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Abstract

We consider the properties of the bootstrap as
a tool for inference concerning the eigenvalues
of a sample covariance matrix computed from
an n X p data matrix X. We focus on the
modern framework where p/n is not close to 0
but remains bounded as n and p tend to infin-
ity. Through a mix of numerical and theoretical
considerations, we show that the non-parametric
bootstrap is not in general a reliable inferential
tool in the setting we consider. However, in the
case where the population covariance matrix is
well-approximated by a finite rank matrix, the
non-parametric bootstrap performs as it does in
finite dimension.

1 Introduction

The bootstrap (15) is a central tool of applied statistics, en-
abling inference by assessing the variability of the statis-
tics of interest directly from the data and without explicit
appeal to asymptotic theory. The appeal of the bootstrap
is especially great when asymptotic theoretical derivations
are difficult and/or can be done only under quite restric-
tive assumptions. For instance, consider the case of Princi-
pal Components Analysis (PCA). The classic text of (2; 3)
(Chapter 13) gives limit theory for the eigenvalues and
eigenvectors of the sample covariance matrix when the data
is drawn from a normal population. These limit results are
non-trivial to derive, even in the Gaussian case, and depend,
for instance, on assumptions regarding the multiplicity of
the eigenvalues of the population covariance matrix. Fur-
thermore, it is clear, using approximation arguments from
(27), that these limit results are not valid for a broad class
of distributions. For instance, they do not apply to popula-
tions distributions with kurtosis not equal to 3. The modern
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theory of PCA which aims for better finite-sample approx-
imations by relaxing the assumption that p/n — 0 is much
more difficult technically and relies on very strong assump-
tions about the geometry of the dataset (see (26; 25; 17),
follow-up papers, and Supplementary Section S1 below for
a short summary).

Remarkably, from a theoretical standpoint, it has been
shown that in many situations the bootstrap estimates the
distribution of the statistics of interest accurately, at least
with sufficient sample sizes (see (8; 22) for classic refer-
ences). For the specific example of estimating the eigen-
values of the sample covariance matrix and PCA, numerous
papers have been written about the properties of the boot-
strap (6; 1; 14; 13; 23). The main results of these papers
is that the bootstrap works in an asymptotic regime that
assumes that the sample size grows to infinity while the
dimension of the data is fixed or grows very slowly, with
the additional provision that the population covariance has
eigenvalues of multiplicity one. When the assumption of
multiplicity equal to one does not hold, subsampling tech-
niques (34) can be used to correctly estimate the distribu-
tions of interest by resampling. We note however that these
subsampling techniques also require the statistician to have
subsamples of size that is infinitely large compared to the
dimension of the data.

Given the limitations of existing asymptotic theory and
these theoretical results on bootstrapping of eigenvalues,
it is not surprising that the bootstrap is a natural tool to use
in connection with PCA and inferential questions therein.
The bootstrap is mostly used in this context to assess vari-
ability of eigenvalues, for instance to come up with princi-
pled cutoff selections in PCA and related methods such as
factor analysis. For recent examples of an applied nature,
we refer the reader to (38; 19; 37; 4). Another application
of the bootstrap is of course in bagging (9); a well known
instance of bagging related to high-dimensional covariance
estimation is in resampled portfolio selection (31).

Our framework: p/n not close to zero The theoreti-
cal assumptions that support the use of the bootstrap make
the fundamental assumption that the dimension p is much
smaller than n (i.e. p/n — 0). The modern asymptotic the-
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ory of PCA, referenced above, has shown that relaxing that
assumption — for example by assuming that p/n < 1 but
does not tend to 0 — leads to dramatically different theoreti-
cal behavior of the eigenvalues and eigenvectors. Itis there-
fore natural to consider the performance of the bootstrap
in the situation where p/n is not close to 0. Furthermore,
in statistical practice p/n is rarely very close to 0, and
hence classical approximations, which rely heavily on that
assumption, may lead to theoretical results and interpreta-
tions that differ quite drastically from what is observed by
practitioners. However, when p/n is not close to 0, devel-
oping theoretical results for interesting statistical questions
is still quite technically difficult (30; 40; 35; 26; 16; 29),
which makes the bootstrap particularly compelling. These
considerations motivate our exploration of the bootstrap as
an alternative, data-driven way, to perform inferential tasks
for spectral properties of large covariance matrices.

Contributions of the paper In Section 2, we study the
performance of the bootstrap by simulations in the con-
text of PCA. We assess whether the bootstrap recovers the
sampling distribution of various statistics of interest, for in-
stance the largest eigenvalue of a covariance matrix or its
bias. Most of our results are negative: only when the largest
eigenvalues become quite large compared to the rest does
the bootstrap provide accurate inference. Furthermore, the
behavior of the bootstrap is unpredictable; in two setups
that are nearly similar from a population standpoint, the
bootstrap estimate is in one case biased upward and in the
other downward.

In Section 3 we provide theoretical results that help explain
this behavior. The first results are about the behavior of the
bootstrapped empirical distribution of all the eigenvalues
of the sample covariance matrix >. We show that in the
framework we consider, the bootstrapped empirical distri-
bution is biased and asymptotically non-random. We then
consider the bootstrap behavior of only the largest eigen-
values of 3. We show that when the population covariance
> has some very large eigenvalues — far separated from the
other eigenvalues — the bootstrap distribution of those large
eigenvalues does correctly approximate the sampling dis-
tribution of the large eigenvalues of 3.

The results of this paper confirm that the bootstrap works
when the problem is very low-dimensional or can be
approximated by a very low-dimensional problem, but
is untrustworthy when the problem is genuinely high-
dimensional. As such, the current paper complements the
findings of (18), which was concerned with problems of the
bootstrap for linear regression models in high dimensions.

1.1 Notations and default conventions

If X is an n x p data matrix, we define X £ (X — X)
and we gall Y its associated covariance matrix, i.e. X =
ﬁX 'X . We call the empirical spectral distribution of

a p X p symmetric matrix M the probability measure such
that dFy(x) = 37 Ox,(ar), Where Ay (M) > Ao (M) >
... > Ap(M) are the ordered eigenvalues of M. We use the
notations Apax (M) or Ay (M) for the largest eigenvalue of
the symmetric matrix M. Apj, is of course the smallest.
For z € C*, i.e 2 = u + iv, where v > 0, we call m,(z)
the Stieltjes transform of the distribution F),, i.e

mp(2) = / . i Zde(:r) = %traoe ((f) — zIdp)_l) .
We call the Gaussian phase transition the value 1+ +/p/n,
which is the value for A; at which point the distribution of
A (2) £ ) switches from Gaussian to Tracy-Widom fluc-
tuations for Gaussian designs whose covariance is a rank-1
perturbation of identity (see Supplementary Section S1.2.1
for review of these results). The rows of a Gaussian design
matrix are i.i.d Gaussian.

We use the notation = to denote weak convergence of
probability distributions. |||M]||2 is the operator norm of
M, i.e its largest singular value. ||w|o = maxi<i<p |w;
is the {,.-norm of the vector w. We say that the sequence
u, = polyLog(n) if u,, grows at most like a polynomial
in log(n). In doing asymptotic analysis, we work under
the assumptions that p/n — 7, r € (0,00). We use the
notation op to denote a “little-oh” with respect to the data
generating distribution. We use op,, to denote a “little-
oh” with respect to the data generating distribution and the
bootstrap weights. See (39) Section 2.2 for standard defi-
nitions. We use Mult as a shorcut for Multinomial.

2 Simulation Study

We investigate via simulation the behavior of the bootstrap
for the top eigenvalue of the standard sample covariance
matrix, 3. For simplicity, we consider the case where only
the top (population) eigenvalue \;(X) is allowed to vary
and assume the remaining eigenvalues are all equal to 1.
The inferential question is to determine whether the top
eigenvalue \; differs from 1. In what follows, the data X;
come from either a multivariate normal distribution or an
elliptical distribution with exponential weights (see Sup-
plementary Text, Section S2 for details). Many theoretical
results on random matrices in high dimensions do not yet
extend to the case of elliptical distributions. While still an
idealization, it represents a simulation scenario that is more
realistic and informative than a straight Gaussian design.

Estimating Bias The eigenvalues of the sample covari-
ance are biased in high dimensions for estimating the true
(a.k.a. population) eigenvalues (see Supplementary Text,
Section S1 for review of these results), and we consider the
question of estimating this bias via the bootstrap. We first
note the importance of this bias in understanding the be-
havior of \;. The bias can be substantial unless \; is quite
large, and the bias is clearly evident even for low ratios of
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r = p/nif Ay is close to 1. Furthermore, this bias is more
pronounced for elliptical distributions than the normal dis-
tribution ((16; 33)). For example, for the null setting of
A1 = 1, with a ratio of p/n as low as 0.01, we see a bias in
A1, overestimating the true \; by 17% for the normal dis-
tribution, and 49% for the elliptical distribution with expo-
nential weights (Supplemental Table S1-S4). As the ratio
of p/n grows, the bias increases, with 5\1 overestimating Ay
by 1.88 and 14.93 when A; = 1 for the normal distribution
and the elliptical distribution with exponential weight, re-
spectively when p/n = 0.5. The bias declines as A1 grows
and becomes more separated from the remaining eigenval-
ues, especially relative to the size of A;; Subsection 3.2 pro-
vides a theoretical explanation for this phenomenon. But
the bias remains for large ratios of p/n even for A; well be-
yond the Gaussian phase transition (14 /p/n), especially
for non-normal distributions; for p/n = 0.5, when A, is as
large as 1+11,/p/n ~ 8.78, the bias of A1 is 8.08 when X
follows an elliptical distribution with exponential weights,
and 2.01 for an elliptical distribution with normal weights.
Any use of A1 as an estimate of \; must grapple with the
problem of such a highly non-consistent estimator, making
bootstrap methods for estimating the bias highly relevant.

The standard bootstrap estimate of bias is given by, ;\’{ — 5\1,
where A\f = & 37, A1® is the mean of the bootstrap esti-
mates of \;. Unfortunately, we see in simulations that this
bootstrap estimate of bias is not a reliable estimate of the
bias of A1 unless \; is quite large relative to the other eigen-
values (Figure 1). For X; following a normal distribution,
the bootstrap estimate of bias in our simulations remains
poor for large p/n even for \; past the phase transition,
e.g. A1 = 1+ 34/p/n, and only for much larger values
of A1 does the bootstrap estimate of bias start to approach
the true bias in high dimensions (Supplementary Table S1).
Further the bootstrap estimate of bias is inconsistent: de-
pending on the true value of A\; the bootstrap either under-
or over-estimates the bias. Another important feature of
the bootstrap shown in our simulations is that when X;
follows an elliptical distribution with exponential weights,
while the mean performance of the bootstrap estimate is
still poor, it is the extremely high variance of the bootstrap
that is even more problematic for the bootstrap estimate of
bias.

Estimating the Variance We see similar problems in our
simulations for the boostrap estimate of variance (Figure
1). Specifically, the bootstrap dramatically overestimates
the variance of ;\1 when A is close to 1. When the X;’s
are normally distributed and A\; = 1, the bootstrap esti-
mates the variance to be four times larger than the true
variance for p/n = 0.1, and grows to be up to 60 times
larger than the true variance when p/n = 0.5 (Supplemen-
tary Table S5). Even when A\; = 1 + 34/p/n, well beyond
the Gaussian phase transition and hence in a relatively easy
setup, the bootstrap estimate of variance is inflated to 1.5

m A=l
m A =1430T
1 B A =1+1047

&

Bootstrap Estimate of Bias: Ay~

Bootstrap Estimate of Bias: A~ Ay
5
!

o

o
o
L

°
°

— — — —
1=0.01 =0.1 =03 =05
Ratio: p/n Ratio: p/n

(a) Bias: Z ~ Normal (b) Bias: Z ~ Ellip. Exp

- =1
W A =1+30T
| m a=1e1007

var(Ay) 1 var(ty)
var(Ay) / var(ty)
©

r=0.01 r=0.1 r=0.3 r=0.5 r=0.01 r=0.1 r=0.3 r=0.5
Ratio: p/n Ratio: p/n

(c) Var: Z ~ Normal (d) Var: Z ~ Ellip. Exp

Figure 1: Boxplots of the bootstrap estimate of (a),(b) bias
and (c),(d) variance of 5\1 over 1000 simulations. The boot-
strap estimate of variance is shown as a ratio of the true
variance while the asterisk (*) in (a),(b) corresponds to the
true bias. Each group of boxplots along the x-axis corre-
sponds to a different ratio r of p/n; different colors of the
boxplot correspond to different values of the true A;. See
Supplementary Figures S3 and S4 and Tables S1-S4, and
S5 for the median values of these boxplots and for results
from larger A; values.

to 2.2 times as large as the truth, for p/n = 0.3 and 0.5,
respectively. Only for large values of A1 does the bootstrap
inflation of the variance become minimal. Again, when
the X;’s follow an elliptical distribution with exponential
weights, the behavior of the bootstrap estimate of variance
is dominated by the variability in the estimate.

Confidence Intervals for \; Standard techniques for cre-
ating confidence intervals for A\; are clearly problematic in
high dimensions since A1 is biased and not a consistent es-
timator for A;. Bootstrap confidence intervals can be cre-
ated in multiple ways (10). Common techniques include
1) a simple normal confidence interval around 5\1 using the
bootstrap estimate of variance, 2) the percentile method,
which uses the percentiles of the bootstrap distribution of
X*b, or 3) a bias-corrected confidence interval. Examining
the actual bootstrap distributions of 5\; — A1 from multi-
ple simulations (Figure 2), we see clearly the incorrect bias
estimation and the overestimation of variance that results
from using the bootstrap. These are features that will also
invalidate confidence intervals constructed from the per-
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Figure 2: Estimated bootstrap density of XTZ’ — Ay from
twenty simulations (picked at random from 1,000 simula-
tions). The solid black line line represents the true distribu-
tion of 5\1 — A1 (over 1,000 simulations). For larger value
of A1, see Supplementary Figure S6.

centiles of the distribution of 5\’1‘. We also see that when
the X;’s follow an elliptical distribution with exponential
weights, the bootstrap distributions do not appear to be
converging to a limit for small values of A\, at least for
n = 1000 — an even greater problem in using the bootstrap
in these settings.

As expected, the resulting bootstrap confidence intervals
are not useful in inference on the true value of A;. Boot-
strap confidence intervals based on the percentile estimates
do not cover the true value with any kind of reasonable
probability until A\; becomes quite large due to the bias in
the estimate of A; (Figure 3 and Supplementary Table S6).
Bootstrap confidence intervals based on normal intervals
around \; using the bootstrap estimate of variance do cover
the true value of the A\; with high probability. However,
this coverage is due to the fact that the bootstrap estimate
of variance is much larger than the true variance of 5\1, as
seen above, and thus results in overly large confidence in-
tervals. As a result, the normal-based bootstrap confidence
intervals also incorrectly cover the putative null hypothe-
sis (A\; = 1) with high probability when the alternative is
true, particularly for X; following an elliptical distribution
(Supplementary Table S7). In short, such bootstrap confi-
dence intervals that use the bootstrap estimate of variance
suffer from lack of power once the distribution of X; de-
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Figure 3: Plotted are the percentage of the bootstrap con-
fidence intervals that cover the true Ay (out of 1,000 simu-
lations), for different values of » = p/n and for different
true values of ;. See Supplementary Tables S6 and S7 for
more precise numerical values and Supplemental Figure S5
for additional distributions.

viates from strictly normal because of the large size of the
confidence interval.

2.1 Detecting Gaps in the Eigenvalue Spectrum

The behavior of the top eigenvalues is often studied in theo-
retical work, but in practice, examination of the eigenvalues
of the sample covariance matrix is largely done to find gaps
in the eigenvalue spectrum which indicate a logical point at
which to reduce the dimension of the data. Again, we fo-
cus for simplicity on detecting the separation of just the top
eigenvalue from the remainder. Then a natural statistic is
the gap statistic, A1 — Ao, and large values suggest a true
difference between the first and second eigenvalue. These
statistics are difficult to understand theoretically, with limit
distributions that are even less standard than the Tracy-
Widom distribution (see (36; 12; 16)), which again makes
them good candidates for using the bootstrap for inference.

The gap statistic A1 — Ao is also a biased estimate for the
true population value. Our simulations show that unlike
5\1, the direction of the bias for the gap statistic differs de-
pending on the value of A\;. For A\; = 1, the gap statistic
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overestimates the true difference, while for A\; > 1, the gap
statistic underestimates the true difference (Supplementary
Tables S8-S11); how large A; needs to be before the bias
becomes negative depends on the distribution of X.

As in the case of the top eigenvalue, the bootstrap estimate
of bias does not accurately estimate this bias (Supplemen-
tary Figure S7). The bootstrap under-estimates the absolute
size of the bias, and for elliptical distributions can misspec-
ify the direction of the bias (Supplementary Tables S8-S11,
Supplementary Figure S7). As with the top eigenvalue, the
bootstrap estimate of bias improves as the top eigenvalue
becomes more separated from the bulk. Estimating the
variance of the gap statistic with the bootstrap shows simi-
lar problems, with the bootstrap widely over-estimating the
variance of (A1 (X) — A2(X)) in high dimensions (Supple-
mentary Figure S8). Bootstrap confidence intervals also
suffer from the same problem as those of the top eigen-
value: percentile CIs have low coverage of the truth in high
dimensions and normal-based CI being much wider than
necessary because of the over estimation of the variance.

Gap Ratio Statistic Another alternative that tries to nor-
malize the gap statistic is the gap ratio, (A1 —A2) /(A2 — A3)
(32). In the scenario we are evaluating, this population
quantity is not well defined (A2 — A3 = 0), but the esti-
mate and its distribution are well defined, and the statis-
tic is still a tool for deciding whether A\; and A5 are well
separated. Again, the bootstrap estimate gives poor esti-
mates of various features of the actual distribution of the
gap ratio statistic, and the bias of the estimates depends on
the true value of \; (Supplementary Figures S11 and S12).
The bootstrap distribution does not appear to be converging
even in the case of normal X (Supplementary Figure S13).

3 Theoretical results

The problems with the bootstrap can be explained in part
by the difference between the spectral behavior of weighted
and unweighted covariance matrices when p/n is not small.
This is because bootstrapping the observations (rows) of
X is equivalent to randomly re-weighting the observations
which changes the spectral distribution of 3. Specifically,
suppose that ¥ = 13" X; X/ When bootstrapping,
the bootstrap estimate, 3*, is given by %Z?:l w; X; X/,
where w; is the proportion of times index ¢ is picked in our
resample. To understand the effect of this weighting con-
sider the case where the X;’s are normally distributed; ran-
domly weighting the X;’s effectively transforms, for spec-
tral purposes, X; into &A; = ,/w; X;, and hence transforms
the data distribution to an elliptical distribution. This leads
to a very different spectral distribution of eigenvalues for
>* when p/n is not close to O (a technical review of the
spectral distribution of eigenvalues for these distributions
is given in Section S1.1 in the Supplementary Text). Simi-
larly, the distribution of the largest eigenvalues are dramati-

cally affected by reweighting; the one exception to this rule
is the situation where the largest eigenvalues of X are very
separated from the rest.

In what follows we provide theoretical results that help
explain the results of our numerical simulations and also
complete them. The first set of results concerns the im-
pact of bootstrapping on the spectral distribution of a sam-
ple covariance matrix. We explain that this creates bias in
the setting we consider and it helps explain some of the
misbehavior of the bootstrap we observed in the numeri-
cal study. We then consider the case of extreme eigenval-
ues, in the case where the largest population eigenvalues
are well-separated from the bulk of the eigenvalues. We
show that then the bootstrap works asymptotically under
certain conditions. This helps explain why the performance
of the bootstrap improves in our numerical study when we
increase the largest population eigenvalue.

3.1 Bootstrapped empirical distribution

3.1.1 Spectral distribution of bootstrapped
covariance matrix

The result that follows is in fact more general than the
bootstrap setting, and applies to a broad class of randomly
reweighted estimates S, = %Z?:l w; X; X/, where w;
are random variables and X;’s are considered as non-
random. The case of w ~ Mult(n,1/n) corresponds to
the standard bootstrap estimate $3*. We recall that it is well-
known that pointwise convergence of the Stieltjes trans-
form (see Subsection 1.1) implies weak convergence of the
corresponding spectral distributions (see (5; 21)).

Lemma 3.1. Suppose {X;}_, are fixed vectors in RP.
Consider S,, = %ZLI w; X; X and my(z) the Stieltjes
transform of Sy,. (Recall that v = Im|z].) Suppose that
w;’s are independent random variables. Then

P(jmy(2)) = E (my(2)) | > t) < Cexp(—cp*v?t?/n) ,

with C' = 4 and ¢ = 1/16 for instance. Furthermore, the
same result holds when w;’s have Mult(n,1/n) distribu-
tion.

Naturally, since the X;’s are considered as non-randgm in
the previous lemma, the result applies directly to S, =
iZ?:l wl(Xf — X,)(X; — X,,)’, by simply considering

X; = X; — X, in the previous lemma. See Section S3.1
for the proof.

Corollary 3.1. When p/n — r € (0,00), the Stielt-
jes transform my(z) of the independently-weighted boot-
strapped covariance matrix, Sy, is asymptotically deter-
ministic. The same is true with the standard bootstrap,
where the weights have a Multinomial(n, I/n) distribution.
In particular, if f is a bounded continuous function, as n
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and p tend to infinity, while p/n — ,
1< 1<
=N ) = = D ET(f(A])) = 0in probability
P4 P

where X} are the decreasingly ordered bootstrapped eigen-
values and E* (-) refers to expectation under the bootstrap
distribution.

The corollary follows from our lemma by simply using the
fact that pointwise convergence of the Stieltjes transform
implies weak convergence of the corresponding spectral
distributions. It says that bootstrap average of “nice” func-
tions of the spectral distribution are asymptotically non-
random. We apply the result below for shrunken estimates
of the covariance matrix.

3.1.2 Bias of the bootstrap spectral distribution when
p/n is not small: the case of Gaussian data

Lemma 3.1 above shows that the spectral distribution of the
bootstrap eigenvalues has a non-random limit distribution,
like that of the sample eigenvalues. The important question
then remains as to whether the relationship between boot-
strap and sample eigenvalues is the same as the relationship
between sample and population eigenvalues, which would
allow us to use the bootstrap for eigenvalues.

We first consider for concreteness and simplicity the case
of a Gaussian design matrix, i.e. X; [ N(0,%). In doing
so, we can clearly demonstrate (see Supplementary mate-
rial S1.1.1) that the spectral distribution of ¥* is a biased
estimate of that of 3 and that furthermore the spectral rela-
tionship between X* and ¥ is different from that between
Y and X.

Lemma 3.1 and Corollary 3.1 apply without restrictions on
the design, which is one of their main strengths. However,
current results in high-dimensional random matrix theory
are still somewhat limited from a design standpoint (see
Section S1.1 in Supplementary Text for a review). Hence
we cannot make precise quantitative statements about boot-
strapping empirical spectral distributions that are very gen-
eral when it comes to the design matrix. It suffices to say
that the impact of the distribution of w;’s spectral distribu-
tion is highly non-linear. Hence picking bootstrap weights
according to the Mult(n,1/n) will generally not work.

A geometric interpretation Intuitively, one can think that
bootstrapping moves the data in the setting considered
here from a Gaussian setting to an elliptical one. It is
well-known ((11), (24), (17) and Supplementary Material)
that in moderate and high-dimension elliptical distributions
have completely different geometric properties than Gaus-
sian ones and that this impacts strongly the statistical be-
havior of many spectral estimators ((17)). As such, it is not
that surprising that the bootstrap does not perform well:
from an eigenvalue point of view, it is as if the bootstrap
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Figure 4: Boxplots of the bootstrap estimate of the bias
of the plug-in estimate § = S trace ((EA] + sIdp)_l) over

1000 simulations. The true bias is shown with an asterisk.
The regularization parameter s is set to s = 0.1.

changed “the geometry of the dataset” and this geometry
has an important impact on their behavior. Bootstrapping
is therefore not a good way to mimic the data generating
process in this context.

Non-Gaussian Design Matrices Much work has been
done in random matrix theory to extend the domain of va-
lidity of the Marchenko-Pastur equation, which holds be-
yond the case of Gaussian data. The bootstrap bias prob-
lem remains the same, because the limiting properties of
the matrices of interest are unaffected by the move from
Gaussian to these more general models (see (17)).

Example: Shrunken Inverse covariance matrix The bulk
behavior of the bootstrapped eigenvalues is important for
inference regarding various properties of the inverse co-
variance matrix. In particular, a non-trivial question is
to. understand the bias in shrunken versions of X1, i.e.
(X + sId,)~!. These questions are natural in the con-
text of portfolio optimization (see (28)) or the study of
regularized discriminant analysis (20). Furthermore, an-
alytic characterization of this bias is hard (or currently
impossible for general designs), making this example a
prime candidate for the use of the bootstrap in applications.
Corollary 3.1 imply that the bootstrap estimate of bias
of %trace ((i + sIdp)_l) is asymptotically non-random.
Figure 4 shows its performance in simulations: it is itself
biased, and can either over-estimate or under-estimate the
true bias, depending on the distribution of the underlying
design matrix X. This confirms the conclusion of our ear-
lier simulation results for extreme eigenvalues, namely that
it is very hard to predict how the bootstrap fails.
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3.2 Extreme Eigenvalues: well-separated case

We first consider the case where the top eigenvalues are
much larger than the rest of the eigenvalues. In the context
of PCA, this corresponds to the case where the data lives
predominantly in a smaller subspace. We show that in this
subsection that the bootstrap eigenvalues are consistent in
probability.

Notations Call S,, the sample covariance matrix of the data
and ¥,, the population covariance. We use the block nota-
tion

(T, U, (X1 Y12
Sn = (U,’L nO‘Vn) B = (2321 na222> .
T, and X1 are both assumed to be ¢ X q.

Assumptions: A1 We assume that |||Xa2]||2 = O(1) and
that Ay (X11) > 1 > 0. We assume that X417 is ¢ X ¢
with ¢ fixed. A2 X;’s are i.i.d with X; = r;Z;, where
Zi ~ N(0,%,),and 0 < g < 7; < 7 is a bounded
random variable independent of Z;, with E (r?) = 1.A3
The bootstrap weights w; have infinitely many moments,
lw]leo = O(polyLog(n)) and E (w;) = 1. These weights
can either be independent or Multinomial(n, 1/n). A4 p/n
remains bounded as n and p tend to infinity.

Theorem 3.1. Under our assumptions AI-A4, if« > 1/2+
€ for any € > 0,
sup vn(A\i(Sn) — Ni(Ty)) = op(1) . (1)

1<i<q

Furthermore, if w denotes the vector of weights used in the
bootstrap and the corresponding bootstrapped matrices are
S’ and T, we have

sup Vn(Ai(Sy) = (1) = opw(1) . ()

1<i<gq

The proof of this theorem is given in the Supplementary
Text, Section S3.2. As noted in the proof, our arguments
rely heavily on the very nice results of (14).

3.2.1 Consistency of the bootstrap

The definition of bootstrap consistency is recalled in the
Supplementary material, Definition 1, p.8 there.

Theorem 3.2. Suppose the eigenvalues of 311 are simple
and the assumptions Al-A4 of Theorem 3.1 hold. Then the
bootstrap distribution of the q largest eigenvalues of Sy, is
consistent in probability, provided oo > 1/2+¢, with e > 0.

See Section S3.2 for the proof of this theorem, which uses
the nice classical results of (6; 7) and (14). While we do
not discuss bootstrap eigenvector results in this paper be-
cause they are much less used by practitioners and because
of space limitations, the techniques we use here could be
extended to these questions.

3.2.2 Discussion of some assumptions and remarks

a > 1/2 + € This assumption is not terribly restric-
tive in a PCA context: in fact under our assumptions, if
Yoo = Id,_g, the fraction of variance explained by the top
q eigenvalues is, if C' = trace (X11) /¢

trace (¥11) qC
trace (¥,) qC+ (p—q)n— "

Soif 1/2 + ¢ < a < 1, in our asymptotics this fraction
of variance is asymptotically 0 (pn~* — oo and ¢qC' is
bounded). On the other hand, if o > 1, the fraction of vari-
ance explained by the top ¢ eigenvalues is approximately 1,
which is the standard setting where PCA is used. If a = 1,
the fraction of variance varies between 0 and 1, depending
on C. Of course, a similar analysis is possible and actually
easy to carry out if Yoo is not a multiple of the identity and
corresponding details are left to the interested reader.

The m-out-of-n bootstrap As noted in (7; 14), subsam-
pling approaches fix the problem of bootstrap inconsis-
tency in the setting where Y17 has eigenvalues of multi-
plicity higher than 1. Our approximation results for the pair
(Sk,T7*) can be extended to subsampling approaches, and
hence our results could be extended to cover these ideas.
However, since this question is a bit distant from our main
motivations, we do not treat it in detail here.

Discussion of other assumptions Assumptions on X;’s,
Z;’s, and ¥ could be relaxed significantly. In particular,
the block representation assumptions of ¥, are made for
analytic convenience and can be easily dispensed of. We
discuss these issues that are a bit secondary for this paper
in the Supplementary material, Subsubsection S3.3.

3.3 When the extreme eigenvalues are not
well-separated from the bulk

Precise results regarding the fluctuation behavior of the ex-
treme eigenvalues of the bootstrapped covariance matrix,
i.e. A1(X*), when the extreme eigenvalues of ¥ are not
well separated from the bulk, appear difficult to obtain in
full generality. Indeed, our simulations in Section 2, par-
ticularly Figure 2, indicate that a great variety of behaviors
seem to be possible; see also the discussion below. How-
ever, our results and discussion regarding the bias of the
bulk distribution in the case of Gaussian designs induced
by the reweighting of the X;’s give some insight into the
behavior of the extreme eigenvalues in this setting. While
a general theory is out of the reach of this paper, we give
some concrete results concerning the bias of the bootstrap
estimate of bias and discuss further this issue in the Sup-
plementary material, Subsubsection S3.3.

A great many mathematically interesting questions remain
concerning the fluctuation behavior of bootstrapped eigen-
values when the largest population eigenvalues are not
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well-separated from the bulk. For instance, one could ask
whether it is the case that the bootstrap distribution of the
largest eigenvalue of a sample covariance matrix is Tracy-
Widom when \; (X) has this distribution? The simulation
study in Section 2 suggests however that the answer to this
question may be of limited practical statistical interest. For
instance Figure 1 indicates that the bootstrap estimate of
bias of A1(X) is itself very biased. Figure 2 and in par-
ticular Subfigure 1b suggests that the bootstrap distribution
of our statistics is a poor approximation of the sampling
distribution. These simulations also suggest that the char-
acteristics of the bootstrap distribution and its relationship
to the sampling distribution depend strongly on the char-
acteristics of the design matrix, a problematic feature for a
black box method such as the bootstrap. With current tools,
mathematical characterization of the bootstrap distribution
would be intractable outside of “simple situations”, such
as Gaussian or elliptical designs and slight generalizations.
The lack of robustness to alternative distributions seen in
simulations suggests that such mathematical characteriza-
tion would be of limited practical statistical interest: the
simulations show that in the high-dimensional setting the
bootstrap distribution is very sensitive to characteristics of
the data generating process that would be unknown in sta-
tistical practice. For this reason, we postpone these mathe-
matically interesting and delicate questions to possible fu-
ture work.

4 Conclusion

We have investigated in this paper the properties of the
non-parametric bootstrap for spectral analysis of high-
dimensional covariance matrices, namely when p/n is not
close to 0, a realistic setup in current statistical practice.
Our theoretical results concern two different aspects of the
eigenvalue distribution. The first concerns the bulk of the
eigenvalues. We show that the spectral distribution of the
bootstrapped covariance matrix has a non-random limiting
distribution. We go on to demonstrate that in the case of
the Gaussian design, where this limiting distribution can be
explicitly compared to that of the sample covariance ma-
trix, the two do not have the same limiting distributions
and the bootstrap version is thus a biased estimate of the
sample spectral distribution. Furthermore, this bias is dif-
ferent from the bias that the sample spectral distribution
exhibits when compared to the population spectral distri-
bution. This set of results is of interest for instance when
dealing with functions of the inverse covariance matrix for
which all eigenvalues contribute.

The other aspect of the spectral analysis that we consider
concerns inference for only the extreme eigenvalues. This
is the setting most applicable for dimensionality reduction
via PCA, for example, where inference on the top eigenval-
ues helps pick the subspace into which the data is projected.
We show that when the top eigenvalues are well-separated

from the rest and of multiplicity 1, the bootstrap is con-
sistent (Theorem 3.1). We show that because the data are
effectively low-dimensional in this setting, existing results
derived for the case of n — oo and fixed p can be extended
to the case of p/n — r € (0, c0).

While this is a positive theoretical result for bootstrapping
eigenvalues, its practical performance is less encouraging.
Our simulation results for the simple question of detecting a
single separated eigenvalue show that the separation of the
top eigenvalue must be quite large to have bootstrap con-
sistency. Moreover, the required size of the separation in
eigenvalues for bootstrap consistency depends heavily on
the distribution of the X;’s. When the separation is not suf-
ficient, our simulation results show that the bootstrap dis-
tribution of the top eigenvalue is a highly biased estimate of
the sampling distribution of the top eigenvalues. Hence, a
naive application of the bootstrap method for these prac-
tically important eigenvalues will give very bad results.
While this contradicts intuition based on low-dimensional
analysis, this is not completely surprising, since the sample
eigenvalue A (X) is itself known to be a biased estimator of
A1(X) when p/n — r € (0,00). However, even for other
uses of the bootstrap that are less prone to bias-induced
problems, for example to estimate the bias of the largest
sample eigenvalues or to provide inference regarding the
gap between eigenvalues, the bootstrap fails dramatically
for values of p/n not near zero unless the top eigenvalue is
enormously separated from the bulk.

This is particularly unfortunate, because it is exactly when
the extreme eigenvalues are not well-separated from the
bulk that theoretical results are hardest to obtain, most lim-
ited and require the most assumptions about the distribu-
tion of the design matrix. When the eigenvalues are well-
separated, the low-dimensional nature of the problem es-
sentially means that classical theoretical results regarding
the distribution of the eigenvalues still hold.

Ultimately, in the very cases where the bootstrap would be
most helpful, it fails as an inferential method. Moreover,
this happens when one would expect - based on classical
intuition and results - that the bootstrap “should” work.
This echoes the findings of (18) in the case of bootstrap-
ping in linear regression: in high-dimension, bootstrapping
does not mimic the data generating process. Hence, stan-
dard bootstraps appear to work only for problems that are
effectively low-dimensional.
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