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A Appendix

A.1 Proof of Theorem 2

. Our proof follows the following sketch. We show that the
given problem can be written as a linear regression problem
in the induced RKHS. The greedy SBQ algorithm to choose
data points is then equivalent to forward greedy feature selec-
tion in the transformed space (Lemma 4). After the selection
is made, the weight optimization obtained through the pos-
terior calculation ensures orthogonal projection (Lemma 5)
which means the posterior calculation is nothing but fitting
of the least squares regression on the chosen set of features.
Finally we draw upon research in discrete optimization to
get approximation guarantees for greedy feature selection
for least squares regression (Lemma 7) that we use to obtain
the convergence rates.

We will require the following definition of the Maximum
Mean Discrepancy (MMD). MMD is a divergence measure
between two distributions p and q over a class of functions
F . We restrict our attention to cases when F is a Repro-
ducing Kernel Hilbert Space (RKHS), which allows MMD
evaluation based only on kernels, rather than explicit func-
tion evaluations.
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where µp and µq are the mean function mappings under p
and q respectively.

We make use of the following lemma that establishes a
connection between MMD and Bayesian Quadrature.

Lemma 4. [12] Let q be the distribution established by

weights wi of the Bayesian Quadrature over the selected

points. Then, the expected variance of the weighted sum in

Bayesian Quadration (2) is equal to MMD2(p, q).

We can make this explicit in our notation. If F is an RKHS,
we can write the MMD cost function using only the kernel
function K(·, ·) associated with the RKHS [10] as:-
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where, �(·) represents the feature mapping under the ker-
nel function K(·, ·), and i ranges over the selected points
that define our discrete distribution q. Recall that Bayesian
Quadrature deviates from simple kernel herding by allow-
ing for and optimizing over non-uniform weights wi. We
can formally show that the weight optimization obtained
through the posterior calculation performs an orthogonal
projection of µp onto the span of selected points to get µq

in the induced kernel space.
Lemma 5. The weights obtained wi through the posterior

evaluation of Z(Sn) guarantee that
P

i wi�(xi) is the or-

thogonal projection of µp onto span(�(xi).

Proof. Note that it suffices to show that the residual of
the projection µp �

P
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where the last equality follows by noting thatP
j Kji[K�1]tj is inner product of row i of K and

row t of K�1 which is 1 if t = i and 0 otherwise. This
completes the proof.

Lemma 5 implies that given the selected points, the posterior
evaluation is equivalent to the optimizing for w to minimize
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MMD(p, q)2. In other words, the weight optimization is a
simple linear regression in the mapped space F , and SBQ
is equivalent to a greedy forward selection algorithm in F .

We shall also make use of recent results in generalization of
submodular functions. Let p(S) be the power set of the set
S.

Definition 6 (�-weak submodular functions [6, 8]). A set

function g : p([n]) ! R is �-weak submodular if 9� > 0
s.t. 8L, S ⇢ [n] L \ S = ;,

X

j2S

[g(L [ {j})� g(L)] � � [g(L [ S)� g(L)]

Weak submodularity generalizes submodularity so that a
greedy forward selection algorithm guarantees a (1� 1/e�)
approximation for �-weak submodular functions [8]. Stan-
dard submodular functions have a guarantee of (1�1/e) [20].
Thus, submodular functions are 1-weak submodular. To
provide guarantees for Algorithm 1, we show that the nor-
malized set optimization function is m

M -weak submodular,
where m,M depend on the spectrum of the kernel matrix.

Lemma 7. [6] The linear regression function is
m
M -weak

submodular where m is the smallest 2r sparse eigenvalue

and M is the largest r + 1-sparse eigenvalues of the dot

product matrix of the features.

We note that Lemma 7 as proposed and proved by Das &
Kempe [6] is for the euclidean space. However, their results
directly translate to general RKHS as long as the RKHS
is bounded, or the candidate atoms have bounded norm.
Hence under additional assumptions of bounded norm, the
proofs and results of Das & Kempe [6] directly translate
to general RKHS. From Lemma 7 and recent results on
weakly submodular functions, ([8, Corollary 1]), we get
the following approximation guarantee for g(·) under the
assumptions of Lemma 7.
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◆
g(S?).

Setting g(S) = v(�)� v(S), we get the final result.


