not guaranteed to converge.

2 Setup

We consider composite optimization problems of the
structure

a€eR™

min [F(a) = fla) + igi(ai)}» (1)

where n is the number of coordinates, f: R" — R is
convex and smooth, and the g;: R — R, ¢ € [n] are
convex and possibly non-smooth. In this exposition, we
further restrict the function g(ar) := Y"1 | gi(ey) to ei-
ther enforce a box constraint or an L1 regularizer. This
comprises many important problem classes, for instance
dual SVM or Lasso regression, see Appendix A.3.

We further assume that the smooth component f is

Sai Praneeth Karimireddy”, Anastasia Koloskova®, Sebastian U. Stich, Martin Jaggi

coordinate-wise L smooth: for any «, v and 1,
2

flatre) < fla) + Viflan + - (@)

Sometimes we will assume that f is in addition also
strongly convex with respect to the H||p norm, p €
{1,2}, that is,

flor+ Aa) > f(e) + (Vf(@), da) + 12 | aaf2 (3)
for any @ and a@ + A« in the domain of F'. In general

it holds p1 € [pa/n, pe]. See Nutini et al. (2015) for a
detailed comparison of the two constants.

3 GCD for Non-Smooth Problems

Here we briefly recall the definitions of the GS-s, GS-r
and GS-q coordinate selection rules and introduce the
approximate GS-s rule that we will consider in detail.

GS-s(a) := arg;nax Lrélggj |V,f(a) + s|} , @)

GS-r(a) := arg max|v;| , (5)
j€[n]

GS-q(a) = arg max Ix; ()], (6)
JEIN

for an iterate a € R", V;f(a) := (Vf(a),e;) for
standard unit vector e;. Here x;(a) and ; are defined
as the minimum value and minimizer respectively of

. L~?
min | YV, f(@) + ==+ g;(e +7) — gi(ay)
We relax the requirement for an exact steepest selection,
and define an approximate GS-s rule.

Definition 1 (©-approximate GS-s). For given «, the
coordinate j is considered to be a ©-approximate steep-
est direction for © € (0,1] if

min |V, f(a) + s| > ©max | min |V, f(a) + s|| .
s€dy; % s€0g;

3.1 GCD for Ll-regularized problems

We now discuss the GS-s rule for the concrete example of
L1 problems, and collect some observations that we will
use later to define the mapping to the MIPS instance.
A similar discussion is included for box constrained
problems in Appendix B.

Consider L1-regularized problems of the form

in |F = .
in [F(e) = f(a) + Al] (7)
The GS-s steepest rule (4) and update rules can be sim-
plified for such functions. Let sign(z) denote the sign
function, and define S (x) as the shrinkage operator

Sy (x) = x —sign(z)A, if |z| > A
M0 otherwise .

Further, for any «, let us define s(a) as

L S

i= 8
V.if(a) + sign(a;)A otherwise. ®

Lemma 1. For any «, the GS-s rule is equivalent to

max {min IVif(a) + s@ = max|s(a);| . (9)
i s€0y; i

Our analysis of GS-s rule requires bounding the number
of ‘bad’ steps (to be detailed in Section 4). For this,
we will slightly modify the update of the coordinate
descent method. Note that we still always follow the
GS-s direction, but will sometimes not perform the stan-
dard proximal coordinate update along this direction.
To update the i;-th coordinate, we either rely on the
standard proximal step on the coordinate,

1
of =5, <a§.j> - Lvitf(a(t))> . (10)

or we perform line-search
at = argminF(a(t) + (v - a(t))eit) (11)

i it
Y

Finally, the i;-th coordinate is updated as
+ ifata® >0
o+ = {0‘1 i = (12)
Our modification or ‘post-processing’ step (12) ensures
that the coordinate «; can never ‘cross’ the origin.
This small change will later on help us bound the
precise number of steps needed in our convergence rates

(Sec. 4). The details are summarized in Algorithm 1.

! 0, otherwise

Algorithm 1 L1 Greedy Coordinate Descent

: Initialize: o := 0 € R".

: for t =0,1,...,until convergence do
Select coordinate i; as in GS-s, GS-r, or GS-q.
Find o via gradient (10) or line-search (11).
Compute aEfH) as in (12).

end for

A 2 o v

3.2 GCD for Box-Constrained Problems
Using similar ideas, we can also derive the greedy coor-
dinate update for problems with box constraints, such
as for the dual SVM. The detailed approach is provided
in Appendix B.

4 Convergence Rates

In this section, we present our main convergence re-
sults. We illustrate the novelty of our results in the
important Ll-regularized case: For strongly convex
functions f, we provide the first linear rates of conver-
gence independent of n for greedy coordinate methods
over Ll-regularized problems, matching the rates in
the smooth case. In particular, for GS-s this was con-
jectured to be impossible (Nutini et al., 2015, Section

Efficient Greedy Coordinate Descent for Composite Problems

H.5, H.6) (see Remark 4). We also show the sublinear
convergence of the three rules in the non-strongly con-
vex setting. Similar rates also hold for box-constrained
problems.

4.1 Linear convergence for strongly convex f

Theorem 1. Consider an L1-reqularized optimization
problem (7), with f being coordinate-wise L smooth,
and py strongly convexr with respect to the L1 norm.
After t steps of Algorithm 1 where the coordinate iy is
chosen using either the GS-s , GS-r, or GS-q rule,

Fla)-F(a*) < (1- &) o (F(a®) ~ F(a")) .

Remark 2. The linear convergence rate of Theorem 1
also holds for the ©-approximate GS-s rule as in Defi-
nition 1. In this case the py will be multiplied by ©2.

Remark 3. All our linear convergence rates can
be extended to objective functions which only satisfy
the weaker condition of proximal-PL strong converity
(Karimi et al., 2016).

Remark 4. The standard analysis (e.g. in Nesterov
(2012)) of UCD gives a convergence rate of

E [F(a®)]-F(a*) < (1 - %)t (F(a<0>) - F(a*)) .

n

Here o is the strong convexity constant with respect to
the L2 norm, which satisfies py € [ua/n, u2]. The left
boundary py = pa/n marks the worst-case for GCD,
resulting in convergence slower than UCD. It is shown
in Nutini et al. (2015) that this occurs only in extreme
examples (e.g. when f consists of n identical separable
functions). For all other situations when py > 2ua/n,
our result shows that GCD 1is faster.

Remark 5. Our analysis in terms of puy works for
all three selection rules GS-s, GS-r, or GS-q rules. In
(Nutini et al., 2015, Section H5, HG) it was conjectured
(but not proven) that this linear convergence rate holds
for GS-q, but that it cannot hold for GS-s or GS-r.
Ezample functions were constructed where it was shown
that the single step progress of GS-s or GS-r is much
smaller than 1 —po/(nL). However these example steps
were all bad steps, as we will define in the following
proof sketch, whose number we show can be bounded.

We state an analogous linear rate for the box-
constrained case too, but refer to Appendix B for the
detailed algorithm and proof.

Theorem 2. Suppose that f is coordinate-wise L
smooth, and w1 strongly convex with respect to the L1
norm, for problem (1) with g encoding a boz-constraint.
After t steps of Algorithm 2 (the box analogon of Al-
gorithm 1) where the coordinate i; is chosen using the
GS-s , GS-r, or GS-q rule, then

f(a) = f(a)

b o . 0:
: o :
.?f—-l—.—» - gl; CcS 92 s 5 1 10
: @ &
bad éteps good éteps

Figure 1: The arrows represent proximal coordinate
updates S%(ozi — 1V, f(a)) from different starting
points a. Updates which ‘cross’ (by) or ‘end at’ (bz)
the origin are bad, whereas the rest (g1, g2) are good.

Lo\ 0 x
< (1—max (5 2)) T (F(@?) - fla)).
While the proof shares ideas with the L1-case, there
are significant differences, e.g. the division of the
steps into three categories: i) good steps which give a
(1 — u1/L) progress, ii) bad steps which may not give
much progress but are bounded in number, and a third
iii) cross steps which give a (1 — 1/n) progress.

Remark 6. For the box case, the greedy methods con-
verge faster than UCD if uy > 2us/n, as before, and
if no/L < 1/4. Typically, ps/L is much smaller than
1 and so the second condition is almost always satis-
fied. Hence we can expect greedy to be much faster
in the box case, just as in the unconstrained smooth
case. It remains unclear if the 1/n term truly affects
the rate of convergence. For example, in the separated
quadratic case considered in (Nutini et al., 2015, Sec.
4.1), p1/L < 1/n and so we can ignore the 1/n term
in the rate (see Remark 16 in the Appendiz).

Proof sketch. While the full proofs are given in the
appendix, we here give a sketch of the convergence of
Algorithm 1 for L1-regularized problems in the strongly
convex case, as in Theorem 1. The key idea is to
partition the iterates into two sets: good and bad steps
depending on whether they make (provably) sufficient
progress. Then we show that the modification to the
update we made in (12) ensures that we do not have too
many bad steps. Since Algorithm 1 is a descent method,
we can focus only on the good steps and describe its
convergence. The “contradiction” to the convergence
of GS-s provided in (Nutini et al., 2015, Section H.5,
H.6) are in fact instances of bad steps.

The definitions of good and bad steps are explained in
Fig. 1 (and formally in Def. 11). The core technical
lemma below shows that in a good step, the update
along the GS-s direction has an alternative characteri-
zation. For the sake of simplicity, let us assume that
O =1 and that we use the exact GS-s coordinate.

Lemma 2. Suppose that iteration t of Algorithm 1
updates coordinate ¢ and that it was a good step. Then

(t+1)y _ (t) i (t) —_o®
Fla)— F(c)Swmel]é;n{<Vf(a) w — a >

Sai Praneeth Karimireddy”, Anastasia Koloskova®, Sebastian U. Stich, Martin Jaggi

L
+ Sl = a® [+ Al — o)}

Proof sketch. We will only examine the case when
a > 0 here for the sake of simplicity. Combin-
ing this with the assumption that iteration t was a
good step gives that both «; > 0, oz;" > 0, and
of = a; — +(V,f(a) + A). Further if o > 0, the
GS-s rule simplifies to arg max;¢p,) |V, f(a) + Al

Since f is coordinate-wise smooth (2),
Flat) - F(a) <

2

(Vi f(@)(Vif(e) +)+
L

573 (V5 7(@) + A — 2(V;f(@) +)

1 2
= — 5 (V@) + 27,

But the GS-s rule exactly maximizes the last quantity.
Thus we can continue:

F@ﬁ)—F&ﬂS—E%HVﬂa)+Aw;

(V; /(@) (aF — o) + Z(aF — an) + MaF | — o))
1

=~

L
:%${wﬂ®+ALw—®+§ww—aﬁ}

) L 2
= min {(Vf(a),w —a)+ B} |w — ol
+A((1,w) — (1,a))} .

Recall that a > 0 and so ||a|; = (e, 1). Further for
any ¢ € R, |z| > 2 and so (1,w) < ||w||;. This means

AL w) = (1)) < A(Jwlly, = ledly) -

Plugging this into our previous equation gives us the
lemma. See Lemma 8 for the full proof. O]

If A =0 (i.e. F is smooth), Lemma 2 reduces to the
‘refined analysis’ of Nutini et al. (2015). We can now
state the rate obtained in the strongly convex case.

Proof sketch for Theorem 1. Notice that if a;, = 0, the
step is necessarily good by definition (see Fig. 1). Since
we start at the origin 0, the first time each coordinate
is picked is a good step. Further, if some step ¢ is bad,
this implies that aZ ‘crosses’ the origin. In this case
our modified update rule (12) sets the coordinate «;,
to 0. The next time coordinate 4; is picked, the step
is sure to be good. Thus in ¢ steps, we have at least
[t/2] good steps.

As per Lemma 2, every good step corresponds to opti-
mizing the upper bound with the L1-squared regular-
izer. We can finish the proof:

F(a'"Y) — F(a®) < min {<Vf(a(t),w - a(t)>

weR?
L)2 (1)
+ 5w = a3+ A(Jwl, ~ ||)}

< in {<Vf(a(t),w—a(t)>

L weRn

M
+ Ejw — a2 + Aoy — [od?

)}

—~

2%{me—meg.

Inequality (a) follows from Karimireddy et al. (2018,
Lemma 9), and (b) from strong convexity of f. Rear-
ranging the terms above gives us the required linear
rate of convergence. O

4.2 Sublinear convergence for general f

A sublinear convergence rate independent of n for GCD
can be obtained when f is not strongly convex.

Theorem 3. Suppose that F is coordinate-wise L
smooth and convez, for g being an L1-regularizer or a
boz-constraint. Also let Q* be the set of minima of F
with a minimum value F*. After t steps of Algorithm 1
or Algorithm 2 respectively, where the coordinate i; is
chosen using the GS-s, GS-r, or GS-q rule,
LD?
md%-ﬁgo(t),

where D is the L1-diameter of the level set. For the
set of minima Q*,

- ' —a* < O
D= max min {|w—a’|, |F(w) < Fa®)}

While a similar convergence rate was known for the
GS-r rule (Dhillon et al., 2011), we here establish it for
all three rules—even for approximate GS-s.

5 Maximum Inner Product Search

We now shift the focus from the theoretical rates to the
actual implementation. A very important observation—
as pointed out by Dhillon et al. (2011)—is that finding
the steepest descent direction is closely related to a ge-
ometric problem. As an example consider the function

fla) d:ef% | Aa — b||? for a data matrix A € R4*™. The
gradient takes the form Vf(a) = AT q for ¢ = (Aa—b)
and thus finding steepest coordinate direction is equal
to finding the datapoint with the largest (in absolute
value) inner product (A,,q) with the query vector q,
which a priori requires the evaluation of all n scalar
products. However, when we have to perform multiple
similar queries (such as over the iterations of GCD), it
is possible to pre-process the dataset A to speed up the
query time. Note that we do not require the columns
A; to be normalized.

For the more general set of problems we consider here,
we need the following slightly stronger primitive.

Definition 7 (S-MIPS). Given a set of m, d-
dimensional points py,...,pm € R?, the Subset Maxi-

Efficient Greedy Coordinate Descent for Composite Problems

mum Inner Product Search or S-MIPS problem is to
pre-process the set P such that for any query vector q
and any subset of the points B C [m], the best point
JEB,
S-MIPSz(q; B) := argggax{(pj,qﬂ ,
J

can be computed with o(m) scalar product evaluations.

State-of-the-art algorithms relax the exactness assump-
tion and compute an approximate solution in time
equivalent to a sublinear number of scalar product eval-
uations, i.e. o(n) (e.g. (Charikar, 2002; Lv et al., 2007;
Shrivastava and Li, 2014; Neyshabur and Srebro, 2015;
Andoni et al., 2015)). We consciously refrain from stat-
ing more precise running times, as these will depend on
the actual choice of the algorithm and the parameters
chosen by the user. Our approach in this paper is trans-
parent to the actual choice of S-MIPS algorithm, we
only show how GCD steps can be ezactly cast as such
instances. By employing an arbitrary solver one thus
gets a sublinear time approximate GCD update. An
important caveat is that in subsequent queries, we will
adaptively change the subset B based on the solution to
the previous query. Hence the known theoretical guar-
antees shown for LSH do not directly apply, though
the practical performance does not seem to be affected
by this (see Appendix Fig. 13, 17). Practical details of
efficiently solving S-MIPS are provided in Section 7.

6 Mapping GS-s to MIPS

We now move to our next contribution and show how
the GS-s rule can be efficiently implemented. We aim
to cast the problem of computing the GS-s update as
an instance of MIPS (Maximum Inner Product Search),
for which very fast query algorithms exist. In contrast,
the GS-r and GS-q rules do not allow such a mapping.
In this section, we will only consider objective functions
of the following special structure:

. aet TS oo
min {F(@)®(4a) +cTa +_§;gz<az>} . (13)
f(e) b

The usual problems such as Lasso, dual SVM, or lo-
gistic regression, etc. have such a structure (see Ap-
pendix A.3).

Difficulty of the Greedy Rules. This section will
serve to strongly motivate our choice of using the GS-s
rule over the GS-r or GS-q. Let us pause to exam-
ine the three greedy selection rules and compare their
relative difficulty. As a warm-up, consider again the

smooth function f(a) < 5 | Aa — b|? for a data ma-
trix A € R¥™ as introduced above in Section 5. We

have observed that the steepest coordinate direction is

argmax |V, f(a)] = argmax max (sA;,v). (14)
j€[n] j€ln] s€{-1.1}
The formulation on the right is an instance of MIPS

over the 2n vectors =A;. Now consider a non-smooth
problem of the form F(a) & 1 Aa— b|* + Al
For simplicity, let us assume o« > 0 and L = 1. In this

case, the subgradient is ATv + A1 and the GS-s rule is
argmax min |V, f(a) + s
j€ln] s€8layl
= argmax max
j€ln) s€{-1,1}

The rule (15) is clearly not much harder than (14), and
can be cast as a MIPS problem with minor modifica-

tions (see details in Sec. 6.1).

(sAj,v)+sA. (15)

Let a;r denote the proximal coordinate update along

the j-th coordinate. In our case, a;r = Sx(a;—(A;,v)).

The GS-r rule can now be ‘simplified’ as:

aj, if Jaj = (Aj0)] <A
arg max (16)
i€l (sign(e; — (Aj, v)), otherwise.

It does not seem easy to cast (16) as a MIPS instance.
It is even less likely that the GS-q rule which reads

argl[rn]in {ij(a)(aj—aj)+%(a;r—aj)2+)\(|a;r|—aj)}
JjE|n

can be mapped as to MIPS. This highlights the sim-
plicity and usefulness of the GS-s rule.

6.1 Mapping L1-Regularized Problems

Here we focus on problems of the form (13) where
g(a) = \||e||;. Again, we have Vf(a) = ATVi(v)+c
where v = Aau.

For simplicity, let a # 0. Then the GS-s rule in (9) is
arg max |s(a);| = argmax [(A;, VI(v))+c;+sign(a;)A|
j€ln] j€ln

= argmax max s [(A;, VI(v)) + ¢; + sign(a;)A] .
F€n] sexl

(17)

We want to map the problem of the above form to a
S-MIPS instance. Define for some 5 > 0, vectors

- T
AT = (£8, Bey, Aj) (18)
and form a query vector q as
.
q:= (%, 1, Vl(v)) (19)

A simple computation shows that the problem in (17)
is equivalent to

Tsign(a;)
arjger[r;]axx Imax <sAj ’ ,q> .

Thus by searching over a subset of vectors in {:I:A;t},

Sai Praneeth Karimireddy”, Anastasia Koloskova®, Sebastian U. Stich, Martin Jaggi

we can compute the GS-s direction. Dealing with the
case where a;; = 0 goes through similar arguments, and
the details are outlined in Appendix E. Here we only
state the resulting mapping.

The constant 8 in (18) and (19) is chosen to ensure
that the entry is of the same order of magnitude on
average as the rest of the coordinates of A;. The need
for B only arises out of the performance concerns about
the underlying algorithm to solve the S-MIPS instance.
For example, 5 has no effect if we use exact search.

Formally, define the set P := {j:A]jE : j € [n]}. Then

at any iteration ¢ with current iterate ¥, we also
define B; as B, = B} U B? U B} U B}, where
B} = {Aj : ozg»t) > 0} , B} = {—A; : Ozg-t) > 0} ,
- t i t
sz{Aj:ozg)SO}, sz{—Aj:a§)<O}.
(20)

Lemma 3. At any iteration t, for P and By as defined
in (20), the query vector q; as in (19), and s(a) as
in (9) then the following are equivalent for f(a) is of
the form l(Aa) + ¢ a:

S-MIPSp(qys; By) = arg max [s(e);] -

The sets By and By differ in at most four points since
a® and attY) differ only in a single coordinate. This
makes it computationally very efficient to incrementally
maintain B,y and a**1 for Ll-regularized problems.

6.2 Mapping Box-Constrained Problems

Using similar ideas, we demonstrate how to efficiently
map problems of the form (13) where g enforces box
constraints, such as for the dual SVM. The detailed
approach is provided in Appendix B.1.

7 Experimental Results

Our experiments focus on the standard tasks of Lasso
regression, as well as SVM training (on the dual ob-
jective). We refer the reader to Appendix A.3 for
definitions. Lasso regression is performed on the rcvi
dataset while SVM is performed on wla and the ijcnnl
datasets. All columns of the dataset (features for Lasso,
datapoints for SVM) are normalized to unit length,
allowing us to use the standard cosine-similarity algo-
rithms nms1ib (Boytsov and Naidan, 2013) to efficiently
solve the S-MIPS instances. Note however that our
framework is applicable without any normalization, if
using a general MIPS solver instead.

We use the hnsw algorithm of the nms1ib library with
the default hyper-parameter value M and other pa-
rameters as in Table 1, selected by grid-search.? More

2 A short overview of how to set these hyper-parameters

Table 1: Datasets and hyper-parameters: Lasso is run
on rcvl, and SVM on wia and ijcnnl. (d, n) is
dataset size, the constant § from (18), (19) is set to
50/4/n, nmslib hyper-parameter M is set as a default,
efC = 100. p is the density of the optimal solution.

Dataset n d o efS post
rcvl, A=1 47,236 15,564 19% 100 2

revl, A =10 47,236 15,564 3% 400 2
wla 2,477 300 100 0
ijcnni 49,990 22 50 0

rcvl_reg_1, LASSO

== dhillon
steepest

rcvl_reg_10, LASSO

106] @ e
104 re—e-0—0—o--0—0-0o-0—0 -0

— = dhillon
steepest

%90 -0-0-0-0-0-0-0-0-

suboptimality
=
)
2
suboptimality

,_.
b3
o
2
&

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
epochs epochs

Figure 2: Evaluating dhillon: steepest which is
based on the GS-s rule outperforms dhillon which
quickly stagnates. Increasing the regularization, it
stagnates in even fewer iterations.

details such as the meaning of these parameters can
be found in the nmslib manual (Naidan and Boytsov,
2015, pp. 61). We exclude the time required for pre-
processing of the datasets since it is amortized over the
multiple experiments run on the same dataset (say for
hyper-parameter tuning etc.). All our experiments are
run on an Intel Xeon CPU E5-2680 v3 (2.50GHz, 30
MB cache) with 48 cores and 256GB RAM.

First we compare the practical algorithm (dhillon)
of Dhillon et al. (2011), which disregards the regu-
larization part in choosing the next coordinate, and
Algorithm 1 with GS-s rule (steepest) for Lasso regres-
sion. Note that dhillon is not guaranteed to converge.
To compare the selection rules without biasing on the
choice of the library, we perform exact search to an-
swer the MIPS queries. As seen from Fig. 2, steepest
significantly outperforms dhillon. In fact dhillon
stagnates (though it does not diverge), once the error
f(a) becomes small and the L1 regularization term
starts playing a significant role. Increasing the regu-
larization A further worsens its performance. This is
understandable since the rule used by dhillon ignores
the L1 regularizer.

Next we compare our steepest strategy (Algo-
rithms 1 and 2 using the GS-s rule), and the corre-
sponding nearest-neighbor-based approximate versions
(steepest-nn) against uniform, which picks coordi-
nates uniformly at random. In all these experiments,

can be found at https://github.com/nmslib/nmslib/
blob/master/python_bindings/parameters.md.

https://github.com/nmslib/nmslib/blob/master/python_bindings/parameters.md
https://github.com/nmslib/nmslib/blob/master/python_bindings/parameters.md

Efficient Greedy Coordinate Descent for Composite Problems

rcvl, A=1, LASSO rcvl, A =10, LASSO

106 1;--0—.-0—-.-.-0—0—.—-0—0-0—- T o-0—oo-0-0-0-00-0-—0-
5| |=®-e-9-0-0-0—0-0—o -
2105 t*-ﬁ—.*—o—o--o—o—o—-o—.- 2 10 | -
© ' — = uniform T 103
| 10
.%10“ .~ .. steepest £
810° s elsg Steepest-nn § 10* —=uniform
2 , e 2 ~~ steepest
10 107 o~ — = steepest-nn
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
epochs epochs
wla, SVM -
- ijcnnl, SVM
bad - - I p ~ Y -0 —0 —0
80 g 6000/ -

7
4
== uniform
steepest

o
o

_—e-e—0—®—0

IS
o
=3
=)

Lo--0—
e L ’

dual function
B
o

dual function

—— steepest-nn «® | / "
001 o™ 2000 g 7 Steopest
o "f.‘ ol ‘:,""’ — = steepest-nn
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
epochs epochs
Figure 3: steepest as well steepest-nn significantly

outperform uniform in number of iterations.

A € {1,10} for Lasso and at 1/n for SVM. Fig. 3 shows
the clearly superior performance in terms of iterations
of the steepest strategy as well as steepest-nn over
uniform for both the Lasso as well as SVM problems.
However, towards the end of the optimization i.e. in
high accuracy regimes, steepest-nn fails to find di-
rections substantially better than uniform. This is
because towards the end, all components of the gra-
dient V f(a) become small, meaning that the query
vector is nearly orthogonal to all points—a setting in
which the employed nearest neighbor library nmslib
performs poorly (Boytsov and Naidan, 2013).

Fig. 4 compares the wall-time performance of the
steepest, steepest-nn and uniform strategies. This
includes all the overhead of finding the descent direction.
In all instances, the steepest-nn algorithm is compet-
itive with uniform at the start, compensating for the
increased time per iteration by increased progress per
iteration. However towards the end steepest-nn gets
comparable progress per iteration at a significantly
larger cost, making its performance worse. With in-
creasing sparsity of the solution (see Table 1 for spar-
sity levels), exact steepest rule starts to outperform
uniform and steepest-nn.

Wall-time experiments (Fig. 4) show that steepest-nn
always shows a significant performance gain in the im-
portant early phase of optimization, but in the later
phase loses out to uniform due to the query cost and
poor performance of nmslib. In practice, the recom-
mended implementation is to use steepest-nn algo-
rithm in the early optimization regime, and switch to
uniform once the iteration cost outweighs the gain. In
the Appendix (Fig. 13) we further investigate the poor
quality of the solution provided by nmslib.

Repeating our experiments with other datasets, or
using FALCONN (Andoni et al., 2015), another popular
library for MIPS, yielded comparable results, provided
in Appendix G.

rcvl, A=1, LASSO rcvl, A =10, LASSO

. e—
! -~ uniform 10° ~~— \
106 \ ' ~~
> I 1 steepest >] ‘*'f'_ _______ -
= \ =
g '\ : —— steepest-nn g 10° \
b= 1 2
=3 el g
o ®o—f-0o- S -
e Sitbemeee | 2
@ b [a .
10° \ il SR S~
0 25 50 75 100 125 15 0 25 50 75 100 125 150
time (s) time (s)
_ wla, iV.M e ijjcnnl, SVM
80 L el
R
c -
Se0 ,o S 4000
(v} =
< / I
240 ’ s '
K ! & == uniform 520001 7 —~ uniform
=1 / 3 / g
S 20 F f steepest S 4 steepest
== steepest-nn ‘j” - = steepest-nn
0 01 P
0

1 2 3
time (s)

0.00 0.05 0.10 0.15 0.20 0.25
time (s)

Figure 4: steepest-nn is very competitive and some-
times outperforms uniform even in terms of wall
time especially towards the beginning. However even-
tually the performance of uniform is better than
steepest-nn. This is because nms1ib performs poorly
as the norm of the gradient becomes small.

8 Concluding Remarks

In this work we advocate the use of approximate GS-s
selection rule for coordinate descent, and show its con-
vergence for several important classes of problems for
the first time, furthering our understanding of steepest
descent on non-smooth problems. Our results demon-
strate that significant speedups can be achieved by
using the subgradient (4) to efficiently select the most
‘important’ coordinate at each iteration. Prior to our
work, the analysis of greedy coordinate methods for
composite functions mostly reverted to that of UCD
or made unreasonable assumptions (e.g. Nutini et al.
(2015); Zhang and Xiao (2017); Lei et al. (2017)). This
is in stark contrast with smooth functions where many
algorithms provably have rates better than UCD (e.g.
Nutini et al. (2015, 2017); Nesterov and Stich (2017)).
We believe our proof techniques can help bridge this
gap between the analysis of greedy methods on smooth
and non-smooth functions.

Our extensive numerical experiments also showcase the
strengths and weaknesses of current state-of-the-art
libraries for computing a ©-approximate GS-s direction.
As n grows, the cost per iteration for nmslib remains
comparable to that of UCD, while the progress made
per iteration increases. This means that as problem
sizes grow, GS-s implemented via S-MIPS becomes an
increasingly attractive approach. However, when the
norm of the gradient becomes small, current state-of-
the-art methods struggle to find directions substantially
better than uniform. Alleviating this, and leveraging
some of the very active development of recent alter-
natives to LSH as subroutines for our method is a
promising direction for future work.

Sai Praneeth Karimireddy”, Anastasia Koloskova®, Sebastian U. Stich, Martin Jaggi

Acknowledgements. We thank Ludwig Schmidt for
numerous useful discussions on LSH and using FALCONN.
We also thank Vyacheslav Alipov for help with nms1ib,
Hadi Daneshmand for algorithmic insights, Mikkel Tho-
rup for discussions on using hashing schemes in prac-
tice, and Mathurin Massias for feedback on our writeup.
The feedback from many anonymous reviewers has also
helped significantly improve the presentation.

References

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I.,
and Schmidt, L. (2015). Practical and Optimal LSH
for Angular Distance. In Cortes, C., Lawrence, N. D.,
Lee, D. D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems
28, pages 1225-1233. Curran Associates, Inc.

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Paral-
lel and distributed computation: numerical methods,
volume 23. Prentice hall Englewood Cliffs, NJ.

Bertsekas, D. P. and Tsitsiklis, J. N. (1991). Some
aspects of parallel and distributed iterative algo-
rithms—a survey. Automatica, 27(1):3-21.

Bickley, W. (1941). Relaxation methods in engineering
science: A treatise on approximate computation.

Boytsov, L. and Naidan, B. (2013). Engineering efficient
and effective Non-Metric Space Library. In Brisaboa,
N., Pedreira, O., and Zezula, P., editors, Similarity
Search and Applications, volume 8199 of Lecture
Notes in Computer Science, pages 280-293. Springer
Berlin Heidelberg.

Charikar, M. S. (2002). Similarity Estimation Tech-
niques from Rounding Algorithms. In Proceedings of
the Thiry-Fourth Annual ACM Symposium on The-
ory of Computing, STOC 02, pages 380-388, New
York, NY, USA. ACM.

Dhillon, I. S., Ravikumar, P. K., and Tewari, A. (2011).
Nearest Neighbor based Greedy Coordinate Descent.
In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L.,
Pereira, F., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 24, pages
2160-2168. Curran Associates, Inc.

Diinner, C., Parnell, T., and Jaggi, M. (2017). Efficient
use of limited-memory accelerators for linear learning
on heterogeneous systems. In Advances in Neural
Information Processing Systems, pages 4258—4267.

Fercoq, O. and Richtarik, P. (2015). Accelerated, Paral-
lel, and Proximal Coordinate Descent. STAM Journal
on Optimization, 25(4):1997-2023.

Karimi, H., Nutini, J., and Schmidt, M. (2016). Lin-
ear convergence of gradient and proximal-gradient
methods under the polyak-tojasiewicz condition. In
Joint Furopean Conference on Machine Learning and

Knowledge Discovery in Databases, pages 795-811.
Springer.

Karimireddy, S. P. R., Stich, S., and Jaggi, M. (2018).
Adaptive balancing of gradient and update compu-
tation times using global geometry and approximate
subproblems. In International Conference on Artifi-
cial Intelligence and Statistics, pages 1204-1213.

Lei, Q., Yen, I. E., Wu, C.-y., Dhillon, I. S., and Raviku-
mar, P. (2017). Doubly greedy primal-dual coordi-
nate descent for sparse empirical risk minimization.
In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2034-2042.
JMLR. org.

Lin, Q., Lu, Z., and Xiao, L. (2014). An Accelerated
Proximal Coordinate Gradient Method. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N. D.,
and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 27, pages 3059-3067.
Curran Associates, Inc.

Locatello, F., Raj, A., Karimireddy, S. P., Rétsch, G.,
Scholkopf, B., Stich, S., and Jaggi, M. (2018). On
matching pursuit and coordinate descent. In In-

ternational Conference on Machine Learning, pages
3204-3213.

Lu, H., Freund, R. M., and Mirrokni, V. (2018). Accel-
erating greedy coordinate descent methods. arXiv
preprint arXiv:1806.02476.

Lv, Q., Josephson, W., Wang, Z., Charikar, M., and
Li, K. (2007). Multi-probe Ish: efficient indexing for
high-dimensional similarity search. In Proceedings of
the 33rd international conference on Very large data
bases, pages 950-961. VLDB Endowment.

Massias, M., Gramfort, A., and Salmon, J. (2018).
Celer: a fast solver for the lasso with dual extrap-
olation. In International Conference on Machine
Learning, pages 3321-3330.

Naidan, B. and Boytsov, L. (2015). Non-metric space
library manual. arXiv preprint arXiv:1508.05470.

Ndiaye, E., Fercoq, O., Gramfort, A., and Salmon, J.
(2015). Gap safe screening rules for sparse multi-
task and multi-class models. In Advances in Neural
Information Processing Systems, pages 811-819.

Nesterov, Y. (2012). Efficiency of Coordinate De-
scent Methods on Huge-Scale Optimization Problems.
SIAM Journal on Optimization, 22(2):341-362.

Nesterov, Y. and Stich, S. (2017). Efficiency of the
Accelerated Coordinate Descent Method on Struc-
tured Optimization Problems. SIAM Journal on
Optimization, 27(1):110-123.

Neyshabur, B. and Srebro, N. (2015). On Symmetric
and Asymmetric LSHs for Inner Product Search. In

Efficient Greedy Coordinate Descent for Composite Problems

ICML 2015 - Proceedings of the 32th International
Conference on Machine Learning, pages 1926-1934.

Nutini, J., Laradji, I., and Schmidt, M. (2017). Let’s
make block coordinate descent go fast: Faster
greedy rules, message-passing, active-set complex-

ity, and superlinear convergence. arXiv preprint
arXi:1712.08859.

Nutini, J., Schmidt, M., Laradji, I. H., Friedlander,
M., and Koepke, H. (2015). Coordinate Descent
Converges Faster with the Gauss-Southwell Rule
Than Random Selection. arXiv:1506.00552 [cs, math,
stat].

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825-2830.

Perekrestenko, D., Cevher, V., and Jaggi, M. (2017).
Faster Coordinate Descent via Adaptive Importance
Sampling. In Singh, A. and Zhu, J., editors, Proceed-
ings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceed-
ings of Machine Learning Research, pages 869-877,
Fort Lauderdale, FL., USA. PMLR.

Richtarik, P. and Takac, M. (2016). Parallel coordinate
descent methods for big data optimization. Mathe-
matical Programming, 156(1-2):433-484.

Shalev-Shwartz, S. and Zhang, T. (2013a). Accelerated
Mini-batch Stochastic Dual Coordinate Ascent. In
Proceedings of the 26th International Conference on
Neural Information Processing Systems, NIPS'13,
pages 378-385, USA. Curran Associates Inc.

Shalev-Shwartz, S. and Zhang, T. (2013b). Stochastic
Dual Coordinate Ascent Methods for Regularized
Loss. J. Mach. Learn. Res., 14(1):567-599.

Shalev-Shwartz, S. and Zhang, T. (2016). Acceler-
ated proximal stochastic dual coordinate ascent for
regularized loss minimization. Mathematical Pro-
gramming, 155(1-2):105-145.

Shrivastava, A. and Li, P. (2014). Asymmetric LSH
(ALSH) for Sublinear Time Maximum Inner Product
Search (MIPS). In NIPS 2014 - Advances in Neural
Information Processing Systems 27, pages 2321-2329.

Song, C., Cui, S., Jiang, Y., and Xia, S.-T. (2017).
Accelerated stochastic greedy coordinate descent by
soft thresholding projection onto simplex. In Ad-

vances in Neural Information Processing Systems,
pages 4838-4847.

Stich, S. U., Raj, A., and Jaggi, M. (2017a). Ap-
proximate Steepest Coordinate Descent. ICML -

Proceedings of the 34th International Conference on
Machine Learning.

Stich, S. U., Raj, A., and Jaggi, M. (2017b). Safe Adap-
tive Importance Sampling. In Guyon, 1., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R., editors, Advances

in Neural Information Processing Systems 30, pages
4384-4394. Curran Associates, Inc.

Warga, J. (1963). Minimizing certain convex functions.
Journal of the Society for Industrial and Applied
Mathematics, 11(3):588-593.

Wright, S. J. (2015). Coordinate descent algorithms.
Mathematical Programming, 151(1):3-34.

You, Y., Lian, X., Liu, J., Yu, H.-F., Dhillon, I. S.,
Demmel, J., and Hsieh, C.-J. (2016). Asynchronous
parallel greedy coordinate descent. In Advances in

Neural Information Processing Systems, pages 4682—
4690.

Zhang, Y. and Xiao, L. (2017). Stochastic primal-
dual coordinate method for regularized empirical
risk minimization. The Journal of Machine Learning
Research, 18(1):2939-2980.

	Introduction
	Setup
	GCD for Non-Smooth Problems
	GCD for L1-regularized problems
	GCD for Box-Constrained Problems

	Convergence Rates
	Linear convergence for strongly convex f
	Sublinear convergence for general f

	Maximum Inner Product Search
	Mapping GS-s to `39`42`"613A``45`47`"603AMIPS
	Mapping L1-Regularized Problems
	Mapping Box-Constrained Problems

	Experimental Results
	Concluding Remarks
	Setup and Notation
	Function Classes
	Proximal Coordinate Descent
	Applications

	Algorithms for Box-Constrained Problems
	Mapping Box Constrained Problems

	Theoretical Analysis for L1-regularized Problems
	Good and Bad Steps
	Progress Made in good and bad Steps
	Convergence in the Strongly Convex Case
	Convergence in the General Convex Case

	Theoretical Analysis for Box-constrained Problems
	The Good, the Bad, and the Cross Steps
	Progress Made in One Step
	Convergence in the Strongly Convex Case
	Convergence in the General Convex Case

	Proofs of Mapping Between GS-s and `39`42`"613A``45`47`"603AMIPS
	Further Extensions of the Steepest and `39`42`"613A``45`47`"603AMIPS Framework
	Coordinate Specific Smoothness Constants
	Block Coordinate Setting
	Solving 2 Regularized Problems using `39`42`"613A``45`47`"603ASMIPS

	Additional Experiments
	Consistent poor performance of dhillon
	nmslib on sector dataset
	Make regression
	Extreme Sparse Solution
	Test Accuracy
	Density of the solution
	Effect of Adaptivity
	GS-s implementation using FALCONN library

