
Restarting Frank-Wolfe

Thomas Kerdreux Alexandre d’Aspremont Sebastian Pokutta
INRIA, ENS CNRS, ENS Georgia Institute of Technology

Abstract

Conditional Gradients (aka Frank-Wolfe al-
gorithms) form a classical set of methods
for constrained smooth convex minimiza-
tion due to their simplicity, the absence
of projection step, and competitive numer-
ical performance. While the vanilla Frank-
Wolfe algorithm only ensures a worst-case
rate of O(1/�), various recent results have
shown that for strongly convex functions, the
method can be slightly modified to achieve
linear convergence. However, this still leaves
a huge gap between sublinear O(1/�) conver-
gence and linear O(log 1/�) convergence to
reach an �-approximate solution. Here, we
present a new variant of Conditional Gradi-
ents, that can dynamically adapt to the func-
tion’s geometric properties using restarts and
thus smoothly interpolates between the sub-
linear and linear regimes.

1 Introduction

We consider smooth constraint convex minimization,
solving problems of the form

min
x∈C

f(x),

where f is a smooth convex function and C is a
polytope. As soon as the geometry of C is reason-
ably complicated, so that projections onto the set are
computationally expensive, projection-free first-order
methods such as Conditional Gradients (Levitin and
Polyak, 1966) (also known as Frank-Wolfe methods
(Frank and Wolfe, 1956)) become an efficient alter-
native as they only require first-order access to the
function under consideration as well as access to an
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efficient linear optimization oracle for the feasible re-
gion C ⊆ Rn which, given a linear objective c ∈ Rn,
outputs argminx∈C cTx.

In order to reach an �-approximate solution x̂, so that
f(x̂)− f(x∗) < �, where x∗ is an optimal solution, the
standard Frank-Wolfe algorithm requires a number of
iterations of order O(1/�), that cannot be improved
upon in general. A series of recent works (see e.g.,
(Garber and Hazan, 2013; Lacoste-Julien and Jaggi,
2015); see also (Lan and Zhou, 2014) for conditional
gradient sliding) showed that when f is strongly con-
vex the convergence rate of the standard case can be
improved to O(log 1/�) and various extensions further
improved upon these results for special cases (see e.g.,
(Lacoste-Julien et al., 2013; Freund and Grigas, 2016;
Garber and Meshi, 2016; Braun et al., 2017; Lan et al.,
2017; Bashiri and Zhang, 2017; Garber et al., 2018;
Kerdreux et al., 2018; Braun et al., 2018)), applying
Frank-Wolfe methods to machine learning problems
(e.g., Joulin et al. (2014); Shah et al. (2015); Osokin
et al. (2016); Freund et al. (2017); Miech et al. (2017)).
Nonetheless, these results left a wide gap between the
linear O(log 1/�) rate and the sublinear O(1/�) rate.

Here, we present a new variant of Conditional Gra-
dients that combines the scaling argument of the
parameter-free Lazy Frank-Wolfe variant in (Braun
et al., 2017, 2018) with scheduled restarts as in the
unconstrained case for classical gradient methods (Ne-
mirovskii and Nesterov, 1985; Giselsson and Boyd,
2014; O’Donoghue and Candes, 2015; Fercoq and Qu,
2016; Roulet and d’Aspremont, 2017) to obtain an
algorithm that dynamically adapts to the properties
of the function and the feasible region. At its core
the algorithm relies on a condition similar to sub-
analycity and the �Lojasiewicz Factorization lemma as
in (Bolte et al., 2007) to quantify the impact of restarts
as in (Roulet and d’Aspremont, 2017). Earlier work
showed that a sharpness condition derived from the
�Lojasiewicz lemma (or a related Polyak-�Lojasiewicz
condition) could be used to improve convergence rates
(see Nemirovskii and Nesterov (1985); Bolte et al.
(2007); Karimi et al. (2016) for an overview), how-
ever these methods required exact knowledge of the
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corresponding constants appearing in the condition
to achieve improved rates. In contrast to this, as in
(Roulet and d’Aspremont, 2017), we show that our
algorithm does not require knowledge of these con-
stants using robust restarts, thus making it essentially
parameter-free.

Contributions

Our contributions can be summarized as follows.

1. Generalized Strong Convexity. We define a no-
tion of generalized strong convexity, inspired by
the geometric strong convexity of (Lacoste-Julien
and Jaggi, 2015) and use the �Lojasiewicz Factor-
ization Lemma to show that generalized strong
convexity holds generically with appropriate pa-
rameters. Depending on the parameters in this
condition, our bounds handle standard convexity
on one end and (geometric) strong convexity on
the other.

2. Fractional Frank-Wolfe Algorithm. We then de-
fine a new Conditional Gradients algorithm that
dynamically adapts to the generalized strong con-
vexity parameters using restarts. The result-
ing algorithm achieves either sublinear or linear
convergence rates depending on the generalized
strong convexity parameters and exploits general-
ized strong convexity to prove O(1/�q) rates with
q ≤ 1 depends on the sharpness of the strong
Wolfe gap around the optimum, so the function
is not required to be strongly convex in the tradi-
tional sense. Note, that our algorithm is a modifi-
cation of the Away-step Frank-Wolfe method but
can be immediately adjusted to a similar Pairwise
Frank-Wolfe variant.

3. Robust restarts. Restart schedules often heavily
depend on the value of unknown parameters. We
show that because Frank-Wolfe type methods nat-
urally produce a stopping criterion in the form of
the Wolfe gap, our restarts are robust, and do not
require knowledge of the generalized strong con-
vexity parameters produced by the �Lojasiewicz
Factorization lemma in order to achieve improved
rates.

Also, we would like to mention that our approach gen-
eralizes to general Holder-smooth function. However
due to space constraints, we leave an in-depth discus-
sion for the full-length version.

Outline

In Section 2 we briefly recall key notions and notation.
We then introduce generalized strong convexity, a con-

dition similar to the Polyak-�Lojasiewicz condition, in
Section 3 and present the Fractional Away-step Frank-
Wolfe Algorithm in Section 4. We detail numerical
experiments in Section 5.

2 Preliminaries

Consider the following optimization problem

minimize f(x)
subject to x ∈ C (1)

in the variables x ∈ Rn, where C ⊂ Rn is a polytope
and f : Rn → R is a convex function. We assume that
the following linear minimization oracle

LPC(x) � argmin
z∈C

xT z (2)

can be computed efficiently. By assumption here, we
have C = Co(Ext(C)) where Co(.) is the convex hull
Ext(·) the set of extreme points, and Carathéodory’s
theorem shows that every point x of C can be written
as a convex combination of at most n + 1 points in
Ext(C) although a given representation can contain
more such points. We call these points the support of
x in C. We now define the strong Wolfe gap as follows.

Definition 2.1 (Strong Wolfe-gap). Let f be a smooth
convex function, C a polytope and let x ∈ C be ar-
bitrary. Then the strong Wolfe-gap w(x) over C is
defined as

w(x) � min
S∈Sx

max
y∈S,z∈C

∇f(x)T (y − z),

where x ∈ Co(S) and Sx = {S | S ⊂ Ext(C), x ∈
Co(S), |S| finite}. We also write

w(x, S) � max
y∈S,z∈C

∇f(x)T (y − z)

given S ∈ Sx.

By construction, we have w(x) ≤ w(x, S). Note also
that for x ∈ C, w(x, S) is the sum of the Frank-Wolfe
dual gap with the away dual gap in (Lacoste-Julien
and Jaggi, 2015). We first show the following lemma
on w(x, S) and w(x).

Lemma 2.2. Let x ∈ C and S = {vi | i ∈ S} with
vi ∈ Ext(C) for i ∈ S, be a set so that

x =
�

i∈S

λivi, where 1Tλ = 1 and λi > 0 for i ∈ S,

then w(x, S) = 0 if and only if x is an optimal solution
of problem (1). In particular, w(x) = 0 if and only if
x is an optimal solution of problem (1).

Proof. We can split w(x, S) in two parts, with

w(x, S) = max
y∈S

∇f(x)T (y − x) + max
z∈C

∇f(x)T (x− z)

(3)
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It is easy to see that both summands are nonnegative
if x ∈ C. Here g(x) � maxz∈C ∇f(x)(x − z) is the
usual Wolfe gap. When x is an optimal solution of
problem (1), first order optimality conditions implies
that ∇f(x)T (x − v) ≤ 0 for all v ∈ C. Since this last
quantity is exactly zero when v = x, we have g(x) = 0.

On the other hand let h(x) � maxy∈S ∇f(x)T (y − x),
and suppose x is optimal. If ∇f(x) = 0 we immedi-
ately get h(x) = 0. Suppose then ∇f(x) �= 0, since x
is optimal, ∇f(x)T (x − vi) ≤ 0 for all vi and we can
write

x =
�

{i:∇f(x)T (x−vi)=0}
λivi +

�

{i:∇f(x)T (x−vi)<0}
λivi

= (1− µ)z1 + µz2

for some 0 ≤ µ ≤ 1, where ∇f(x)T (x − z1) = 0 and
∇f(x)T (x − z2) < 0. Now 0 = ∇f(x)T (x − x) =
µ∇f(x)T (x − z2) implies µ = 0, hence ∇f(x)T (vi −
x) = 0 for all i ∈ S, so h(x) = 0. Thus we obtain, x
optimal implies w(x) = 0. Conversely, we have

f(x)− f� ≤ ∇f(x)T (x− x�)

≤ max
z∈C

∇f(x)T (x− z)

≤ max
y∈S,z∈C

∇f(x)T (y − z)

= w(x, S)

by convexity and the fact that x ∈ Co(S). Hence
w(x, S) = 0 implies x optimal. The corollary on w(x)
immediately follows by construction.

Finally we recall the definition of curvature in
(Lacoste-Julien and Jaggi, 2015), with

CA
f � sup

x,s,v∈C
η∈[0,1]

y=x+η(s−v)

2

η2
�
f(y)− f(x)− η�∇f(x), s− v�

�
,

(4)
where f and C are defined in (1) above.

3 Generalized Strong Convexity

The last part of the proof of Lemma 2.2 above shows
that we always have f(x) − f(x∗) ≤ w(x). We will
now use results on subanalytic functions to refine and
potentially improve this bound. We first recall the
�Lojasiewicz Factorization Lemma and refer the reader
to (Bierstone and Milman, 1988; Dedieu, 1992; Bolte
et al., 2007) for a primer on subanalytic functions.

Lemma 3.1. [�Lojasiewicz Factorization Lemma] Let
K ⊂ Rn be a compact set and f, g : K → R
two continuous (globally) subanalytic functions. If
f−1(0) ⊂ g−1(0), then there exists c > 0 and a positive
real r such that |g(x)|r ≤ c|f(x)| for all x ∈ K.

We now show the following generalized strong convex-
ity result.

Lemma 3.2. [Generalized Strong Convexity] Suppose
f : Rn → R in Problem (1) is globally subanalytic,
then for any compact subset K of C of Problem (1)
such that x∗ ∈ K, there are µ > 0 and r > 0 such that

f(x)− f� ≤ µw(x)r, for x ∈ K (5)

where f� is the optimal value of Problem (1). In par-
ticular we choose r > 0 as the greatest real such that
(5) is true on K for some µ > 0.

Proof. If f is globally subanalytic, then so are the
functions ∇f(x)T (y − v) and their pointwise maxi-
mum over a polytope (see e.g. (Dedieu, 1992, §2.5.6)
or (Bierstone and Milman, 1988; Bolte et al., 2007)),
hence w(x) is globally subanalytic. Now, let h(x) =
f(x)−f�, Lemma 2.2 shows in particular that w(x) =
0 implies h(x) = 0, or in other words w−1(0) ⊂ h−1(0).
The �Lojasiewicz factorization lemma (see e.g. (Bier-
stone and Milman, 1988, Th. 6.4) or (Bolte et al.,
2007)) then states that there are constants µ > 0 and
r ≥ 0 such that (5) holds (recall that w(x) ≥ 0).

In what follows, we will implicitly choose K so that it
contains all iterates. The above generalizes the notion
of geometric strong convexity of (Lacoste-Julien and
Jaggi, 2015, Th. 6 and Eq. (28)), recovered by choos-
ing r = 2 and µ = 1/(2µG), where µG is the geometric
strong convexity constant.

Observation 3.3 (r = 2 with f strongly convex and
C a polytope). (Lacoste-Julien and Jaggi, 2015, Theo-
rem 6 in Eq (28)) shows that when f is strongly convex
and C is a polytope then there exists µA

f > 0 such that
for x ∈ C

f(x)− f(x∗) ≤ w(x)2

2µA
f

,

which means r = 2 in the setting of (5) here.

Observation 3.4. [1 ≤ r ≤ 2] Consider L = {x ∈
C | w(x) ≤ 1}. Because we always have f(x) − f∗ ≤
w(x) on C, we also have r ≥ 1 in (5). Besides, when
f is L−smooth, it holds r ≤ 2.

4 The Fractional Away-Step
Frank-Wolfe Algorithm

Given a polytope C and a smooth convex function
f , let X∗ be the set of minimizers of f over C. We
now state the Fractional Away-Step Frank-Wolfe al-
gorithm, which can be easily obtained from (Braun
et al., 2017), as Algorithm 1. Note that this algorithm
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Algorithm 1 Fractional Away-Step Frank-Wolfe Al-
gorithm

Input: A smooth convex function f with curva-
ture CA

f . Starting point x0 =
�

v∈S�
αv
0v ∈ C with

support S0 ⊂ Ext(C). LP oracle (2) and schedule
parameter γ > 0.

1: t := 0
2: while w(xt,St) > e−γw(x0,S0) do
3: vt := LPC(∇f(xt)) and dFW

t � vt − xt

4: st := LPSt
(−∇f(xt)) with St current active set

and dAway
t � xt − st

5: if −∇f(xt)
T dFW

t > e−γw(x0,S0)/2 then
6: dt := dFW

t with ηmax = 1
7: else
8: dt := dAway

t with ηmax =
α

st
t

1−α
st
t

9: end if
10: xt+1 := xt + ηtdt with ηt ∈ [0, ηmax] via line-

search
11: Update active set St+1 and coefficients

{αv
t+1}v∈St+1

12: t := t+ 1
13: end while
Output: xt ∈ C such that w(xt,St) ≤ e−γw(x0,S0)

is a variant of the Away-Step Frank-Wolfe algorithm,
tailored for restarting.

In the following we will call a step a full-progress
step if it is a Frank-Wolfe Step or an Away
Step that is not a drop step, i.e., when ηt <
αst/(1− αst). The support St and the weights αt are
updated exactly as in (Lacoste-Julien and Jaggi, 2015,
§Away-Steps Frank-Wolfe).

Algorithm 1 depends on a parameter γ > 0 which ex-
plicitly controls the number of iterations needed for the
algorithm to stop. In particular, a large value of γ will
increase the number of iterations and when γ converges
to infinity, Algorithm 1 tends to behave exactly like the
classical Frank-Wolfe, (i.e., it never chooses the away
direction as an update direction, see Appendix A for
a proof).

Proposition 4.1 below gives an upper bound on the
number of iterations required for Algorithm 1 to reach
a given target gap value w(xT ,ST ) ≤ w(x0,S0)e

−γ .
The assumption e−γw(x0,S0)/2 ≤ CA

f in this proposi-
tion measures the complexity of a burn-in phase whose
cost is marginal as shown in Proposition 4.2.

Proposition 4.1 (Fractional Away-Step Frank-Wolfe
Complexity). Let f be a globally subanalytic, smooth
convex function with away curvature CA

f , satisfying the
Generalized Strong Convexity condition in Lemma 3.2
on a compact set K for some r ≥ 1 and µ > 0. Let
γ > 0 and assume x0 ∈ K is such that e−γw(x0)/2 ≤

CA
f . Algorithm 1 outputs an iterate xT ∈ K such that

w(xT ,ST ) ≤ w(x0,S0)e
−γ

after at most

T ≤ |S0|− |ST |+ 16e2γCA
f µw(x0,S0)

r−2

iterations, where S0 and ST are the supports of respec-
tively x0 and xT .

Proof. Because of the test criterion in line 5, the up-
date direction dt satisfies (writing rt � −∇f(xt)),

rTt dt > e−γw(x0,S0)/2 .

This holds by definition when choosing the FW direc-
tion, otherwise (3) yields

w(xt,St) = rTt d
FW
t + rTt d

Away
t > e−γw0,

(writing w0 � w(x0,S0) to simplify notations) so that

rTt d
Away
t > e−γw0 − rTt d

FW
t

> e−γw0 − e−γw0/2

> e−γw0/2.

Using curvature in (4), we have for dt,

f(xt + ηdt) ≤ f(xt) + η∇f(xt)
T dt +

η2

2
CA

f ,

which implies

f(xt)− f(xt + ηdt) ≥ ηrTt dt −
η2

2
CA

f .

We can lower bound progress f(xt) − f(xt+1) with
xt+1 = xt+ηdt at each iteration for full-progress steps.
For Frank-Wolfe steps,

f(xt)− f(xt+1) ≥ max
η∈[0,1]

�
ηrTt dt −

η2

2
CA

f

�

≥ max
η∈[0,1]

�
ηe−γw0/2−

η2

2
CA

f

�

Hence because of exact line-search, assuming
e−γw0/2 ≤ CA

f holds,

f(xt)− f(xt+1) ≥
w2

0

8CA
f e2γ

. (7)

For all away steps, we have

f(xt)− f(xt + ηdt) ≥ max
η∈[0,ηmax]

�
ηe−γw0/2−

η2

2
CA

f

�
.

Yet for away steps that are not drop steps, assuming
e−γw0/2 ≤ CA

f again the optimum is obtained for 0 <
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η∗ < ηmax, and the same conclusion as in (7) for Frank-
Wolfe steps follows.

Write T = Td + Tf the number of iterations for Al-
gorithm 1 to finish. Td is the number of drop steps,
while Tf stands for the number of full-progress steps.
Hence we have,

f(x0)− f(xT ) =

T−1�

t=0

f(xt)− f(xt+1)

≥ Tf
w2

0

8CA
f e2γ

.

Because f satisfies (5) on K we have when x0 ∈ K,

f(x0)−f(xT ) ≤ f(x0)−f(x∗) ≤ µw(x0)
r ≤ µw(x0,S0)

r,

by definition of w(x). We then get an upper bound on
the number Tf of full-progress steps

Tf ≤ 8CA
f e2γµwr−2

0 .

Finally writing |S0| (resp. |ST |) the size of the sup-
port of x0 (resp. xT ), and TFW the number of Frank-
Wolfe steps which add a new vertex to an iterate of
the Fractional-Away-Step Frank-Wolfe Algorithm, we
get TFW ≤ Tf and the size of the support St of xt

satisfies |S0|− Td + TFW = |ST | hence

|S0|− |ST |+ Tf ≥ Td,

and we finally get T ≤ |S0| − |ST | + 16CA
f e2γµwr−2

0 .

The following observation shows that the assump-
tion e−γw(x0,S0)/2 ≤ CA

f in Proposition 4.1 has a
marginal impact on complexity.

Proposition 4.2 (Burn-in phase). After at most

8
eγ

γ
ln

w(x0,S0)

2CA
f

+ |S0| ,

cumulative iterations of Algorithm 1, with constant
schedule parameter γ > 0, we get a point x such that
e−γw(x,S)/2 ≤ CA

f .

Proof. The proof closely follows that of Proposition
4.1. Suppose that e−γw0/2 > CA

f writing again w0 =
w(x0,S0), by curvature for every full progress step we
have

f(xt)− f(xt+1) ≥ ηte
−γw0/2−

η2tC
A
f

2

≥ e−γw0/2−
CA

f

2
≥ e−γw0/4 .

Moreover, via the strong Wolfe gap we have

f(x0)− f(x∗) ≤ w0 .

Writing T the number of iterations of the Algorithm 1
before it stopped, with same notation as in Proposi-
tion 4.1, combining the equations above yields

Tfe
−γw0/4 ≤ f(x0)− f(xT ) ≤ f(x0)− f(x∗) ≤ w0

Hence

Tfe
−γw0/4 ≤ w0

and Tf ≤ 4eγ . Also

T = Td + Tf ≤ 2Tf + |S0|− |ST | ,

so that

T ≤ 8eγ + |S0| .

Because xT is the output of Algorithm 1, we have
w(xT ,ST ) < e−γw0. Write N the smallest integer
such that e−Nγw0 ≤ 2CA

f eγ and x̂i (for 0 ≤ i ≤ N)

the output of the ith call to Algorithm 1. It is sufficient
that N satisfies

N ≥ 1

γ
ln

w0

2CA
f

− 1.

Similarly write i0 ≤ N the first integer such that
w(x̂i0) < 2CA

f eγ . If i0 = N , each of the first N calls
to Algorithm 1 runs in less than 8eγ + |Sx̂i

| − |Sx̂i+1
|

iterations. And we finally need at most

8
eγ

γ
ln

w0

2CA
f

+ |S0| iterations.

Otherwise i0 < N and hence e−i0γw0 ≥ CA
f eγ from

which it follows that

i0 ≤ 1

γ
ln

w0

2CA
f eγ

,

and similarly, each call before the ith0 of Algorithm 1
requires also a bounded number of iterations 8eγ +
|Sx̂i

|− |Sx̂i+1
| so that we need at most

8
eγ

γ
ln

w(x0,S0)

2CA
f eγ

+ |S0| iterations,

which is the desired result.

Algorithm 1 can be immediately adapted to a Frac-
tional Pairwise Frank-Wolfe variant, we opted for the
leaner away-step variant to simplify the exposition.
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4.1 Restart Schemes

Consider a point xk−1 with strong Wolfe gap
w(xk−1,Sk−1). Algorithm 1 with parameter γk > 0,
outputs a point xk and we write

xk � F(xk−1, w(xk−1,Sk−1), γk) .

Following (Roulet and d’Aspremont, 2017) we define
scheduled restarts for Algorithm 1 as follows.

Algorithm 2 Scheduled restarts for Fractional Away-
step Frank-Wolfe

Input: x̃0 ∈ Rn and a sequence γk > 0 and � > 0.

Burn-in phase: compute x0 via 8 eγ

γ ln w(x0,S0)

2CA
f

+ |S0|
steps of Algorithm 1.
while w(xk−1) > � do

xk = F(xk−1, w(xk−1,Sk−1), γk)

end while
Output: x̂ := xT

Note that one burn-in phase is sufficient to ensure the
condition e−γiw(xi−1,Si−1)/2 ≤ CA

f at each restart.

Algorithm 2 is similar to the restarting schemes in
(Roulet and d’Aspremont, 2017, Section 4) when a ter-
mination criterion is available. In particular, a choice
of a constant (γk)k implies linear convergence of the
restart schemes for r = 2. Note that 1 ≤ r ≤ 2.

Theorem 4.3 (Rate for constant restart schemes).
Let f be a globally subanalytic, smooth convex function
with away curvature CA

f , satisfying the Generalized
Strong Convexity in Lemma 3.2 on a compact set K
with r ≥ 1 and µ > 0. Let γ > 0 and assume x0 ∈ K
is such that e−γw(x0,S0)/2 ≤ CA

f . With γk = γ, the
output of Algorithm 2 satisfies (h(x) = f(x)− f(x�) )





h(xT ) ≤ w0
1

�
1 + T̃Cr

γ

� 1
2−r

when 0 < r < 2

h(xT ) ≤ w0 exp

�
− γ

e2γ
T̃

8CA
f µ

�
when r = 2 ,

after T steps, with w0 = w(x0,S0) and T̃ � T−(|S0|−
|ST |). Also

Cr
γ � eγ(2−r) − 1

8e2γCA
f µw(x0,S0)r−2

. (18)

Proof. Denote by R the number of restarts in Algo-
rithm 1 for T total iterations. From Proposition 4.1,
it follows directly that

w(xR,SR) ≤ w0e
−γR ,

By Proposition 4.1, the total number T of steps of
Algorithms 1 is upper-bounded by

T ≤ |S0|− |ST |+ 8CA
f µe2γwr−2

0

R−1�

i=0

e−γi(r−2) .

Suppose r < 2, we have the following upper bound
on T ,

T ≤ |S0|− |ST |+ 8CA
f µe2γwr−2

0

eγ(2−r)R − 1

eγ(2−r) − 1

hence

e−γR ≤ 1
�
1 + T̃Cr

γ

� 1
2−r

Hence for 1 ≤ r < 2,

w(xR,SR) ≤ w0
1

�
1 + T̃Cr

γ

� 1
2−r

,

while the case r = 2 leads to

T ≤ |S0|− |ST |+ 8CA
f µe2γR.

and

w(xR,SR) ≤ w0 exp

�
−γ

T̃

8CA
f µe2γ

�
,

which yields the desired result.

For r = 2, this recovers the bound for the strongly con-
vex case as derived in Lacoste-Julien and Jaggi (2015)
and for r = 1 we recovers the convergence rate with
smoothness assumption only. Note also that for r → 2,
we recover the same complexity rates as for r = 2

lim
r→2

1
�
1 + T̃Cr

γ

� 1
2−r

= exp
�
− γ

e2γ
T̃

8CA
f µ

�
.

The complexity bounds in Theorem 4.3 depend on γ,
which controls the convergence rate. Optimal choices
of γ depend on r, a constant that we generally do
not know nor observe. However, in the following we
show that simply picking γ = 1/2 leads to optimal
complexity bounds up to a constant factor.

Proposition 4.4 (Robustness in γ). Assume f satis-
fies Generalized Strong Convexity with r > 0. Write
γ∗(r) as the optimal choice of γ > 0 in the complex-
ity bound of Theorem 4.3. Consider running Algo-
rithm 2 with γ = 1/2 and same assumptions as in
Theorem 4.3, the output x̂ satisfies

h(x̂) ≤
�

e

e− 1
w0

1
�
1 + T̃Cr

γ∗(r)

� 1
2−r

when 0 ≤ r < 2 .

When r = 2, we have γ∗(r) = 1/2.
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Proof. When 1 ≤ r < 2, from Theorem 4.3 we have

f(xT )− f(x�) ≤ w0
1�

1+T̃Cr
γ

� 1
2−r

.

From (18), the optimal value γ∗(r) is the maximum of

B(γ, r) =
�eγ(2−r) − 1

e2γ

�
,

with respect to γ. Hence

γ∗(r) =
ln(2)− ln(r)

2− r
when 1 ≤ r < 2.

The function

H(r) =

�
1 + T̃Cr

γ∗(r)

� 1
2−r

�
1 + T̃Cr

1/2

� 1
2−r

is a decreasing in r, hence

1
�
1 + T̃ e(2−r)/2−1

eC̃

� 1
2−r

≤

���� 1 + T̃
C̃

1 + T̃
C̃

e−1
e

1
�
1 + T̃Cr

γ∗(r)

� 1
2−r

≤
�

e

e− 1

1
�
1 + T̃Cr

γ∗(r)

� 1
2−r

,

where C̃ � 8CA
f µw(x0,S0)

r−2. When r = 2, the opti-

mal value of γ is 1/2, maximizing the function γ/e2γ .

5 Numerical Experiments

We test our results on problem instances taken from
Lacoste-Julien and Jaggi (2015) and Braun et al.
(2017). Our method is a modification of the classi-
cal Away-Step Frank-Wolfe Algorithm (AFW) with
restarts, giving better complexity bounds in a much
broader setting (i.e. on problems that do not satisfy
the gemoetric strong convexity condition), so we ex-
pect both methods to have similar behavior in prac-
tice, especially given their robustness to the restart pa-
rameter γ. This is what we observe in Figure 1. Aside
from Figure 1, we benchmark Algorithm 1 against clas-
sical Frank-Wolfe on problems where geometric strong
convexity does not hold.

We use regression problems with a variety of loss func-
tions (quadratic, powered norm, logistic) on the �1 ball
(Figure 1 and 3), with the same data sets as in Lacoste-
Julien and Jaggi (2015), using in particular smooth but
non-strongly convex losses.

Our regression problem is written

l(w) =
1

αn

n�

i=1

(yi − xT
i w)

α (23)

for α ≥ 1.

Each plot contains two graphs, the left one shows pri-
mal gap f(xt)− f∗ versus total oracle calls (where f∗

is found by running once AFW requiring high preci-
sion), while the right one shows the strong-Wolfe gap
w(xt,St) versus total oracle calls. Initialization of all
algorithms is made from a random extreme point of
the set.

In Figure 1 we observe that as shown by Proposi-
tion 4.4, the value of γ in Algorithm 2 does not impact
the primal convergence behavior. The classical Away
Frank-Wolfe method has very similar behavior.

In Figures 1 and 2, we scaled the constraint sets so
that the optimum is not in the strict interior. When
the optimum is in the strict interior, already the clas-
sic FW algorithm converges linearly (Guélat and Mar-
cotte, 1986) and we expect Algorithm 1 to have a sim-
ilar performance to the classical FW algorithm, which
is what we observe in Figure 3.

Figure 3 compares classical FW and Algorithm 1 with
γ = 0.5 on regression problem (23) with α = 1.5, so
that the classical geometric strong convexity condition
does not hold. Algorithm 1 and Theorem 4.3 in this
case guarantee much faster convergence.

6 Conclusion

We derived a variant of the Away-Step Frank-Wolfe
algorithm and showed improved complexity bounds
when the strong Wolfe gap satisfies a generalized
strong convexity condition. The �Lojasiewicz factor-
ization lemma shows that this condition actually holds
generically for some value of the parameters, produc-
ing complexity bounds of the form O(1/�q) with q ≤ 1,
thus smoothly interpolating between the complexity of
the classical FW algorithm with rate O(1/�) and that
of the Away-Step Frank-Wolfe with rate O(log(1/ε)).
Our method is adaptive to the value of the generalized
strong convexity parameters and robustly yields opti-
mal performance. Numerical experiments show that
our algorithm is competitive with classical versions of
AFW in the geometric strongly convex case and very
significantly outperforms FW when geometric strongly
convexity does not hold.



Restarting Frank-Wolfe

Figure 1: Representative examples on Lasso with various values of γ in restart schemes of algorithm 1. Less
instances are displayed on the right diagram because of the oscillating behavior of the strong FW gaps.

Figure 2: Comparing classical FW and Algorithm 1 with γ = 0.5 on regression problem (23) with α = 1.5, so
that the classical geometric strong convexity condition does not hold. Green squares indicate restart times.

Figure 3: Comparing classical FW and Algorithm 1 with γ = 0.5 on logistic regression with �1 constraint, where
the constrained minimum lies in the interior of the ball. Here AFW and FW share the very same curve.
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