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A Outline and Notation

In this section, we provide an outline of the supplemental material and define some notation. In Section[B] we
prove Theorem|[T} In Section[C} we prove Theorem 3|and the main lemmas used in its proof. In Section[D} we
prove Theorem [] splitting it up into three distinct theorems. In Section[E] we discuss our conjecture that
there is a small gap between 0- PAC and §- PAC-EXPLANATORY algorithms; we also prove and discuss our
lower bound for §- PAC algorithms. In section[F] we prove a number of technical lemmas. In Section[G} we
present and discuss a version of TF-LUCB that allows for tolerance of infeasibility and suboptimality. In
section [H] we provide pseudocode for TF-AE and FFAF.

Define SP~1 = {x € R” : |z, = 1}. Define a function d : (0,1) x (0,1) — R such that d(z,y) =
zlog(y) + (1 — =) log(%:—;). Recall that if U = (¥, then we use the convention min,eyy = o0 and
maX ey & = —00.

B Lower Bound
For the proof of Theorem we introduce the following notation. For a given problem (v, P, r,m), define

FEAS(v, P,7,m) = {i € [K] : p; € P}, INFEAS(v, P,r,m) = FEAS(v, P, 7, m)",

OPT(v, P,r,m) = {i € FEAS(v, P,7,m) : ' p; > man’TEnF)EAS(V,P,r,m) rTuj},
SUBOPT(v, P,7,m) = {i€ [K]: 7 p; < maxggEAs(%P,r’m) TS

Proof of Theorem([l] Step 1: Pick a good partition of the arms. Fix ¢ > 0. Let (v, P,7,m) satisfy the
hypotheses of the theorem statement. In the interest of brevity, abbreviate

FEAS = FEAS(v, P,r,m), INFEAS := INFEAS(v, P, 7, m),
OPT = OPT(v, P,r,m), SUBOPT = SUBOPT(v, P, 7, m).

Let A denote a §- PAC-EXPLANATORY algorithm wrt M with stopping time 7.
We claim that there exists (S, I) € Valid-Partitions that satisfies the following property:

~ 1-6 ~ _1=9¢

z‘eS:Pr,(ieS)>T; ieI:Pru(ieI)>?. (1)

\



As an intermediate step, we claim that for every i € OPT®,
max(Pr, (i €1),Pr, (i € S)) > ——. 2)

To see this, fix ¢ € OPT®. Define the events

A~

B = {O = OPT, (S,1) € Valid-Partitions},
By = Bn{ieS},
By=Bn{icl}
Note that B = By u By and B1 n By = &. Since A is §- PAC-EXPLANATORY wrt M,
1-6<Pr,(B)
= Pr,(B1) + Pr,(By)
<Pr,(i€8) +Pr,(iel)
< 2max(Pr, (i € S), Pr, (i € 1)).

This establishes the claim in (2). Furthermore, note that if « € OPT®\ INFEAS = SUBOPT n FEAS, then
B> = 7, so that

1-9

Pr,(ieS) > — 3)
Similarly, if ¢ € OPT®\ SUBOPT, then By = (¢, so that
A 1-46
Pry(iel) > —~. (4)

Define
. . A 1-6
S = {ie SUBOPT : Pr,(i€S) > T}
~ 1—
I = INFEAS \{i € SUBOPT : Pr, (i € S) > T(S}.

We claim that (S, I) € Valid-Partitions. Clearly, S « SUBOPT, I c INFEAS, S n1 = J,and Su I c
OPT¢. Therefore, it suffices to show that OPT® = S u I. Let ¢ € OPT®. If ¢« € INFEAS, then either ¢ € I or
i € S, so suppose that i ¢ INFEAS. Then, ¢ € OPT“\ INFEAS = SUBOPT n FEAS c S by (3). Thus, the
claim that (S, I) € Valid-Partitions follows.

We claim that (S, I) has the property (I). Let: € S. By definition of S, Pr, (i € S) > 152 Next,
leti e I. Ifi € SUBOPT, thent € I < INFEAS and ¢ ¢ S imply that Prl,(z' € §) 1_5 . Then, by 2)
Pr,(i€T) > 152, If i ¢ SUBOPT, then @) implies that Pr, (i € T) > 152. Thus, the clalm follows.

Next, we outhne the rest of our proof. For the rest of the proof, the S and I that we constructed are fixed.
Using the fact that 7 = Zfil N;(7), we will show that for this choice of .S and I,

K
= VBN = 1 (ol Y mas(lminr” (s — )] 72 disti, 0P) 7))

15 4€OPT 7€
. 72 ] . 72
+ jrg(;gTr — )]+ ZI] dist(ps;, P) 2. ©6)



To this end, we lower bound E,, [ N;(7)] for each of the distinct cases (¢ € OPT, i € S, i € I). To do this, we
construct a related problem by modifying one of the distributions and applying Lemma|[F.1] The result will
follow by taking the minimum of the right-hand side of (6)) over all (S’, I’) € Valid-Partitions.

In each of the next steps, we will define a new problem to obtain a lower bound. To avoid notational
clutter, we will redefine the symbols p}, v/, and v in each step. The context should make their meaning
clear.

Step 2.a: reward bound for ; € OPT. Fix 7 € OPT. First, we show that

_ 2 A i e T (s — 1) 4 ]2
E,[Ni(T)] = 15 ln(25)[g¥gg}r (i — pj) + €

for a sufficiently small € > 0. If § = &, minjeg (i — 1) = —oo by definition and there is nothing to
show. So, suppose that S' # (JJ. Define

Jo = arg max er,j. @)
jes

Define for all j € [K]

, 'u’j()vl —€ lfj — Z
;= Hi2:D

" ifj i

where € > 0 is chosen sufficiently small such that for all § € [0,¢), 7 ! + 6 # 7' p; for all j # i (which

is possible since 7" p; # 1 py for all I # k € [K]). Define v(V) = (v}, ..., v} ) and consider the problem
(v®, P, 7, m). We claim that (v(9, P,»,m) € M. Since pu; ¢ OP and 0P = d(R x P') = R x 0P’ for
some P’ < RP~1, pf ¢ OP. Further, by construction, 7"y # T p/; for all j # . Thus, none of the arms

have means on the boundary of P and all of the rewards of the arms are distinct, so (u(i)7 P,r,m)e M.
In the interest of brevity, abbreviate

FEAS; = FEAS(v(Y, P,r,m), SUBOPT; := SUBOPT(vV), P,,m).
We claim that j, ¢ SUBOPT;. Suppose jo € FEAS. Then,

T,/ _.T,,.
T K, =T Hj
= maxesr ' i ®)

.
= MAaX]cSUBOPT ~ FEAST [ 9

= maxl(?F;;ingul (10)

= max (s, 7 Ay (1n
where line () follows from (7)), line (@) follows from S > SUBOPT n FEAS, (10) follows from j, € FEAS
by assumption, and follows from the fact that j, € FEAS and the only difference between v and v is
in the ¢th arm, which now has reward less than the joth arm. Thus, if jo € FEAS, then j, ¢ SUBOPT;.



On the other hand, if j; ¢ FEAS, then

v, = maxiesr | p (12)
>7rlu) (13)
> MAX[eSUBOPT A FEAST | 4] (14)

where line (I2) follows from (7) and p; = p; for all I € S, line (I3) follows from p; is defined to satisfy

riul > MAX Tyt <! r " ), and line (T4) follows from S > SUBOPT N FEAS, j, ¢ FEAS, and
Jo

{rTu‘lprime}le[K] distinct. (T4) implies that

maxl(g%AsirTu; =r'y, < rTu;-()
so that jo ¢ SUBOPT;. This establishes the claim that jo ¢ SUBOPT;.

Consider the event B = {jo € S}. Then, since A is §- PAC-EXPLANATORY wrt to M, (v, P,7,m) €
M, and arm j, ¢ SUBOPT;, we have that

Pr,) (B) < Pr, (S ¢ SUBOPT;) < 6. (15)
Further, by construction of .S,
Pr,(B) = 17_5. (16)
Then,
1
g[TT(m — j,) + €)’E, [Ni(7)] = KL(v3, ) B, [N (7)] (17)
= d(PI’,,(B)7P1“V(i)(B>) (18)
> d(Pr,(B),5) (19)
1 —
> d(+5°.0) (20)
1 1
> —1In(=—).
15 ln(%) 21)

Line follows by the formula for the KL-divergence of two multivariate normal distributions, (I8)) follows
by Lemma (T9) follows since y — d(z,y) is decreasing when z > y, (13), (16)), and & < .1, 20) follows
since & — d(x,y) is increasing when = > y, (13)), (T6), and § < .1, and (ZT)) follows by Lemma (E.7). The
claim follows by rearranging the inequality.

Step 2.b: feasibility bound for : € OPT. Next, we show that for sufficiently small € > 0,

E,[N,(7)] > 135 m%)[ dist(ps, OP) + ] 2.
Since P is nonempty and P # RP, by Lemma 0P is nonempty. Since in addition 0P is closed, by
Lemma there exists 7; € Proj,p(p;). Since T; € 0P, by the assumptions of the Theorem on P, for all
€ >0, B(1) n (P°)° # &. Thus, for any € > 0, there exists a direction v € RP with ||v||,, = 1 such that
T; + ev € (P°)°. Further, since by the assumptions of the Theorem on P, P = R x P’ for some P’ < RP~1,
we can choose v such that v; = 0.



Define for j € [K]

" if5 i
vi = N(uj, Ip).

, Ti+ev ifj=1
py =

Define vV = (v},...,v}) and consider the problem (v(¥), P,r m). We claim that (v, P,»,m) € M.
Since pj € (P°)°, pj ¢ OP. Therefore, it suffices to show that r "y # 7T /s for all j # i. To show this,
it suffices to show that 7; ; = p1; 1 since then it follows by our choice of v, r = e1, and the fact that for all
J #1, rTuj # 1 u;. Towards a contradiction, suppose that f1; 1 # 7; 1. Define

7‘{ L= Ti’j '7 ;é 1
v fi1  : otherwise

Recall that P = R x P’ for some P’ = RP~1 and observe that 0P = R x P’ UR x 0P’ = R x ¢P’. Thus,
T; € 0P implies that 7] € OP. Further, |7] — p;|, < |7 — w45, which is a contradiction to 7; € 0P. Thus,
the claim follows and hence (v, P,r,m) € M.

In the interest of brevity, abbreviate

FEAS; = FEAS(v(), P,v,m), OPT; := OPT(v\), P, v, m).
Define the event B = {i € 6} Then, ¢ ¢ FEAS,, so that the event B implies that the algorithm .4 makes a

mistake. Since A is 6- PAC-EXPLANATORY wrt M, Pr, ) (B) < Pr, ) (6 & OPT;) < 0. Further, since
7 € OPT and A is 0- PAC-EXPLANATORY wrt M,

Pr,(B) > Pr,(O=0PT) >1—-§ > 1%5
Thus,
5 (dist(1s, 2P) + B, [N:()] = 3 (i — il + B, [Ni(7)] @2)
>3 Im+ v — il BN (D)) e3)
— KL(vs, V))E [N ()] (24)

1 1

> In(5). (25)

Line (22)) follows by the definition of 7;, line (23) follows by the triangle inequality and [v|, = 1, line (24)
follows by the definition of the KL divergence for multivariate normal distributions, and line (23] follows by
a similar series of inequalities as (T7)-ZI).

Step 3: ¢ € S. If S = (¥, then there is nothing to show in this step. So, suppose that S # J. Then,
S # (& implies that there are at least m feasible arms. Let jo € [K] such that p;, € P and

T : T
T i, = MiNjeoptT Hi-



Define for j € [K]

, it T Hjo 1 £ € e i g
H; = Hi2:D

1 ifj £
Vi = N(uj, Ip).

where € > 0 is chosen sufficiently small so that for any & € [0,¢), 7T p} — § # rTu;» for all j # ¢ (which
is possible since 7" p; # 7T py, for all I # k € [K]). Define v(V) = (v}, ..., v} ) and consider the problem
(v®, P,»,m). It follows that (v(), P, ,m) € M by a similar argument that showed in Step 2.a that when
i € OPT, (v, P,r,m) e M.

In the interest of brevity, abbreviate

SUBOPT; := SUBOPT(v\V), P, m).

Define B = {i € §} Note that arm ¢ ¢ SUBOPT; by construction. Thus, since A is §- PAC-EXPLANATORY
wrt M, we have that Pr, i) (B) < J. Further, by construction of S, Pr,(B) = %. Therefore, by a similar
series of inequalities as (T7)-(Z1), it follows that

1 1 1
75 (55) < 5T (g — ) + PR [Ni(7)]. (26)
Step 4: i € I. Since P # R” and P is nonempty, by Lemma 0P is nonempty. Since in addition
0P is closed, by Lemma there exists 7; € Proj,p(pt;). By the assumptions of the Theorem on P, since
T; € OP, for every € > 0, B.(1;) n P° # (. Thus, for sufficiently small ¢ > 0, there exists a direction
v € RP with |v], = 1 such that 7; + ev € P°. Since by the assumptions of the Theorem on P, P = R x P’
for some P’ < RP~!, we can choose v such that v; = 0. Define for j € [K]

,  JTitev ifj=i
Hi= if#i

vi = N(uj, Ip).

Define v() = (1, ...,v}.) and consider the problem (v}, P,r, m). It follows that (v}, P,r,m) € M by
a similar argument that showed in step 2.b that when ¢ € OPT, (I/(i), P,r,m)e M.
In the interest of brevity, abbreviate

INFEAS; = INFEAS(v\), P, 7, m).

Define the event B = {i € T} Observe that s ¢ INFEAS;. Thus, since A is §- PAC-EXPLANATORY wrt M,

A~

Pr, o (B) < Pr,w (I ¢ INFEASZ) < 0.

Further, by construction of I, Pr, (i € f) > 1%5 Therefore, by a similar series of inequalities as (22)-(23), it
follows that
1

1 1,
B ln(%) < 5( dist(pi, P) + €)*E, [N;(7)]. (27)



Step 5: Putting it together. Using E, [7] = 3% | E,[N;(7)] and inequalities (ZT)), (23), 26), and ([27),
we establish for all sufficiently small € > 0,

2 1

] > {5 ()l 33 max(minr s ) 172 i, ) )
+ 2 lmin (= p) €77 ) [ dist(pai, P) + )77

el

Since this bound holds for all € > 0 sufficiently small, letting ¢ — 0 on the RHS of the above inequality
establishes (6).
O

C Proof of Theorem 3

To begin, we introduce some notation. Fix (5, I) € Valid-Partitions. We will bound the number of samples
required to identify each arm as belonging to either OPT, S, or I. Define

. T T
min;eopr” M + MaXjesT Hj

d(S) = .

If either | FEAS | < m or S = ¢, then define d(S) := —oo. Next, we introduce a notion, which captures
when arm ¢ needs to be pulled more. Define for all ¢ € [K],

NEEDY(S,I) = [{i € OPT} A ({i € G¢} v {r " i n,y — Un(Ni(t),8) < d(S)})]
v [{ie S} A {r N, w + Un(Nil?),8) = d(S)}]
v[{iel}A{ieG}

In words, if arm 7 is optimal, then it needs to be pulled more if either it has not been determined whp that
pi € P or the lower bound on its reward is below d(.S). If ¢ is in S, then it needs to be pulled more if the
upper bound on its reward is above d(.5), and if 7 is in I, then it needs to be pulled more if it has not been
determined that p; ¢ P.

Next, we state the two main lemmas that we use in the proof of Theorem 3]

Lemma C.1. Fix 6 > 0 and a problem (v, P,r,m) € M. Fix (S, I) € Valid-Partitions. Suppose that for all
i € [K] and for all t > 1, (i) it holds that

v (i — Big)| < Ur(t,0), (28)

and (ii) TestF(i,t) = True implies that p; € P and TestF(i,t) = False implies that p; ¢ P. Then, for all t
prior to termination (i.e., t < 7), NEEDY; (S,I) v NEEDY;, (S,1) is true.

Lemmaessentially says that provided (i) Uy.(t, ) bounds the deviation |r " (p; — fi; +)| and (ii) TestF
does not make a mistake, then every round prior to termination, at least one of the pulled arms is “needy."
The second main lemma states that provided that (i) U,(t, §) bounds the deviation | (u; — fi; ;)| and

(ii) TestF does not make a mistake, the algorithm returns a correct answer, i.e., returns (6, §,T) such that
O = OPT, S < SUBOPT, and I < INFEAS.



Lemma C.2. Fix ¢ > 0 and a problem (v, P,r,m) € M. Suppose that for all i € [K] and t € N, (i) it holds
that

lr " (s — fie)| < Unl(t,6), (29)

and (ii) TestF (i, t) = True implies that p; € P and TestF(z t) = False implies that p; ¢ P. Then, TF-
LUCB(9) returns (O s, 1) such that O = OPT, and (S 1) € Valid-Partitions.

The proofs of the two lemmas are given in Section [C.T]

Next, we prove Theorem 3] The proof has three main steps. First, we show that whp for every arm i (i)
TestF does not make a mistake about the feasibility of arm 4, (ii) after arm ¢ has been pulled n(v;, P) times,
TestF determines whether arm 4 is feasible, and (iii) U,.(t, ) controls the deviation of the empirical mean
reward to the expected reward for arm i. Second, we apply Lemma [C.2]to conclude that the algorithm returns
the correct answer. Finally, we upper bound the sample complexity, 7, of the algorithm by essentially upper
bounding how many times an arm must be pulled before no longer being “needy."

Proof of Theorem[3] Step 1: Defining the event. Let (.S, I) € Valid-Partitions that achieves the minimum
in the upper bound (T) stated in Theorem [3| l For the sake of brevity, we write NEEDY' and d instead of
NEEDY(S, I) and d(S), respectively.
If p; € P, let
B; ={Vt e N: TestF(i,t) # False} n {Vt = n(v;, P) : TestF(i,t) = True}
AVteN:|rT (@i — pi)| < Up(t,9)}.
If u; ¢ P, let

B; ={Vt € N : TestF(i,t) # True} n {Vt = n(v;, P) : TestF(i,t) = False}
A{Vte N:|r' (fi; — i) < Un(t,0)}.
In words, when p; € P, B; says that (i) TestF does not make the mistake of concluding that arm ¢ is infeasible,
(ii) after arm ¢ has been pulled 7(v;, P) times, TestF determines that arm ¢ is feasible, and (iii) U, (t, )
controls the deviation of the empirical mean reward to the expected reward of arm i. For u; ¢ P, B; is the

analogous event.
Observe that since |||, = 1 and v; is o-sub-Gaussian, if X ~ v;, then

HTTX|}w2 <|X],, <o

so that 7 ' X is o-sub-Gaussian.



Then, by the union bound,

Pr( UK, BY) 0

< 3 Pe(BY) ey
€[ K]

< > Pr([{VteN: TestF(i,t) # False} N {Vt > n(v;, P) : TestF(i,t) = True}]|°) (32)
1€FEAS

+ Y, Pr([{vteN:TestR(i,t) # True} n {Vt > n(v;, P) : TestF(i,1) = False}]")  (33)
1€INFEAS

+ Z Pr(3te N: |r (@i — pi)| > Un(t, ) (34)
€[ K]

< Z zi (35)

s 2K
€[ K]

s, (36)

where line (33)) follows by Lemma[F.10]and the assumption on TestF that for any set membership problem
(&, R) € N where £ is o-sub-Gaussian and has mean g, with probability at least 1 — %, TestF returns True
only if u € R and False only if 4 € R and uses at most n(, R) samples. For the rest of the proof, we
assume Nerx1Ei

Step 2: Correctness. On event N ¢ B;, the conditions of Lemma@are satisfied, so that TF-LUCB
returns (6, §,A) such that O = OPT, S = SUBOPT and 1 = 1.

Step 3: Sample Complexity. Next, we bound the sample complexity of TF-LUCB, i.e., prove (1) in the
statement of Theorem 3] If ¢ € OPT, let p; denote the smallest integer such that V¢ > p;

in. T — s
Un(t,5) < ST 4(“1 M) (37)
We claim that for all ¢ € OPT and s € N, if N;(s) = max(p;,n(v;, P)), then NEEDY; = 0. Let ¢ € OPT.
Let N;(s) = max(p;,n(vi, P)). Then, on event B;, TestF(i, N;(s)) = True, which implies that i ¢ G.
Further,

T N, (s) — Ur(Ni(s),0) = v pi —2Up(Ni(s),0) (38)
in - Tl — 11

> ""TN«i _ Imidjeg T 2(#1 H;) (39)

=>d (40)

where line (38)) follows by event B; and line (39) follows by (37). Thus, NEEDY; = 0.
If i € S, let p; denote the smallest integer such that V¢ > p;

: T T
< minjeopt T Mj — T Hy

U,(t,0) 1 41)
We claim that for all i € S and s € N, if N;(s) = p;, then NEEDY; = 0. Observe that
P B Ny(s) + Ur(Ni(5),0) < 77 pi + 2UR(Ni(s), 0) 42)
<+ minjeopr r;(uj — i) 3)
<d 44)



where line @2) follows by event B;, and {3) follows by (I)). Thus, NEEDY; = 0.
Finally, let i € I. Then, N;(s) = n(v;, P) implies by event B; that TestF(¢,¢) = False, so that i ¢ G.
Thus, NEEDY? = 0.

Then,
0
7—1< ) 1{NEEDY}, = 1 or NEEDY}, = 1} (45)

t=1
o K

<> > 1{hy = iorl, = i}1{NEEDY} = 1} (46)
t=1i=1
ee]
<> > [1{he = dorly = i}1{N;(t) < max(p;, n(vi, P))} (47)
t=11€O0PT

+ D 1{hy = iorly = i 1{N;(t) < pi} (48)
€S

+ 3 1{hy = iorly = i}1{N;(t) < n(vi, P)}] (49)
el

< Z max(p;, n(vi, P)) + Z i + Zn v;, P (50)
i€OPT €S iel

Line #3) follows by Lemma|[C.I} line (&7) follows by the contrapositive of the claim that for i € OPT and
s € N, if N;(s) = max(p;,n(vi, P)), then NEEDY; = 0; lines (@8)) and {@9) follow by the contrapositives
of the analogous claims for i € S and i € I; line (30) follows by exchanging the summations via Tonelli’s
theorem for series and if hy = i or l; = i, then N;(t + 1) = Ny(¢) + 1

By Lemma|[F.IT] for ¢ € OPT,

).

> =

pi < co’[minr (ui — )] %) log (log([min " (ki — 1)) )

jeS

where c is a universal positive constant. By Lemma[F11] fori € S,

K
< co?[min ' (w — ;)] 2 T — )72y
pi < co”[min - (pj — )]~ log(log([ min v (p; — )] ™) )
where c is a universal positive constant. The result follows. O

C.1 Main Lemmas

Define the sets

ABOVE(S) = {i € [K] : 7" fii n,(t) — Ur(Ni(t),8) > d(S)}
BELOW,(S) = {i € [K]: 7" fi; n,(t) + Un(Ni(t),6) < d(5)}
MIDDLE, (S) = [K]\(ABOVE,(S) U BELOW,(S))

Recall that d(S) is the average of the smallest reward among the arms in OPT and the largest reward
among the arms in S. Note that d(S) is not known to the agent. Hence, ABOVE,(.S) are the arms that at time
t it is clear that whp their rewards are greater than the rewards of the arms in .S and, similarly, BELOW,(.S)

10



are the arms that at time ¢ it is clear that whp their rewards are less than the rewards of the arms in OPT.
MIDDLE,(SS) are the arms for which more evidence must be collected about their rewards to determine
whether their reward is greater than or less than d(S).

Proof of Lemma[C.1] Fix (S,I) € Valid-Partitions. Let ¢ be some round prior to termination, i.e., t < 7. For
the sake of brevity, we write NEEDYﬁ, d, ABOVE,;, BELOW,, and MIDDLE; instead of NEEDYﬁ(S ),
d(S), ABOVE,(S), BELOW,(S), and MIDDLE, () respectively.

Case 1: |FEAS| < m. Then, SUBOPT = (J so that S = ¢J. We claim that h; € G;. Towards a
contradiction, suppose that h; ¢ G;. Since hy € TOP; c Ey, if hy ¢ Gy, then hy € Fy. Then, by lines[TT]and
of the algorithm, TOP; — F;. Either (i) | TOP; | < m or (ii) | TOP; | = m. Suppose | TOP, | < m. Then,
the definition of TOP, implies that

Et :T(?PCFtCEt,

so that TOP, = F;, = FE,. Thus, that ¢ is the last round, i.e., ¢ = 7, which is a contradiction. Next, assume
that | TOP; | = m. Since by assumption | FEAS | < m there exists i € INFEAS such that TestF(s, t) = True,
which is a contradiction. Thus, h; € G4.

Since S = &, hy € OPT U1, which implies NEEDY},, = 1.

Case 2: | FEAS | > m. We split the rest of the proof up into cases, where in each case we show either
that NEEDY;H =1, NEEDYZ = 1, or there is a contradiction. We briefly make two useful observations
that follow from the assumption that TestF(i, t) = True implies that p; € P and TestF(¢,t) = False implies
that p; ¢ P. First, the assumption implies that FEAS < E; for all ¢, so that m < |FEAS| < |E}| and
furthermore by the definition of TOP;, | TOP; | = m. Second, if i € I < INFEAS, the assumption implies
that TestF(¢, t) # True, so that i € G; for all t € N.

e Suppose TOP; nE; = . Then, |Ef| = n — m, which implies that
m < |FEAS | < |E;| < m.

Since E; = TOP, by definition of TOP,, FEAS — E, = TOPq, so that TOP; = FEAS = OPT. Either
TOPt c Ft or TOPt ¢ Ft' IfTOPt C Fta then

Et = T?PC Ft [ Et,

so that TOP; = F; = FE;. Thus, that ¢ is the last round, i.e., ¢ = 7, which is a contradiction. If
TOP; ¢ F3, then hy € Gy by lineof the algorithm, so that NEEDY?M = 1. For the remainder of the
proof, we will assume TOP§ NnEy # .

e Suppose h; € BELOW, and [, € ABOVE,. Then,

TTﬁht,Nh,t ) < rTﬁht,Nht t) T Ur(Np, (1),9) 619}
<d (52)
< rTﬁ'lt,N,t () — U, (N, (t),9) (53)
< rTﬁlt,NH(t) G4

where line follows since h, € BELOW, and line follows since l; € ABOVE,. Thus,
rTﬁht,Nht ) < rTﬁlt’Nlt(t). However, hy € TOP; and I; € TOP; nE; imply rTﬁht,Nht ) =
r’ i, N, (t) and thus we have a contradiction.
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e Suppose that hy € BELOW, and l; ¢ BELOW,; we will derive a contradiction. We claim that
OPT nTOP; = (. Suppose that there exists ¢ € OPT n TOP;. Since TestF(i,t) # False for all
1 € OPT, i € E;. Then,

T <N + Un(Ni(t), 0) (55)
<7y, N, ) + Ur (N, (1), 6) (56)
<d, (57)

where (39) follows by (28), (36) follows by i € E}, and follows by I, € BELOW,. r'pu; < d
is a contradiction, so that OPT n TOP{ = (¥. Thus, for all i € TOPS, either 7" p; < d or pu; ¢ P.
Furthermore, observe that

rTﬁht,N;Lt(t) + Ur (N, (t),9) (58)
d (59)
where line (58) follows by (28) and line (39) follows by h; € BELOW,. Thus, there are at least

K — m + 1 arms that are either suboptimal or infeasible. But, this is a contradiction since by
assumption | FEAS | = m, there are exactly K — m arms that are suboptimal or infeasible.

e Suppose h; € ABOVE,; and TOP; ¢ F;. Since TOP; ¢ F}, hy € G, so that if h, € OPT U/, then
NEEDY’;H = 1. So, suppose that h; € S. If hy € S, then

TTH’ht = TTﬁht,Nht (t) — UT'(Nht (t)v 6) >d

where the first inequality follows by (28] and the second inequality follows by h; € ABOVE,. But,
rTuht > d is a contradiction since h; € S.

e Suppose h; € ABOVE,, TOP; c F;, and [; € BELOW,; . Then, TOP; c F}, hy € ABOVE,, and
l; € BELOW, imply that the termination condition is satisfied so that ¢ = 7, which is a contradiction.

e Suppose hy € ABOVE,, TOP; c F;, and I[; € ABOVE,. First, we claim that TOP, < OPT. Let
i € TOP;. Then, i € F;, which implies that TestF(i,t) = True, so that i ¢ I. Further, h; € ABOVE;
implies that

r i = N — Un(Ni(2),0) > d,

where the first inequality follows by (28)) and the second inequality follows by h; € ABOVE;. Therefore,
i ¢ S. Thus, ¢ € OPT, proving that TOP; — OPT.

There are three cases: either [; € OPT, l; € S, or l; € I. I; € OPT implies that there are m + 1 optimal
feasible arms since | TOP; | > m as established earlier and OPT > TOP;, which is a contradiction.
Since l; € ABOVE,, we have by (28),

rTlJ’lt = IrTﬁlt,NLt (t) — U”'(le, (t)a 6) > d7

which implies that [; ¢ S. Thus, [; € I. Since l; € G, as established earlier, we have that NEEDth =1.

e Ifl; e MIDDLE,, then I; ¢ ABOVE; U BELOW, so if [, € OPT u.S, then NEEDth = 1. Further, if
l; € I, then as argued previously [; € Gy, so that NEEDth =1

12



e If hy € MIDDLE,, the argument is identical to the previous case.
O

Pr00f of Lemma[C.2] First, we observe that 0 = TOP,, S = (TOP, UES)®, and 1= E¢. Note that
SAT= & by definition of the algorithm.

Step 1: TOP.. = OPT.

To begin, we make two useful observations. (i) We claim that TOP,. < FEAS. Let ¢ € TOP... Then,
since at termination, TOP,. — F'., we have that TestF (i, 7) = True. Then, by the hypothesis, p; € P, so that
i € FEAS. (ii) We claim that OPT c E,. Let i € OPT. Since by assumption TestF(i, 7) 5 False for all i
such that p; € P, it follows that ¢ € E, establishing OPT c E,.

Case 1: | FEAS | < m. Notice that since there are fewer than m feasible arms, SUBOPT = ¢ and we
have that OPT = FEAS.

By our observation (i), TOP, < FEAS = OPT.

Next, we show that OPT < TOP... Let ¢ € OPT. Then, by observation (ii) i € E,. Since TOP,. < OPT
and |OPT| < m, | TOP- | < m, the definition of TOP; in line [6] of the algorithm
implies that | TOP, | = | E-| and TOP, c E,. Therefore, TOP, = E; so i € TOP,, which establishes the
claim.

Case 2: |FEAS| > m. By observation (i), TOP, — FEAS, which implies that TOP, n INFEAS =
. Next, we show that TOP,. n SUBOPT = ¢J. Towards a contradiction, suppose that there exists
i € TOP, n SUBOPT. Then, since | OPT| = m and | TOP, | = m by (ii), there exists j € OPT n TOP%.
Since OPT c E. by observation (ii), j € E,. Then, by line@deﬁning TOP,, |E.| > m, so the algorithm
must terminate with the stopping condition: TOP; < F; and min;erop, rTﬁi, Nty — Ur(Ni(t),0) =
MaX;eTOPS ~ E, rTﬁj’NJ t) + Ur(N;(t),0). By the stopping condition, we have that

=, = Up(Ni(7),6) (60)
> ZEI%TP} 7' iy, () — Ur(Ni(7),6) (61)
> | max 7l Ny () + Un (Ni(7), 6) (62)
=7 i N, (r) + Ur(N;(7),0) (63)
> (64)

where lines (60) and (64) follow by (29) and (62) follows by the stopping condition. Thus, 7" p; > 7" p;,
which is contrad1cts the assumption (v, P r,m) € M. Therefore, the claim TOP, n SUBOPT = (J follows.

Note that TOP, n INFEAS = ¢§ and TOP, n SUBOPT = ¢J imply that TOP. < OPT. Since OPT
Er and |FEAS | = m, | TOP. | = m. Thus, it follows that TOP, = = OPT and correctness follows.

Step 2: S c SUBOPT and 1 c INFEAS. First, we show that S c SUBOPT. IfS = J, there
is nothing to show so suppose that S # . Leti € S. Sincei € S = TOPS NnE,, we cannot have
that TOP, = F, and F, = E.. So, the algorithm terminates with the stopping condition: TOP; < F}
and minieTopt rTﬁi,Ni(t) — U,,, (NL (t), (5) = maneToptc nE; T‘T//J\,ijj (t) + Ur (N_/ (t), 5) Then, USng the
stopping condition,

;< TTﬁi N; (T) + Ur(N;(7),6) (65)
< kg%gll) 1° Nk JNe(t) — U,.(Nk(t),(S) (66)
<

< iy T @
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where lines (63) and follow by (29) and line (66) follows by the stopping condition. Thus, i € SUBOPT
by the assumption (v, P,7,m) € M. R
Next, we show that I < INFEAS. Let i € I. Then, TestF(i, N.-(i)) = False. By hypothesis, this implies
that p; ¢ P, so i € INFEAS.
O

D Upper Bounds for Three Instances of TF-LUCB

In the following three sections, we prove Theorem[d] We prove a separate theorem for each statement in
Theorem [} namely, Theorem [D.T]| Theorem[D.2] and Theorem[D.3] Each proof has a similar structure: (i)
define a good event that holds whp, (ii) show that on this event, the TestF subroutine in question does not
return the wrong answer, and (iii) show that after enough samples have been taken from the distribution, the
TestF subroutine in question determines whether the mean of the distribution belongs to the set.

We introduce the following definition.

Definition D.1. Let Z < RP and e > 0. N' < Z is an e-net of Z if for all x € Z, there exists y € N such
that |x — y|, < €. Let N' < Z be an e-net of Z. We say that N is minimal if, for any other e-net O of Z, it
holds that |O| = |N|.

D.1 Proof of Upper Bound for TF-LUCB-B

Theorem D.1. Let 6 > 0 and (v, P, v, m) € M. With probability at least 1 — 0, TF-LUCB-B returns (6, s, )
such that O = OPT, S  SUBOPT, 1c INFEAS, and

K K
. 2 . T .
TS (S,I)EVEI/};gartitions @ I:;S’ F(mlnjEOPTr (“j B Hﬂ)’ K) + ;I DF( dlSt(ui7 ap), K) (68)
. K . K
+ Y max(Flminesr” (1 — ), 5) DF(dist(pi, 0P). F))]' (69)

i€OPT
where c is a universal positive constant.

Proof. By Theorem it suffices to show that for any (£, R) € N/ where £ is o-sub-Gaussian and has mean
p € RP | with probability at least 1 — %, TestF-B returns True only if i € R and returns False only if & ¢ R
and after at most

K
co®D dist(p, OR) 2 log(log( dist(p, GR)*z)g)
pulls for some universal positive constant c, it returns either True or False.
Step 1: Define the event. Let fi; denote the empirical mean of & after ¢ samples. Define the event
B={VteN: |f; — p|y < Upan(t,6)}. Let N be a minimal %-net of SP~1.
Observe that since for any y € N, |y|, = 1 and v; is o-sub-Gaussian, if X ~ v, then

lv' x|, <IXl,, <o

so that y " X is o-sub-Gaussian.
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Then,

Pr(B¢) = Pr(3te N: |, — py > Upan(t,9)) (70)
~ 1
=Pr(3te N,y e N |y (A — p)l > 5 Usan(t, d) (71)
~ 1
< D Pr(3teN: |y’ (b —p)| > 5 Uban(,)) (72)
yeN
< 5P d (73)
T O5D2K
0
< 07, 74
5% (74)
where line follows by Lemma@ and line follows by Lemma|[F.10]and since Lemma[F.5]implies
that |N| < 5P. So, Pr(B) > 1 — 55+ For the remainder of the proof, we suppose that B occurs.

Step 2: An incorrect answer is never returned. First, we consider the case p € R. First, we show that
TestF-B returns only either True or ?. Towards a contradiction, suppose that TestF-B(t) = False. Then, since
p € R and event B,

Ubal](t7 6) < diSt(ij’tJ R) < Hﬁt - IJ’HQ < Uball(t7 6)7

which is a contradiction. Thus, TestF-B returns either True or ?2.
Next, consider the case p € R¢; the proof is very similar to the case u € R. Towards a contradiction,
suppose that TestF-B(¢) = True. Then, since p € R® and event B,

Upan(t,6) < dist(fiy, R°) < [[te — ply < Upan(t, 0),

which is a contradiction. Thus, TestF-B returns either False or ?.
Step 3: Bound the sample complexity. Next, we show that TestF-B(¢) = returns either True or False
for all

dist(p, 0R)~2)K

t > co®D dist(p, 0R) ™2 log(log( 3 )
where c is a universal positive constant. Let p denote the smallest integer such that
dist(pe, OR
Upail(p, 6) < 7(5 ) )

By Lemma@ p < co2D dist(p, OR) 2 log (&l diSt(”fR)iz)QK) for some universal positive constant c.
Lett > p. Towards a contradiction, suppose that TestF-B(i,¢) = ?. Then, dist(fis, R) < Upan(t,d) and
dist(fis, R°) < Upan(t, 6) so that by Lemma[F.9] there exists € R such that |fiy — x|, < U(t, ). Then,
by the triangle inequality and event B,

lpe — )y < [0 — melly + 120 — 2zl
< Upan(t,6) + Uban(t, 9)
< dist(p, OR)

”H - "BHQ 9

N

which is a contradiction. Thus, for all ¢ > p, TestF-B(¢) returns True or False. The result follows.
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D.2 Proof of Upper Bound for TF-LUCB-CB
Define
Npoty = {(&,R) € N': R is apolyhedron}.

Theorem D.2. Let§ >0, P = {x e RP : Az < b} and (v, P,r m) € M. With probability at least 1 — 9,

0
TF-LUCB-CB returns (0,5,1) such that O = OPT, S  SUBOPT, I — INFEAS, and

K K
. 2 . T
TS (S,I)EV{JII}cllgarlitions 7 [;‘3 F(mlanOPTr (NJ B HZ) + ;] DF dlSt(““ ap) g) (75)
. K . KM
+ Z max(F(minjesr ' (1 — pj), ?), F(dist(u;, 0P), T))] (76)

where c is a universal positive constant.

Proof. By Theoreml it suffices to show that for any (&, R) € Npoiy Where & is o-sub-Gaussian and has
mean p € RP, with probability at least 1 — if p € R, then TestF-CB only returns either ? or True and
for all

2K’

t = co? dist(p, OR) ™2 log(log( dist(p, 6R)*2)§)

where c is a universal positive constant, TestF-CB(¢) returns True, and if o ¢ R, then TestF-CB only returns
either ? or False and for all

KM
t = co?D dist(p, OR) % log(log( dist(y, 8R)‘2)T)

where c is a universal positive constant, TestF-CB(¢) returns False.
Step 1: Define the event. For the sake of brevity, let Upa () = Upan(t, %) and Ucon(t) = Ucon(t, g) Let
1 denote the empirical mean of £ after ¢ samples. Define the event

B ={Vte N: ||, — plly < Upan(t)}
n{vte N,Vs e [M]: |a! ft; — p| < Ueon(t)}.

Let A be a minimal %—net of SP-1, = 1, for any j € [M],

|laj|, = 1 and v; is o-sub-Gaussian, if X ~ v;, then for z € N U {a; : j € [M]}

HzTXHw2 < HXH@ <o

so that 2T X is o-sub-Gaussian.
By the union bound, Lemma [F.10} and a similar argument as in (74),

1 N o 9
4K 4K 2K’
For the remainder of the proof, suppose that B occurs.

Step 2: p € R. Suppose p € R. First, we show that TestF-CB returns only either True or ?. Towards a
contradiction, suppose that TestF-CB(t) = False. Then, since u € R and event B,

Pr(B°) <

Upan(t) < dist(fie, R) < [ — pfly < Upan(?),
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which is a contradiction. Thus, TestF-CB returns either True or ?.
Next, we show that TestF-CB(¢) = True for all

K
t = co? dist(p, OR) ™2 log(log( dist(p, aR)*Q)?)
where c is a universal positive constant. Let p denote the smallest integer such that

dist(p, OR)  mingea bs —alp
Ucon(p) < (g’ ) _ E[M]z )

where the equality follows by Lemma[F3] By Lemma[FT1]

log( dist(p, 6R)_2)KM)
)

for some universal positive constant c. Let t > p. Fix r € [M]. Then, by event B,

p < co? dist(u, OR) 2 log(

a:ﬁt + Ueon(t, 9) < a,T.p, + 2 Ucon(t)
<a

Trtb—alp
by

Thus, TestF-CB(t) = True.
Step 3: 1 € R°. Suppose p € R°. Towards a contradiction, suppose that TestF-CB(¢) returns True. Then,
forall s € [M], a] iy + Ueon(t) < bs. Then, by the event B,
bs = alfiy + Uon(t) = alp

which contradicts the assumption that p ¢ R. Thus, TestF-CB(¢) only returns ? or False.
Next, we show that TestF-CB(¢) returns False for all

dist(p, 0R) ") K
5 )

where c is a universal positive constant. Let p denote the smallest integer such that

t = ¢D dist(u, OR) 2 log(log(

dist(w, OR)

Uball(p) < f

By Lemma F.IIL p < co?D dist(p, OR) ™2 log(losldistix fR)d)QK) for some universal positive constant
c. Lett > p. Towards a contradiction, suppose that TestF-B(¢) = ?. Then, dist(fi;, R) < Up(t) and
dist(fi;, R°) < Upan(t), so there exists € JR such that |fi; — x|, < Usai(t). Then, by the triangle
inequality and event B,

< p = Belly + |2 — 2],
< Upan(t) + Upan ()

< dist(u, OR)

ot — 2l

I — |,

N

which is a contradiction. Thus, for all ¢ > p, TestF-CB(¢) returns False. The result follows.
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D.3 Proof of Upper Bound for TF-LUCB-C

First, we prove a more general version of Theorem [D.4]that allows for any polyhedron.

Theorem D.3. Let § > 0, P = {x € RP : Az < b}, and (v, P,v,m) € M. Forall i € [K] such that
wi ¢ P, let A; = maxear azui — bs. With probability at least 1 — 6, TF-LUCB-C returns TOP ., such that
TOP.. = OPT and

K - KM
. 2 . T
Tg(S,I)E\/it%gll"artitionsco— [;F(mlnjeopfr (l’l)jiuZ)’F)+;F(A“ 1) ) 7
KM KM
ine ' (11 — 11 ; )
+ 3 max(Plminr (i — py), =) F(dist(i, OP), = ))]. (78)

i€OPT
where c is a universal positive constant.

Proof. By Theorem it suffices to show that for any (¢, R) € N, where { is o-sub-Gaussian and has
mean p € RP, with probability at least 1 — %, if p € R, then TestF-C only returns either ? or True and for
all

t = co? dist(p, OR) ™2 log(log( dist(p, 8R)*2)%

where c is a universal positive constant, TestF-C(t) returns True, and if ¢ ¢ R, then TestF-C only returns
either ? or False and for all

t>co?A2 log(log(Ai%)

where A = maXge[ /] a! p — b, and c is a universal positive constant, TestF-C(t) returns False.

Step 1: Define the event. Let fi; denote the empirical mean of ¢ after ¢ samples. Define the event
B ={VteN,Vse [M]:l|a](fit — p)| < Ueon(t,6)}.

Observe that since for any s € [M], |as|, = 1 and v; is o-sub-Gaussian, if X ~ v;, then

|as X1, <1X1,, <o

so that a] X is o-sub-Gaussian.
Then, by Lemma[F.10]

Pr(B¢) = Pr(3te N,3s e [M] : |a! (fi, — )| > Ucon(t, 9))
= MPr(3teN:|a] (i — p)| > Ueon(t,9))
B

2KM
1

=3

<

So,Pr(B) >1— %. For the remainder of the proof, we suppose that B occurs.
Step 2: p € R. Suppose p € R. Towards a contradiction, suppose that TestF-C(¢) = False. Then, there
exists s € [M] such that a/ fi; — Ucon(t, §) > bs. Then, by the event B,

by < alfiy — Uen(t,0) < alp
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which contradicts the assumption that i € R. Thus, TestF-C only returns either ? or True.
Next, we show that TestF-C(t) = True for all

t = co? dist(p, OR) ™2 log(log( dist(p, GR)*Q)%

where c is a universal positive constant. Let p denote the smallest integer such that

dist(p, 0R)  mingepa bs — al p
Ueon (0, 8) < % ) _ EWB _

where the equality follows by Lemma[F3] By Lemma[F11]

log( dist(gs, aR)_Q)KM)
4]

for some universal positive constant c. Let t > p. Fix r € [M]. Then, by the event B,

p < co? dist(p, OR) 2 log(

a; p + 2 Ucon(t,0)
a p+b.—a ' p
= b,.

aq:rﬁt + Ucon(tv(s) <
<

Thus, TestF-C(t) = True. R
Step 3: 1 € RC. Next, suppose p € R¢. Let s € [M] such that A = a/ p — b,. Towards a contradiction,
suppose that TestF-C(t) returns True. Then, a. fi; + Ucon(t, §) < bs. Then, by the event B,

by = alfiy + Uen(t,0) = al p

which contradicts the assumption that p ¢ R and our choice of s € [M]. Thus, TestF-C(¢) only returns ? or
False. ~

Next, we show that TestF-C(t) = False for all t > co?A~2log(
positive constant. Let p denote the smallest integer such that

log(A"?)KM . .
%) where c is a universal

I\D‘ >

Ueon(7,0) <

~ A—2
By Lemma , p < co?A72 log(M) for some universal positive constant c. Let ¢ > p. Then, by
the event B

a;rﬁt — Ucon(t, ) sTN —2Ucon(t,9)
:erl"‘ - (a;rlj/ - bs)
bs.

= a
= a

Thus, TestF-C(t) = False.
O

In general, A, can be arbitrarily smaller than dist(g;, P), as indicated by the following Proposition.
Proposition D.1. For all M > 0 and for all € > 0, there exists a polyhedron P = {x € RP : Ax < b} and

xo € RP such that dist(xzo, P) > M and max;—;,._n dist(zo, {x e RY 1 a]z < b;}) <e
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Proof of Proposition[D.1] Consider the case D = 2. Fix M > 0 and € > 0. Consider
Po={xeR?:eJx >0 (ae; +(1—a)e) x>0}

where o € (0,1). Let ¢g = —Me;. Then, for sufficiently small « € (0, 1), we have that dist(xq, P) > M
and dist(zg, {z € RP : (ae; + (1 —a)es) Tz = 0}) < e O

However, the Theorem shows that it has good performance in the setting where a, a; = 0 for all
i# je[K].
Theorem D.4. Let § > 0, P = {x € RP : Az < b} such that for any | # k € [K], a] ay = 0, and
(v, P,r,m) € M. For eachi € [K] such that p; ¢ P, define v; = |{j : a;—ui > b, }|. With probability at
least 1 — 6, TF-LUCB-C returns (5, 3,?) such that O = OPT, Sc SUBOPT, 1 — INFEAS, and T <

K KM
. 2 . T .
(S,I)GVIaIl%bgartiIions 7 I:zEZS F(mlanOPTT (MJ B Hl)’ F) * ;UZF( dlSt(p’i’ P)7 6 ) (79
. KM . KM
+ Z max(F (minjesr ' (1 — p;), T), F(dist(u;, 0P), T)] (80)

1€OPT

Proof of Theorem|[D.4] Let ! € [ K] such that y; ¢ P. Without loss of generality, by relabeling a1, ..., an,
let

[r] = {j € [K] : a] pi > b;}.

Define

We will show that

dist(pe, P)? < dist(py, S)? <7 max dist(p, Si)%;

kN ,T'

Then, the result will following by plugging the above inequality into the upper bound (78) in the statement of
Theorem[D.3] By relabeling the subspaces, we may assume without loss of generality that

_max dist(p, S;) = dist(pe, S1).

yeeeT

Define

Lo = M,
x1 = Projg, (xo),

Tiy1 = ProjSiJrl(:ci).

We claim that for all ¢ € [r], &; = o + Z;Zl(bj - aJTa:O)aj. We prove this inductively. By the closed
form solution of the distance from a point to a hyperplane and |a;|, = 1 for all j € [M] [1],

x1 = x0 + (by —a] zo)ay,
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which shows that base case. Next, we show the inductive step; suppose x; = Tg + Z;=1(bj —ajxo)a;.
Then,

.
i1 = x; + (biy1 — ;1 Ti) @i

7 %
=Xy + Z (bj — a;mo)aj + (bi+1 — a;—rJrl[Il?O + 2 (b] — aijo)aj])aiH
j=1 j=1
i+1
= Xo + Z (bj — a]Taso)aj
j=1

where we used the assumption that @ a; = 0 for all j # i + 1. Thus, the claim follows. Note that this
implies that z,. € S.
Next, we note that for ¢ # j,

(i — @is1) (2 — xjt1) = [~ (bis1 — @) 1 @0)ait1] [~ (bjr1 — @)y @o)aj1] = 0.
Then, by the pythagorean theorem,

dist(xo, S)? < 2o — wr”i

=(xo—21)+ (21 —X2) + ... + (1 — a:r)Hg

s
Mlwicy — x|
=1

<r diSt(iL'(), Sl)

=r max dist(xo, S;).
T

i=1,...,

Next, we show that dist(p;, P) < dist(p, S). It suffices to show that x,. € P. For s € [r], a] z,. = b,

by construction, so let s € [M]\[r]. Then, since a. a) = 0 for all k € [r], it follows that

T
a;er = asT:l:O + Z(bj — a;»rwo)a;rai < bs + 0.
j=1

Thus, it follows that dist(g;, P) < dist(p, S). O

E Alternative Lower Bound

To begin, we discuss our conjecture that there is a small gap between J- PAC and J- PAC-EXPLANATORY
algorithms. Essentially a d- PAC algorithm that is not §- PAC-EXPLANATORY is allowed to rule out
suboptimal feasible arms by incorrectly concluding that they are infeasible and to make the analogous mistake
for infeasible arms with reward greater than max;ZQE ASrT . We do not believe that this affords significant
savings in sample complexity since d- PAC algorithms typically use confidence bounds and to satisfy the
d- PAC criterion, these confidence bounds must be strong enough to determine that arms in OPT are feasible
and have optimal rewards and to rule out every arm in OPT€ as either suboptimal or infeasible—all without
prior knowledge of the number of infeasible or suboptimal arms. Nevertheless, we leave this as an open

question.
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Next, we discuss the differences between Theorems[T]and[2] Since any §- PAC-EXPLANATORY algo-
rithm wrt M is - PAC wrt M, we expect the lower bound in Theorem [I]to be at least as large as the lower
bound in Theorem [2} and this is in fact the case. The main difference between the bounds occurs in the
terms corresponding to 2 € OPT. The term min jeopre ~ FEAS r’ (p; — w;) in Theorem [2|is replaced with
minjes 7' (p; — p;) where S 2 OPT n FEAS. Essentially, in Theorem it is required to show that every
arm in OPT has reward greater than all arms that are ruled out as suboptimal (i.e., belong to .S), whereas in
Theorem 2} these arms must only be shown to have reward greater than arms in FEAS n OPT®. We conjecture
that Theorem [2]is loose in this respect since intuitively if an algorithm rules out an arm by concluding that it
is suboptimal, then regardless of whether the arm is feasible, the algorithm must determine that the arms in
OPT have reward greater than it. To see the difference between theorems|[T]and [2] consider the case where
K=3m=1, rTul > rTug > rTug, arms 1 and 3 are feasible and arm 2 is feasible. If arm 2 is very
close to the boundary, then it may be much easier to show that arm 2 is suboptimal than to show that it is
infeasible. In this case, the term reflecting the difficulty of showing that arm 1 is optimal will differ in the two
theorems. Specifically, in this case, OPT® n FEAS = {3} and S = {2, 3}, so

seoptin (= ) =7 (= pa) > (= o) = mine (s — py).

Next, we prove Theorem 2] The proof has many similarities with the proof of Theorem[I] Recall the

notation that for a given problem (v, P, 7, m), we define

FEAS(v, P,r,m) = {i € [K] : u; € P}, INFEAS(v, P,7,m) = FEAS(v, P,7,m)",
(m

OPT(v, P,r,m) = {i € FEAS(v, P,r,m) : ' p; > maxjeF)EAs(V,Pm’m) rTuj},

SUBOPT(v, P,7,m) = {i€ [K]:r u; < maxﬁ.ZF)EAS(Uwpmm) r ).
Proof of Theorem[2] Fix 6 > 0. Let (v, P, r, m) satisfy the hypotheses of the Theorem statement; note that
these properties imply that (v, P,r,m) € M. Let A denote a ¢- PAC algorithm with stopping time 7.

In each of the next steps, we will define a new problem to obtain a lower bound. To avoid notational
clutter, we will redefine the symbols p}, v/, and v in each step. The context should make their meaning
clear.

Step 1.a: reward bound for i € OPT. Fix 7 € OPT. First, we show that
-2

E,[Ni(r)] > 2In(——)][

T — s
2.45 r (l‘l’l l‘l’J)+€]

min
JEFEAS A OPT®

for a sufficiently small € > 0. If FEAS n OPT® = (¥, minjcrras ~opre 7' (i4; — pj) = —oo by definition
and there is nothing to show. So, suppose that FEAS n OPT® # (. Define

s T
Jo = argmax T ;.
JEFEAS n OPT®

Define for all j € [K]

, Hit = Hjol =€) g iy
H; = Hi2:D

W ifj#i
l/j/- = N(M;,ID)
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where € > 0 is chosen sufficiently small such that for any § € [0,€) » "} + 5 # 7' u; for all j # ¢ (which
is possible since 7 p1; # 7! puy, for all | # k € [K]). Define vV = (1}, ..., v}.) and consider the problem
(v, P, 7, m). We claim that (v(9), P,»,m) € M. Since pu; ¢ 0P and 0P = d(R x P') = R x 0P’ for
some P’ < RP~1 u! ¢ 0P. Further, by construction, 'y # r ' w’; for all j # i. Thus, none of the arms
have means on the boundary of P and all of the rewards of the arms are distinct, so (l/(i), P,r,m)e M.
Consider the event B = {i € O}. Define OPT; = OPT(v(), P, 7, m) and FEAS,; = FEAS(v(, P,7,m).
Observe that i ¢ OPT; since jo € FEAS; and r " p, < er,;-O = MAaX,eFEAS ~ OPTe T 4., SO that there are

m feasible arms with reward greater than r " /.
Then, since A is - PAC wrt to M, (l/(i), P,r,m) € M, and arm ¢ ¢ OPT;, we have that

Pr,) (B) < Pr,) (OPT # O) < 6. (81)
Further, since A is 6- PAC wrt M,
Pr,(i € 0) > Pr,(OPT = 0) > 1 — 6. (82)
Then,
1 /
[T (i = 1) + ePEu [Ni(7)] = KL(vi, v))Ey [Ni(7)] (83)
> d(Pr,(B),Pr,u (B)) (84)
> d(Pr,(B),4) (85)
> d(%, ) (86)
1
> In(5 ). (87)

Line follows by the formula for the KL-divergence of two multivariate normal distributions, follows
by Lemma F.1} (83) follows since z — d(x, y) is increasing when z > y, (81), (82), and § < .1, (86) follows
since y — d(z,y) is decreasing when z > y, (B1)), §2), and § < .1, and follows by Lemma The
claim follows by rearranging the inequality.

Step 1.b: feasibility bound for i € OPT. A similar argument to step 2.b from the proof of Theorem
yields

I
5( dist(pi, OP) + €)°E,[N;(1)] = ln(ﬁ). (88)

Step 2: i € FEAS n OPT".
This step is very similar to step 3 of the proof of Theorem [[]and yields

1
5.4

—_

In( ) < 5[ gy — ) + PPN, (59

Step 3: i € INFEAS n SUBOPT®. Since P # R” and P is nonempty, by Lemma 0P is nonempty.
Since in addition 0P is closed, by Lemma there exists 7; € Proj,p (). By definition of M, since
T; € OP, for every € > 0, B.(7;) n P° # . Thus, for sufficiently small e > 0, there exists a direction
v € RP with |v|, = 1 such that 7; + ev € P°. Since by definition of M, P = R x P’ for some P’ = RP~1,
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we can choose v such that v; = 0. Define for all j € [K]

, Ti+ev ifj=1
;= e
j ifj#1

Define v() = (1}, ..., v}) and consider the problem (v(), P, 7, m). It follows that (v(*), P, 7, m) € M by a

similar argument that showed in step 2.b of the proof of Theorem [1|that when i € OPT, (v(V), P,r,m) € M.
Define the event B = {i ¢ O}. Define OPT; = OPT(v(), P, 7, m) and SUBOPT; = SUBOPT(v(), P, v, m).

Then, i € OPT; since p; € P and i € SUBOPT implies that 7" g/ > max\") . rT /. Thus, since A is

0- PAC wrt M,

Pr,) (B) < Pr (0 #OPT) <4, and Pr,(B)>1-04.

Therefore, by a series of inequalities similar to those in (22))-(23) in ste 2.b of the proof of Theorem [T}

L
2.4

Step 4: : € INFEAS n SUBOPT. If INFEAS n SUBOPT = ¢, there is nothing to show. Thus, we may
suppose without loss of generality that INFEAS n SUBOPT # (. Then, since in particular SUBOPT # (J,
there are m feasible arms and we may define

In(s 1) < 5 (dist(ui, P) + B, [N;(7)]. (90)

S (m) T
Jo = arg maxleFEAsr M.

By the same argument at the beginning of Step 3, there exists 7; € Proj,p(u;) and for sufficiently small
€ > 0, there exists a direction v € R” with |v|, = 1 and v; = 0 such that 7; + ev € P°. Define for all

je[K]
i1+ Mo, + o
/ Hin T Hjo,1 T € ifj =i
H; = Ti2:D + €V2 D

1 ifj #i

where we choose € > 0 sufficiently small so that for any § € [0,€), 7" pl — 6 # r ' s for all j # i (which
is possible since ' p; # vy, for all | # k € [K]). Then, define v = (1], ..., v}) and consider the
problem (v(9), P, m). Using arguments similar to those in step 1, it follows that (v(¥), P,r,m) € M.

Consider the event B = {i ¢ O}. Then, Pr,(B) > 1 — §. Define for the sake of brevity OPT; =
OPT(v), P,7,m). Observe that u, € P and 7' p, > ’I"Tp,;-o, so that ¢ € OPT;. Then, since A is §- PAC wrt
M, Pr ) (B) < 4. Then,

111(%45) < KL(v3, v\ ) Eu [Ny (7)] 1)
= S (sl )+ 0 o [ s — ) + I [N (7)] ©2
< max(( dist(p;, P) + €)?, [r' (ps — Bio) + HE,L [N ()] 93)
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where line (91) follows by a series of inequalities similar to (83)-(87), and line (92) follows by the definition
of KL divergence of multivariate normal distributions.

Step 5: Putting it together. Using E,,[7] = Zfi 1 EL[N;(7)] and inequalities (87). (88), (89), and (90),
we establish for all sufficiently small € > 0,

E,[r] >21n(ﬁ)[ 3 max(

: T L . —2 . . —2
' eoptin T (i — ) + €] 75 [ dist(pi, OP) + €] 7
1€OPT
+ 2 [min " (pu; — pi) +¢] 72+ Z [ dist(p;, P) + €] 2
1€OPT¢ n FEAS JeOPT i€INFEAS n SUBOPT*¢
L. : T -2 . -2
0 gmin((min T (- ) + 72 [dist(u P) + 7).

1€INFEAS n SUBOPT

Since this bound holds for all € > 0 sufficiently small, letting ¢ — 0 on the RHS of the above inequality

establishes the result.
O

F Technical Lemmas

We use the following lemma from Kaufmann et al. [4]. Although they prove it for the case where arms
are associated with scalar distributions, the proof generalizes to multi-dimensional distributions by simply
replacing the scalar-valued distributions in the proof with vector-valued distributions. Let I; € [ K| denote
the arm chosen by an agent at time ¢ and X; ~ vy,. Let F; = o(I1, X1, ..., It, X}), i.e., the sigma-algebra
generated by I1, X1, ..., I, X;.

Lemma F.1. Let v and V' be two bandit models with K arms such that for all a, the distributions v, and v,
are mutually absolutely continuous. Let T denote a stopping time wrt (F). Then,

K

Z E,[Ni(7)] KL(v,, V) = ES;l]I:) d(Pr,(E),Pr,(E))

Lemma F.2. Let z € RP and A = RP be a closed nonempty set. Then, Proj 4(x) is nonempty.

Proof. Letr > 0 large enough such that B, (2)nA # (. Then, observe that there exists y € Proj An By (@) (x)

since A N B,.(z) is a compact set and |-|, is continuous. Towards a contradiction, suppose there exists z € A
such that

Iz =], <y —=l,.
Then, z € A N Br(w), which implies that y ¢ Proj 4 . BT(w)(CE), a contradiction. Thus, forall z € A,
ly — |, < |z —yl,.
Thus, y € Proj 4 (). O

Lemmas [F-3]and [F:4] appear in Katz-Samuels and Scott [3]]. For the sake of completeness, we restate the
proof.
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Lemma F.3. Let P = {x € RP : Az < b} with A € RM*P_ Let yu € P. Then,

dis(p, 0P) = ._minM dis(p, {x : @ © = b;}).

i=1,..., i
Proof. Ttis not hard to establish that 0P = P n (UM, {z : @, = = b;}). We claim that
dis(p, UM {x : a] x = b;}) = dis(u, P~ (UM {z : a] z = b;})).
Since UM {x : a] bx = b;} is closed, there exists y € UM {x : a] bx = b;} such that
I =yl = dis(p, iy {2 : @] ba = bi}).

We claim that y € P. Suppose not (towards a contradiction). Then, there exists § € (0,1) such that
z=(1-0)pu+ 60y e dP. Then,

dis(p, (UM {z s aj @ = b:})) < |z — ply < |y — ply = dis(u, UL {z : @ bz = b;}),
which is a contradiction, establishing the claim. Then,
min _dis(u, {z : alx =b;}) =dis(u, v {x:a]x = b;})

i=1,...,M
=dis(u, P n (UM {x:a]x =b;}))

— dis(p, OP).
O
Lemma F4. Let ¢ > 0 and N, be an e-net of S°~!. For any y € RP,
lylly < 7— sup y" 2.
— € zeN.
Proof. Let zy € N, such that H ﬁ — zOH < e. Then, by Cauchy-Schwarz,
2 2
y'y T, Y T Yy T T
lyly = 7= =9 (- —20) +y 2o < |yly |7 — 20| +¥ 20<elyl,+y z0.
lyll, lyll, lyll, 2
Rearranging the inequality, we obtain
1
< —y'z < Tz
Iyl < 37— v =0 TSy
O

The following Lemma appears in Vershynin et al. [S] (see Corollary 4.2.13).

Lemma F.5. Let € > 0 and N, be a minimal e-net of S®~*. Then, |N| < (2 +1)P.

Lemma F.6. Suppose A  RP is nonempty and A # RP. Then, A has nonempty boundary.
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Proof. Suppose that A has empty boundary. Then, for every « € A, there exists a sufficiently small ball B

containing « such that B A and for every y € A€, there exists a sufficiently small ball B’ containing y

such that B’ < A€. Then, A and A€ are both open sets, which contradicts the assumption that A is nonempty

and A # RP. O
Recall that d(z,y) = zlog(}) + (1 — z) log(%).

Lemma E.7. Forx < .1,

1—=x 1—=x 1—=x 1+ 1+ 1 1

5 ,T) = 5 In( )+ 5 1n(2(1_x))>1—51n(%).

d(

Proof. We note that the term

1+ 1+x 1+
In( ) =
2 2(1 — ) 2

(In(1 + z) — In(2(1 — 2)))

is increasing in x € (0, 1). Thus, for all z € (0, 1),

! T (In(1 4+ 2) ~ In(2(1 - 2))) > %111(1/2) > 35,
Next, forz < .1,
1? 1n(12;°””) 1 S lin(1 — ) +1n($)]
> %[ln(o.g) + ln(%)]
> % - (~0.106) + 1’75”111(%)
> % - (~0.106) + %m(%).
Then, putting it together, for x < .1,
! er v ln(2(11t1;)) . 3 i ln(12_zx) > %ln(%) —0.35 — % - (0.106)
1 1. 4 1
= 311r1(2301) T ln(%)
= 15 (5
where we used the fact that ¢ In(5-) = 0.403 for all z < 0.1. O

The following Lemma is from Kaufmann et al. [4].

Lemma F.8. Forany z € [0,1], d(z,1 — z) > In(5-).

LemmaF.9. Let P = RP and let x € P and y € PC. Then, there exists 0 € [0, 1] such that 0x + (1 — 0)y €
oP.
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Proof. Since x € P andy € P, by Lemma[F.6] 0P # (. Consider the following sequence, which resembles
binary search.

Lo =a
1 =Y
1
T2 = 5(5'3 +9)
1 1 .
o %"Bn—l + 5Lmin(k:Vie{k+1,...,n—1},2,€P) i Tp_1€P
n = . .
5Ln—1 + 5%min(k:Vie{k+1,....,n—1},@;eP¢) *Tn-1€ pe

{x,} is clearly a Cauchy sequence so that it has a a limit £ = 6x + (1 — )y € 0P for some 0 € [0, 1]. If for
every N € N, there exist n,m > N such that x,, € P and x,,, € P¢, then it is clear that & € 0 P. Suppose
that there exists IV such 'y € P and for every n > N, x,, ¢ P (the other case is similar). Then, it is clear

that £ = x v and that every open ball containing Z contains some point not in P, so that & € JP.
O

We use the anytime confidence interval from Kaufmann et al. [4].

Lemma F.10. Let X1, Xs, ... be i.i.d. zero-mean sub-Gaussian random variables with scale o > 0 and
0 €(0,1). Then,

-
Pr(3t |% Z X > U\/Qlog(l/é) + 610gloi(1/5) + 3loglog(et)) <
s=1

Recall that U(t,4) = a\/zlog(l/é)%log 105(1/5)4’31% log(e) " We use the following fact from Jamieson
and Jain [2].

Lemma F.11. Let A € (0,1) and § € (0, 1). There is a universal constant ¢ > 0 such that if

log(A~2
N=cA™? log(M

)

thenU(N,s) < A.

G TF-LUCB with Tolerance

In this section, we present a variant of TF-LUCB that tolerates some violation of the constraints and some
suboptimality: TF-LUCB-Tol. TF-LUCB-Tol also takes as input two scalars ep and €,, which quantify
how much the algorithm tolerates a violation of the constraints and suboptimality, respectively. The main
difference is that TestF-Tol also takes as input € p and the stopping condition associated with the rewards is
now

im0 Ur(N;i(t),0) + €p = jeTg}’%)EwEt T N ) + Ur (NG (1), 6).

Next, we introduce variants of TestF-B and TestF-C that allow for a tolerance. TestF-B-Tol now returns
True if By, (¢,5)(Hi,) intersects P and P¢ and Upan(t,0) < <%. Since the diameter of By, (¢,5)(Mi,¢) is
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Algorithm 1 TF-LUCB-Tol: Top-m Feasible Upper Confidence Bound algorithm

1: Input: TestF, sub-Gaussian norm bound o, confidence 9, €p, €,

2: fort=1,2,...do

3. Fy «— {i € [K]: TestF(i, N;(t),ep) = True} # arms that are determined to be feasible whp

4 Gy «— {i € [K] : TestF(i, N;(t),ep) =?}# arms that have not be determined to be feasible or
infeasible whp

5. FEy «— F; U G # arms that are not ruled out as infeasible whp

6:  TOP; «— arg maxyzcp, | z|=min(m,|E) iz TTﬁi,qu(t)

7 ifTOPt = Ft and Ft = Et

8: return (TOP;, TOP; nE,, EY)

9: if TOPt (e Ft and minieTopt rTﬁi,Ni(t) - UT(N1(t),5) + € = manGTOP: nE; ’I’Tﬁj’Nj(t) +
U (N; (1), 6)

10: return (TOP;, TOP; NnE,, Ef)

11: if TOP, c F;

12: hy = arg minerop, ' fi, Ny (1) — Ur(Ni(t), 9)

13:  if TOP; ¢ F;

14: hy = arg mincrop, ng, T Bi,Ni (1) — Ur(Ni(t), 6)

15:  if TOP; nE; # &

16: ly = arg max;erope g, i N ) + Un(Nj(t),6)

17: Pull arm [;

18:  Pull arm h,

2 Upan (¢, 9), this guarantees that on an event where the confidence bounds work appropriately, we only accept
w; such that dist(p;, P) < ep. TestF-C-Tol tolerates violations on a constraint-basis instead. Now, it accepts
arms if Ucon (¢, §) < . Thus, assuming an event on which the confidence bounds work appropriately, it only
tolerates mistakes on arms such that for every constraint j € [M], a,]T pi <bj +ep.

Algorithm 2 TestF-B-Tol: Algorithm 3 TestF-C-Tol:
Input: arm index ¢, number of pulls ¢, ep Input: arm index 7, number of pulls , ep
if diSt(ﬁi,t,Pc) > Uball(ta 5) if Aﬁi’t + Ucon(t, 5)1 <b
return True return True
if dist(ﬁi’t, P) > Uball(ta 6) if Aﬁi,t — Ucon (t, 5)1 f b
return False return False
if Upan(t,0) < if Ueon(t,0) < %
return True return True
else else
return ? return ?

Proving the upper bound for this algorithm would have a similar structure to what we have done in this
paper. One subtlety is that finding the top m feasible arms depends on which arms we consider to be feasible
so that accepting as feasible an arm that is in fact infeasible might make the problem more difficult. We
conjecture that the upper bound would reflect this subtlety. We leave the proof of an upper bound of this to
future work.

However, as a practical consideration, we also note that accepting as feasible an arm that is in fact
infeasible might make the problem much easier. We conjecture that in most applications, there is no a priori
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reason to believe that doing this would make the problem easier or more difficult. Furthermore, this issue
could be somewhat alleviated by allowing a tolerance for suboptimality.

H Pseudocode for algorithms TF-AE and FFAF

Algorithm 4 TF-AE: Top-m Feasible Action Elimination

1: Input: TestF, sub-Gaussian norm bound o, confidence §

2 t«—1

3: while True do

4:

5. Fy «— {i € [K]: TestF(i, N;(t)) = True} # arms that are determined to be feasible whp

6: Gy« {ie[K]: TestF(i, N;(t)) = 7}# arms that have not be determined to be feasible or infeasible
whp

Ey «— F; u G # arms that are not ruled out as infeasible whp

. Hy—{ie[K]:|{jeF:: rTﬁj,Nj(t) — U, (N;(t),0) = rTﬁLNi(t) + Up(N;(t),0)} < m}
9: Qi «— Ey n H,

10 forie ; do

® 3

11: pull arm %

12: t—1+1

13:  if By = Fyand |Fy| <m
14: return F;

150 ifQ, c Fyand |Q¢| =m
16: return Q)

For FFAF, we require that it find the the feasible arms with probability at least 1 — g and, then, to find the
best arms among those with probability at least 1 — g. Thus, we require that TestF output the correct answer
with probability at least 1 — %. We modify the confidence bound for the rewards in the second stage since
in that stage there are only |F;| arms among which the m arms with the largest rewards must be identified.
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