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A Meek Orientation Rules

In in Figure 3, we provide the four Meek orientation
rules that are used in the definition of the essential
graph.
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Figure 3: Meek orientation rules used to direct edges
in the interventional essential graph representing the
I-MEC.

The following two observable properties play an im-
portant role in various results in the main paper.

Property 1. If a node v is involved in any of the four

Meek rules and if the node v does not have an outgoing

edge in the original causal DAG, then the oriented edge

(in the right hand side motif of any of the four rules

in Figure 3) is incident to v.

Property 2. If a node v is involved in a motif for any

of the four rules, then either v has an outgoing edge

or it has an adjacent undirected edge (on the left hand

side motif appearing in that rule).

B Additional Proofs

B.1 Proof of Lemma 1

Observe that all edges between Gn and vn+1 are di-
rected to vn+1 and that vn+1 does not have any out-
going edges. Suppose that vn+1 is involved in one of
the four Meek rules in Appendix A. Then by Property
1 in Appendix A, the discovered edge has to be inci-
dent to vn+1. On the other hand, if vn+1 is not part
of any Meek rule, then the rules must have already
been applied in Gn to orient edges maximally, which
completes the proof.

B.2 Proof of Lemma 2

The proof is similar to the proof of Lemma 1, i.e. it
follows from Property 1 in Appendix A.

B.3 Proof of Equation 1

We can simplify this sum as follows:
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B.4 Proof of Lemma 3

Suppose vn /2 J , then by Property 2, it cannot be part
of any of the Meek rules in Appendix A . Therefore,
it cannot aid in any of the rule applications after new
edges have been discovered by interventions in J . This
means that removing it before or after applying the
Meek rules is irrelevant. Hence J(G\vn) = J(G)\vn.
If vn 2 J , then the intervention on vn gives no ad-
ditional information as all its adjacent edges have al-
ready been discovered and hence it is equivalent to
using J\vn. Hence, this reduces to the previous case
with J replaced by J\vn and thereby completes the
proof.

B.5 Proof of Theorem 2

a) This follows directly from Lemma 1.
b) Suppose the MEC of Gn is given by the DAG set
{H1, H2, . . . , Hk}. For each i, let H

0
i be the DAG Hi

extended by adding the vertex vn+1, with the same
incoming edges as it has in Gn+1. From Lemma 1, it
follows that the DAGs {H 0

1, H
0
2, . . . , H

0
k} are contained

in the MEC of Gn+1.
c) Due to the coupling, if a set of interventions orients
Gn+1, it also orients Gn. The result follows.

The results for the expected values follow from the
almost sure results.

B.6 Proof of Theorem 3

Let R be the set of interventions that achieves the min-
imum number Xn+1(r) of unoriented edges in Gn+1
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and let |R| = r. We apply the same set of interven-
tions to Gn barring the possible intervention on node
vn+1. By Lemma 2, all edges unorientable in Gn af-
ter these ‘copied’ interventions are also unorientable
in Gn+1 even with/without the possible additional in-
tervention on vn+1. Since we can (possibly) add the
extra intervention in Gn to bring the total number to
r, this means that after these r interventions on Gn we
have at most Xn+1(r) unorientable edges in Gn, which
completes the proof.

B.7 Proof of Theorem 5

Let R be the set of optimal set of r interventions on
Gn+1 that orient the maximum number of edges in the
Ess(Gn+1, R). Therefore, |Ess(Gn+1, R)| = Ln+1(r).
Let R

0 = R\vn+1. Suppose the Ess(Gn, R
0) is given

by the DAG set {H1, H2, . . . , Hk}. For each i, let
H

0
i be the DAG Hi extended by adding the vertex

vn+1, with the same incoming edges as in Gn+1. From
Lemma 2, it follows that the DAGs {H 0

1, H
0
2, . . . , H

0
k}

are contained in Ess(Gn+1, R). This means, that,
Ln(r)  |Ess(Gn, R

0)|  |Ess(Gn+1, R)| = Ln+1(r)

B.8 Proof of Theorem 6

For all monotonic sequences {xn},

lim inf{xn} = lim sup{xn} = lim{xn}.

Further, when a sequence of measurable functions {fn}
converges pointwise to a function f , then f is also mea-
surable. Here, Xn is a measurable function of the ran-
dom variablesGn. Hence, E[X1] = limn!1 E[Xn] fol-
lows from the Lebesgue Monotone Convergence Theo-
rem.

B.9 Proof of Theorem 7

We first prove the following Lemma. The theorem
follows from the Lemma.

Lemma 5. E(Xn+1)�E(Xn)  ⇢n⇤(1�⇢(1�⇢))n�1
.

Proof. Observe that the left hand side equals the ex-
pected number of unorientable edges incident to vn+1

in Gn+1 by Lemma 1. We will upper bound this num-
ber as follows:

For each vertex i the edge (i, n+1) is unoriented if it is
present (probability ⇢), and not part of an uncovered
collider. The probability that (i, n+ 1) and (j, n+ 1)
form an uncovered collider given (i, n + 1) is present
is ⇢(1 � ⇢), and such probabilities for di↵erent j are
independent. Thus the probability that (i, n+1) is not
part of an uncovered collider given that it is present is
(1�⇢(1�⇢))n�1. Multiplying by ⇢ for the probability

that (i, n+1) is present, and by n for the total number
of such potential edges leads to the desired bound.

B.10 Proof of Theorem 8

Since the unoriented edges incident to vn+1 can be
oriented with at most one intervention each, we have
that In+1 � In  Xn+1 � Xn. This, combined with
Theorem 7 results in the desired bound.

B.11 Proof of Theorem 11

If Ai,n = 1, and for all j 6= {i, n} it holds that
Ai,j = Aj, n = 0, then the edge (i, n) is isolated
and thus unorientable. That happens with probability
⇢(1� ⇢)n�2(1� ⇢)n�2 for each i. Note that there are
n� 1 such potential edges that are adjacent to vertex
vn and therefore figure into E(Xn) � E(Xn�1), which
completes the proof.

B.12 Proof of Theorem 9

We provide a lemma and its proof regarding successive
di↵erences of the interventional metric Xn(r). The
result in the theorem follows immediately from this.

Lemma 6. E(Xn+1(r))�E(Xn(r))  ⇢n ⇤ (1� ⇢(1�
⇢))n�1

.

Proof. Let X
0
n+1(r) be the number of unoriented

edges in Gn+1 after we apply r interventions that
achieve Xn(r) unoriented edges in Gn. Observe
that Xn+1(r)  X

0
n+1(r). Since we can show that

E(X 0
n+1(r)) � E(Xn(r))  ⇢n ⇤ (1 � ⇢(1 � ⇢))n�1 by

following the proof of Lemma 5 in the proof of Theo-
rem 7 , this completes the proof.

B.13 Proof of Theorem 10

Observe that isuEssn(r)�isuEssn+1(r)  Xn+1(r)�
Xn(r), because isuEssn(r)� isuEssn+1(r) is either 0
or 1 (it cannot be -1 by Theorem 4), and can only be
1 if Xn+1(r) > Xn(r). This, combined with Lemma 6
means that E(isuEssn(r)) � E(isuEssn+1(r))  ⇢i ⇤
(1�⇢(1�⇢))n�1, which provides the necessary bound.

B.14 Proof of Theorem 12

It follows from the proof of Lemma 5 that the prob-
ability that vn+1 has an undirected edge is less than
RHS(⇢, n). If vn+1 does not have an undirected edge,
then, by the fact that A is a downstream independent
algorithm it follows that E(Y (r, A)n+1 = E(Y (r, A)n),
and therefore that E(Y (r, A)n+1 � E(Y (r, A)n) =
0. If vn is adjacent to undirected edges, then
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E(Y (r, A)n+1 � E(Y (r, A)n) < n(n + 1)/2, the num-
ber of possible edges in Gn+1. The bound follows since
this happens with probability < ⇢n⇤(1�⇢(1�⇢))n�1).

B.15 Proof of Theorem 14

We consider the following bound for ⇢ = 0.5 from The-
orem 1:

E[L1]  E[X1]  E[X30] + ✏30. (3)

✏30 < 0.02 (by direct calculation) based on Lemma ??.

Now, we apply the following theorem from (quoted
with appropriate modifications for a random variable
taking values in [0, B]).

Theorem 15. (Maurer and Pontil, 2009) If

Z1, Z2 . . . Zs are i.i.d random variables each bounded

in [0, B]. Let M be the empirical mean and V be the

empirical variance of the samples. Then, with proba-

bility 1� �,

E[Z]  M +

r
2V log(2/�)

s
+B

7 log(2/�)

3(s� 1)
(4)

Now, for X30, B = 450. Substituting V = 7.054,M =
3.394, � = 0.01 in the above theorem and using (3) we
have the bound in the theorem.

C Additional Figures

The additional figures regarding numerical simulations
are given on the next page.
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Figure 4: Number of unoriented edges of the 2,000 orderDAG samples. The middle line of the box is the median,
the upper and lower edges are the upper and lower quartiles, and the circles are outliers.

(a) (b) (c)

Figure 5: log2 MEC sizes of the 2,000 orderDAG samples. The middle line of the box is the median, the upper
and lower edges are the upper and lower quartiles, and the circles are outliers.


