Restarting Frank-Wolfe

A One shot application of the
Fractional Away-step Frank Wolfe

Running once Fractional Away-step Frank-Wolfe with
a large value of v allows to find an approximate mini-
mizer with the desired precision. The following lemma
explains the rate of convergence. Importantly the rate
does not depend on r. Hence there is no hope of ob-
serving linear convergence for the strongly convex case.

Lemma A.1. Let f be a smooth convex function, € >
0 be a target accuracy, and xg € C be an initial point.
Then for any v > In 222 Algorithm 1 satisfies:

flzr) = f(z") <

204
for T > —L.
- €

Proof. We can stop the algorithm as soon as the crite-
rion w(z;) < € in step 2 is met or we observe an away
step, whichever comes first. In former case we have
fzy) — f* <w(t) <, in the latter it holds

flx) — f* < =Vf(x)(diV) <e/2 < e

Thus, when the algorithms stops, we have achieved
the target accuracy and it suffices to bound the num-
ber of iterations required to achieve that accuracy.
Moreover, while running, the algorithm only executes
Frank-Wolfe and we drop the FW superscript in the
directions; otherwise we would have stopped.

From the proof of Proposition 4.1, we have each Frank-
Wolfe step ensures progress of the form

(""Tdt)2 . T .A

Tor- itryd, <C
f(xe) = f(ze41) > 205 f

ridy — C’;f‘/Z otherwise.

For convenience, let hy = f(x;) — f*. By convexity we
have h; < (ry; d;), so that the above becomes

hy if hy < CA
Flae) = flae) > {267 -
hy — C’f‘ /2 otherwise.

and moreover observe that the second case can only
happen in the very first step: hy < hg— (hg —C’;“/Q) =

Cf/? < 20}4/15 for t = 1 providing the start of the
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following induction: we claim h; < =%

Suppose we have established the bound for ¢, then for
t+ 1, we have

h 204 204 204
hist < (11— o | e < =5 - =L < L
QC;‘ t t2 t+1

Therefore the induction is complete and it follows that
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the algorithm requires T' > —L to reach e-accuracy.
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