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Abstract

Bayesian experimental design involves the
optimal allocation of resources in an exper-
iment, with the aim of optimising cost and
performance. For implicit models, where the
likelihood is intractable but sampling from
the model is possible, this task is partic-
ularly difficult and therefore largely unex-
plored. This is mainly due to technical dif-
ficulties associated with approximating pos-
terior distributions and utility functions. We
devise a novel experimental design framework
for implicit models that improves upon pre-
vious work in two ways. First, we use the
mutual information between parameters and
data as the utility function, which has previ-
ously not been feasible. We achieve this by
utilising Likelihood-Free Inference by Ratio
Estimation (LFIRE) to approximate poste-
rior distributions, instead of the traditional
approximate Bayesian computation or syn-
thetic likelihood methods. Secondly, we use
Bayesian optimisation in order to solve the
optimal design problem, as opposed to the
typically used grid search or sampling-based
methods. We find that this increases effi-
ciency and allows us to consider higher design
dimensions.

1 INTRODUCTION

In all scientific disciplines, performing experiments and
therewith collecting data is an essential part to im-
proving our understanding of the world around us. It
is, however, usually not trivial to decide where and
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how to collect the data; experimental design is there-
fore concerned with the allocation of resources when
conducting an experiment. The general aim is to find
design features, or experimental configurations, that
may improve parameter estimations or compare com-
peting models. In essence, the underlying question in
experimental design is: where and how do we have to
collect data in order to optimise cost and performance?
For instance, in epidemiology we might be concerned
about when to count the number of infected in a pop-
ulation. In this case, we could be trying to find the
optimal measurement time that results in the most in-
formative estimation of the disease model parameters.
Traditional experimental design uses frequentist ap-
proaches that are usually based on the Fisher informa-
tion matrix (e.g. Fedorov, 1972; Atkinson and Donev,
1992); this is a well-established field. The frequentist
framework however, does not work well for optimising
non-linear problems, as only locally-optimal designs
can be obtained (Ryan et al., 2016). Bayesian statis-
tics has mature theory addressing this issue, but due to
the computational costs involved, the field of Bayesian
experimental design has only recently become popular.
Much of this high cost is incurred by computing the
so-called expected utility function U(d) that is used
to determine the optimal design d∗ (e.g. the optimal
measurement time). A popular and principled choice
for this expected utility function is the mutual infor-
mation between parameters θ and simulated data y at
design d (see Ryan et al., 2016).

There exists extensive work on Bayesian experimental
design for explicit models, where the likelihood is an-
alytically known or can be easily computed (see Ryan
et al., 2016, for a review). There has, however, been
little work on designing experiments for implicit mod-
els, where the likelihood is intractable and the model
is specified in terms of a stochastic data generating
process or simulator. These models are common in
the natural sciences and appear in many disciplines;
examples include epidemiology (Ricker, 1954; Nummi-
nen et al., 2013) and cosmology (M. Schafer and Free-
man, 2012; Alsing et al., 2018). It is thus crucial to
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develop efficient methods for experimental design that
apply to these models, which is the aim of this paper.

Previous Work Because the likelihood for implicit
models is intractable, exact posterior computation
is difficult. Likelihood-free inference methods have
emerged to address this issue, with the most preva-
lent methods being Approximate Bayesian Compu-
tation (ABC) (Rubin, 1984) and Synthetic Likeli-
hood (SL) (Wood, 2010). Some of the earliest work
of Bayesian experimental design for models with in-
tractable likelihood was done by e.g. Cook et al.
(2008), Liepe et al. (2013) and Drovandi and Pettitt
(2013); the latter was the first to use ABC rejection
sampling (Beaumont et al., 2002) to obtain posterior
samples for experimental design. Most of the work
that followed (e.g. Dehideniya et al., 2018; Price et al.,
2016; Hainy et al., 2016) also used the same method.

Mutual information is typically the preferred choice
for the expected utility function in Bayesian experi-
mental design, as resulting optimal designs yield con-
sistent and efficient parameter estimates (Paninski,
2005; Ryan et al., 2016). For implicit models, how-
ever, computing the mutual information is hard, be-
cause of the difficulties associated with evaluating pos-
terior densities. Drovandi and Pettitt (2013) thus used
the inverse of the posterior variance of ABC samples
as the expected utility function, called ’Bayesian D-
Optimality’, in order to find the optimal design that
minimises parameter uncertainty. Cook et al. (2008)
used moment closure to approximate the mutual infor-
mation, while Liepe et al. (2013) used ABC to approx-
imate the mutual information for a restricted class of
models and Price et al. (2016) approximated the same
with Kernel Density Estimation (KDE).

Finding an efficient experimental design is often cast
as an optimisation problem. The Bayesian optimal
design d∗ that we are trying to find is the design point
that maximises the expected utility function U(d) over
the whole design space,

d∗ = arg max
d

U(d). (1)

For implicit models however, U(d) is not available an-
alytically in closed form and also expensive to eval-
uate; in addition, we also do not have access to its
gradients. Previous work on Bayesian experimental
design, considering both explicit and implicit models,
predominantly pertains to solving the above optimisa-
tion problem either by the sampling-based algorithm
of Müller (1999) or by grid search. The former has
been found to converge slowly (Drovandi and Pettitt,
2013), as finding the maximum of a set of samples is
not easy. The latter approach is much more common
but becomes unfeasible for high design dimensions,

due to the extremely high amount of U(d) evalua-
tions needed. There has been some work on improving
this part of the experimental design process. Evolu-
tionary algorithms were proposed (Price et al., 2018)
and, in the context of explicit models, Overstall and
Woods (2017) reduced the multivariate optimisation
problem to a sequence of one-dimensional problems
that were solved using Gaussian Processes (GP). This
method was recently applied to the likelihood-free set-
ting by Overstall and McGree (2018).

Contributions In this paper, we propose an effi-
cient Bayesian experimental design framework for im-
plicit models that addresses the aforementioned tech-
nical difficulties.

1. We use the mutual information between model
parameters and data as the utility function to
find the optimal design. We achieve this by us-
ing Likelihood-Free Inference by Ratio Estimation
(LFIRE) (Thomas et al., 2016), instead of the tra-
ditional ABC or SL approaches, to approximate
the posterior distribution for implicit models.

2. We show that the optimisation problem in Equa-
tion 1 can be succesfully solved by means of
Bayesian optimisation (e.g. Shahriari et al., 2016).
This makes Bayesian experimental design in the
likelihood-free setting more efficient and allows us
to consider higher design dimensions.

The remainder of the paper is structured as follows.
Our novel design framework is explained in Section 2.
In Section 3 we test the performance of our framework
on two epidemiological models and discuss the results.
We then summarise our findings in Section 4.

2 PROPOSED METHOD

At its core, Bayesian experimental design requires us
to compute an expected utility function U(d) that de-
scribes the value of design d in learning about θ. We
then need to maximise this in order to find the optimal
design point d∗. We explain here how we address these
two non-trivial steps efficiently for implicit models.

2.1 Computing the Utility

The choice of expected utility function strongly dic-
tates the optimal designs that are found. Here we
consider information-based utilities and focus on the
computation of mutual information for implicit mod-
els. We consider the mutual information MI(θ,y | d)
between the model parameters θ and the simulated
data y, conditioned on the design d. This gives us a
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measure of the non-linear correlation between θ and y,
i.e. it tells us how ’much’ we can learn about the model
parameters given the data. This mutual information
can also be expressed as the expected Kullback-Leibler
Divergence DKL (Kullback and Leibler, 1951) between
the posterior distribution p(θ | d,y) and prior distri-
bution p(θ) (Ryan et al., 2016). In this phrasing, the
optimal design d∗ can be understood as the design
that, on average, yields the largest information gain
about the parameters when observing the data. The
expected utility that we need to maximise is then

U(d) = MI(θ,y | d) (2)

= Ep(y|d)[DKL(p(θ |d,y) || p(θ))] (3)

=

∫
log

[
p(θ |d,y)

p(θ)

]
p(y |θ,d)p(θ)dθdy, (4)

see e.g. Ryan et al. (2016). We here made the typical
assumption that p(θ | d) = p(θ).

The integral in Equation 4 is generally high-
dimensional and a standard way of approximating it
is by means of Monte-Carlo integration, i.e.

U(d) ≈ 1

N

N∑
i=1

log

[
p(θ(i) |d,y(i))

p(θ(i))

]
, (5)

where y(i) ∼ p(y | d,θ(i)) and θ(i) ∼ p(θ). This ap-
proximation requires samples from the prior distribu-
tion, corresponding samples from the data generating
distribution and density evaluations of the posterior
and prior distribution.

For implicit models, the computation of the posterior
distribution in Equation 5 is hard. Using the tradi-
tional ABC method, we would only obtain posterior
samples but not posterior densities, making the com-
putation of Equation 5 even more difficult. Ratio es-
timation approaches on the other hand can yield ra-
tios r(d,y,θ) of the likelihood to the marginal and
therefore, by Bayes’ Rule, also yield the ratios of the
posterior density to prior density, i.e.

r(d,y,θ) =
p(y | θ,d)

p(y | d)
=
p(θ | d,y)

p(θ)
, (6)

which is the intractable ratio in Equation 5. An
overview of methods for ratio estimation methods
can be found in Sugiyama et al. (2012). We here
use the Likelihood-Free Inference by Ratio Estimation
(LFIRE) framework of Thomas et al. (2016) to approx-
imate the above ratio. Importantly, the approximated
ratios can be used to estimate both the posterior and
the mutual information. The LFIRE ratio is approxi-
mated by solving a logistic regression problem between
data simulated from p(y | θ,d) and data simulated
from p(y | d). We shall omit further details here and

direct the reader to the work of Thomas et al. (2016)
for more information. Throughout this work, we used
the same settings as them and, in particular, we used
1,000 data points from each of the two distributions.

By substituting the LFIRE ratio r(d,y,θ) into the log-
arithm in Equation 5, we can approximate the mutual
information in a straightforward way, without having
to explicitly compute posterior and prior densities, i.e.

U(d) ≈ 1

N

N∑
i=1

log
[
r(d,y(i),θ(i))

]
, (7)

where y(i) ∼ p(y | d,θ(i)) and θ(i) ∼ p(θ). In other
words, for a given design d we first need to obtain
prior samples {θ(i)}Ni=1 and then use them to simulate
data points {y(i)}Ni=1. These pairs of prior samples
and data samples are then used to compute N ratios
{r(d,y(i),θ(i))}Ni=1, allowing us to approximate the ex-
pected utility according to Equation 7. Assuming that
we choose a prior that is easy to sample from and that
the process of generating data from the implicit model
is not overly expensive, most of the computational cost
lies in the LFIRE ratio computations. We summarise
the computation of the mutual information for implicit
models in Algorithm 1.

Algorithm 1 Mutual Information Computation via
LFIRE Ratios

1: Sample from the prior: θ(i) ∼ p(θ) for i = 1, . . . , N
2: for i=1 to i=N do
3: Simulate data: y(i) ∼ p(y | d,θ(i))
4: Compute the ratio r(d,y(i),θ(i)) by LFIRE
5: end for
6: Compute U(d) ≈ 1

N

∑N
i=1 log

[
r(d,y(i),θ(i))

]

2.2 Optimising the Utility

Evaluating the expected utility is costly and gradi-
ents are not readily available. We thus propose to use
Bayesian optimisation (BO) (Shahriari et al., 2016) to
solve the optimisation problem in Equation 1. BO is
a popular optimisation scheme for objective functions
that we can evaluate but whose form and gradients are
unknown, or expensive to evaluate, and hence well-
suited for Bayesian experimental design for implicit
models.

The general idea of BO is to build a probabilistic model
of the objective function and then use an acquisition
function to decide where to evaluate it next. In our
case, the objective function is the expected utility in
Equation 7. For the probabilistic model we use Gaus-
sian Processes (GP) (Rasmussen and Williams, 2005)
and for the acquisition function we use Expected Im-
provement (EI) (Mockus et al., 1978). These are both
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popular and well-tested choices. We use a Gaussian
kernel for the GP model, but for design dimensions
higher than 10 there exist more scalable kernels (e.g.
Minasny and McBratney, 2005; Oh et al., 2018). For
the BO stage of our design framework we use the GPy-
Opt package in Python (GPyOpt, 2016). In addi-
tion to being practical for expensive evaluations, BO
smoothes out noise introduced by the Monte-Carlo ap-
proximation and is therefore likely to also improve the
estimate of U(d).

2.3 Obtaining the Posterior

After having found an optimal design d∗ that max-
imises the expected utility U(d), we can make a real-
world observation y∗. LFIRE allows us to use the
already computed ratios at d∗ to estimate the poste-
rior of θ given y∗ and obtain samples from it. By
rearranging Equation 6 we can easily compute the
posterior density at a certain model parameter, given
that we can evaluate the prior density. While other
approaches are possible, to obtain posterior samples
via the LFIRE method, we define weights w(i) for ev-
ery prior sample θ(i); each weight is the LFIRE ra-
tio evaluated at the real-world observation {d∗,y∗},
i.e. w(i) = r(d∗,y∗,θ(i)). After normalising the
weights, i.e. W (i) = w(i)/

∑
w(i), we then resample

from the set of prior parameters {θN
i=1} according to

the categorical distribution cat({W (i)}Ni=1).

3 EXPERIMENTS

In this section, we test our novel design framework
on two implicit models from epidemiology, the Death
Model (Cook et al., 2008) and the SIR Model (Allen,
2008). The former has a tractable likelihood in closed
form, allowing us to compare approximations to an
analytical solution, while the latter does not. For both
models the design variable d is time and therefore the
aim is to find out at what times τ we should make
measurements in order to most accurately estimate the
model parameters.

3.1 Example Implicit Models

Death Model The Death Model is a stochastic pro-
cess that describes the decline of a population due to
some infection. The change from a susceptible state
S to an infected state I is given by a continuous-
time Markov process that we discretised. The pro-
cess is parametrised by an infection rate b and at
any time t, each susceptible individual has a chance
pinf(t) = 1− exp(−bt) of getting infected (Cook et al.,
2008). At a particular time t, the total number of in-
dividuals ∆I(t) moving from state S to state I is given

by a sample from a Binomial distribution (Cook et al.,
2008), i.e.

∆I(t) ∼ Bin(∆I(t);N − I(t), pinf(∆t)), (8)

where N is the invariant total population, ∆t is the
step size, set to 0.01 throughout, and we choose that
I(t = 0) = 0. As a time series, the number of infected
is then given by I(t+ ∆t) = I(t) + ∆I(t).

Let τ1, . . . , τn be the measurement times at which we
observe the number of infected. The likelihood for
the Death Model is analytically tractable (Cook et al.,
2008). For n observations {τk, S(τk)}nk=1 of the num-
ber of susceptibles, given by S(τk) = N − I(τk), and
a model parameter b, we obtain p({S(τk)}nk=1 | b) =∏n

k=1 Bin(S(τk);S(τk−1), exp(−b(τk − τk−1))), where
τ0 = 0 and S(τ0) = N (Cook et al., 2008). Using
this expression for the likelihood we can then obtain
a posterior distribution by Bayes’ Rule. This enables
us to compute the expected utility in Equation 3 and
compare it to the LFIRE approximation.

SIR Model The SIR Model (Allen, 2008) is a more
complex version of the Death Model where, in addition
to the number of susceptibles S(t) and infected I(t),
we also have a recovered population R(t) that cannot
be further infected.

We define the probability of a susceptible getting in-
fected as pinf(t) = βI(t)/N , where β ∈ [0, 1]. Simi-
larly, the probability of an infected recovering from the
disease is prec(t) = γ, where γ ∈ [0, 1]. At a particular
time t, let the number of susceptibles that get infected
be ∆I(t) and the number of infected that recover be
∆R(t); these two population changes are computed by
sampling from a Binomial distribution,

∆I(t) ∼ Bin(S(t), pinf(t)) (9)

∆R(t) ∼ Bin(I(t), prec(t)). (10)

This results in an unobserved time-series of S, I and
R by doing the following updates:

S(t+ ∆t) = S(t)−∆I(t) (11)

I(t+ ∆t) = I(t) + ∆I(t)−∆R(t) (12)

R(t+ ∆t) = R(t) + ∆R(t). (13)

We shall start this time series with N − 1 suscepti-
bles, one infected, zero recovered and use a discrete
time step of ∆t = 0.01 throughout. The actual time
at which we do measurements is again given by τ , re-
sulting in a single data point (S(τ), I(τ), R(τ)).

3.2 Death Model Results

The aim for the Death Model is to estimate the infec-
tion rate b as efficiently as possible.
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One-Dimensional Designs We put a truncated
Gaussian prior of mean one and variance one over the
model parameter b, such that b > 0, and sample 1, 000
prior parameters {b(i)}1000i=1 from it. The design space
covers the range 0 < τ ≤ 4 and, when optimising the
expected utility U(τ) via grid search, we choose grid
sizes of ∆τ = 0.1.

We then optimise the expected utility function by
Bayesian optimisation (BO), according to the frame-
work outlined in Section 2. We compare our method
to optimising U(τ) by grid search, for both the LFIRE
approximation and the analytic computation of the ex-
pected utility. These expected utilities are shown in
Figure 1.
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Figure 1: Expected utilities U(τ) of the Death Model
for the grid search method and the BO method. Also
shown is the analytic expected utility for the grid
search method. Curves are normalised to be in (0, 1).

The expected utility approximated with LFIRE ra-
tios closely matches the analytical expected utility
around its peak while decaying more quickly for large
τ . This justifies using the LFIRE approximation in
cases where we cannot compute the mutual informa-
tion exactly, such as for the SIR Model. The BO
method results in a similar expected utility as the
grid search method. Unlike the grid search method
however, Bayesian optimisation results in few evalu-
ations where U(τ) is low, focusing more on regions
where it is high and thus yielding a higher resolu-
tion in the peak region. This results in some large
discrepancies between the grid search method and
Bayesian optimisation method away from the peak
region, i.e. at the boundaries. The optimal design
times τ∗ and corresponding U(τ∗) values, computed
by using the analytic likelihood, are: (τ∗, U(τ∗)) =
(1.40, 1.347) for the grid search method with ana-
lytic computations, (τ∗, U(τ∗)) = (1.10, 1.350) for the
grid search method with LFIRE approximations and
(τ∗, U(τ∗)) = (1.06, 1.359) for the BO method with
the LFIRE approximations. The optimal design time

for the analytic computation is slightly larger than for
the two methods using LFIRE approximations. The
actual expected utility values, however, are all close to-
gether. This means that, for the Death Model, there is
a range of optimal design times that result in compa-
rable utility values, which is reflected by the flat peak
in Figure 1.

Using btrue = 1.5 as the model parameter to gener-
ate ’real-world’ observations I∗ at the optimal times
τ∗, we obtain 10, 000 LFIRE posterior samples for the
grid search and BO methods, according to the proce-
dure outlined in Section 2.3. We then apply Gaussian
kernel density estimation (KDE) to these samples to
smooth out the resulting posterior density. Doing this
for 50 real-world observations I∗ allows us to obtain
50 posterior densities reflecting the possible variation
in the data measured at time τ∗. For comparison, we
similarly compute the exact posterior distribution by
using the tractable likelihood function mentioned pre-
viously. The mean of the posterior densities and their
standard deviations are shown in Figure 2.
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Figure 2: Comparison of the Death Model mean poste-
rior densities for different methods. The shaded areas
indicate one standard deviation.

The grid search and BO method result in extremely
similar posterior densities. The exact posterior den-
sity is narrower than the approximations, reflecting
the approximation error of the LFIRE approach. Even
though these approximate posterior distributions have
a discrepancy to the exact posterior, the correspond-
ing U(τ) functions are still similar (see Figure 1). This
indicates that, on average, the divergence between in-
dividual posterior and prior distributions is still com-
parable for the different methods (see Equation 3). Us-
ing these mean posterior densities, we find the median
model parameters to be: b̂grid = 1.34, b̂BO = 1.36

and b̂an = 1.53 for the grid search, BO and analytic
method, with 95% credibility intervals for b equal to
(0.50, 2.40), (0.54, 2.41) and (0.96, 2.24), respectively.

At this point we would like to emphasise the impor-
tance of designing an experiment, as opposed to just
randomly selecting an experimental design. To do so,
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we compute a baseline where we randomly select an
optimal design τ∗ran from the design space. Using this
random design point and a corresponding real-world
observation I∗ran, we compute LFIRE ratios, as done
previously. These are then used to compute a resulting
posterior distribution, which is again smoothed out by
Gaussian KDE. Because of the inherent randomness,
we do this several times and compute a set of posterior
densities. In Figure 3 we compare 50 of these baseline
posterior densities to the mean posterior density ob-
tained via the BO method.
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Figure 3: Death Model posterior densities for the base-
line of randomly selecting design points, together with
the BO method mean posterior density.

As can be seen from Figure 3, there is much fluctua-
tion involved in randomly selecting optimal designs. If
the experimenter is unlucky and selects a design point
that is highly unfavourable, e.g. see τ = 4 in Figure 1,
then the resulting posterior distribution is wide and
the parameter estimate uncertain. The large variety
in posterior distributions largely motivates the use of
Bayesian experimental design in general.

High-Dimensional Designs So far, we have only
considered a one-dimensional design variable, the mea-
surement time τ . We can, however, increase the de-
sign dimensions of this problem by rephrasing the
premise. We shall now consider the problem of se-
lecting n optimal design times, instead of just one;
this is referred to as non-myopic Bayesian experimen-
tal design. To do this, our design variable becomes a
n-dimensional vector, d = [τ1, τ2, . . . , τn]>. We nat-
urally add the constraint that time must be ordered,
i.e. τ1 < τ2 < · · · < τn, and then sequentially compute
the number of infected at each design time to build
the data vector y = [I(τ1), I(τ2), . . . , I(τn)]>. The
values of this data vector depend on each other accord-
ing to Equation 8, i.e. I(τn) depends on I(τn−1) and
so on. The computation of the LFIRE ratios is then
done as before, with the difference that we have an
n-dimensional design variable d and an n-dimensional
data vector y; the expected utility is also computed as
previously, according to Algorithm 1.
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Figure 4: (a) Convergence of the best expected utility
U(d) value as a function of number of evaluations for
the Death Model with n = 8 design dimensions. (b)
The posterior distribution, smoothed out by Gaussian
KDE, corresponding to the optimal design d∗. Also
shown is the posterior distribution for n = 1.

It is computationally unfeasible to perform grid search
in high design dimensions, as the number of U(d) eval-
uations required increases dramatically. Optimising
U(d) via Bayesian optimisation (BO) allows us to de-
crease the computational cost, as we only need to ex-
plore the design space where the expected utility is
potentially high, as was the case in Figure 1. In addi-
tion, because we have more evaluations in the peak re-
gions of U(d) and we smooth out the noise introduced
by the Monte-Carlo approximation in Algorithm 1, we
increase the accuracy of our optimum estimate d∗.

As a proof of concept, we consider a non-myopic de-
sign problem where the number of design dimensions
is n = 8. In other words, knowing that we can do
eight experiments, we want to find out at what times
we should take these measurements. Because of the
increased dimensions, it is impossible to show the ex-
pected utility surface in the same way that we did
in Figure 1. We again run the procedure outlined in
Section 2 in order to find optimal measurement times
d∗. In Figure 4(a) we show the convergence towards
the optimum as a function of U(d) evaluations. From
this figure we find that we can converge to an opti-
mum after around 20 evaluations. If we had defined
a four-dimensional grid instead with 40 points per di-
mensions, like we did for the one-dimensional situation
in Figure 1, we would have had to do 76, 904, 685 eval-
uations. It becomes apparent that we can drastically
improve computational efficiency when using BO.

Using the procedure explained in Section 2, we ob-
tain 10, 000 LFIRE posterior samples corresponding to
the optimal design d∗ and then smooth out the pos-
terior samples with Gaussian kernel density estima-
tion (KDE). The resulting posterior density is shown
in Figure 4(b), together with the posterior density for
n = 1. Expectedly, the posterior is narrower for n = 8



Steven Kleinegesse, Michael U. Gutmann

than for n = 1, due to having more data. The corre-
sponding median estimate of the model parameter is
b̂ = 1.29 and the 95% credibility interval (0.68, 1.95).

As a comparison, we also compute the expected util-
ity value at a design point deq consisting of 8 equidis-
tant times; this might be an intuitive choice for an
experimenter having no prior information. Using Al-
gorithm 1, we obtain U(deq) = 1.21 for the equidis-
tant design times and U(d∗) = 1.27 for the optimal
design times. Thus, unlike for n = 1 seen before, if we
can take many measurements, we do not get much im-
provement when designing a non-myopic experiment.
This is natural to occur, in particular for the relatively
simple Death model.

3.3 SIR Model Results

The aim for the SIR Model is to estimate the rate of
infection β and the rate of recovery γ as efficiently as
possible.

One-Dimensional Designs We put a uniform
prior U(0, 0.5) on both model parameters and sam-
pled 1, 000 parameters {β(i), γ(i)}1000i=1 from the prior.
The data used in the LFIRE computations is
{S(τ), I(τ), R(τ)} at a particular design time τ . The
design space covers the range 0 < τ ≤ 3 and, when
optimising the expected utility U(τ) via grid search,
we choose step sizes of ∆τ = 0.1.

We optimise the expected utility function according
to the design framework outlined in Section 2, using
both grid search and Bayesian optimisation (BO). The
resulting expected utility functions are shown in Fig-
ure 5. Note that, unlike for the Death Model, we do
not have a tractable likelihood function for the SIR
Model and therefore we cannot compute an analytic
expected utility function as a comparison.
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Figure 5: Expected utilities U(τ) of the SIR Model
for the grid search and BO method, using the design
framework from Section 2.
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Figure 6: SIR Model mean posterior densities for the
grid search and BO method. The true parameter val-
ues are shown by a red cross.

The SIR Model expected utilities show a similar uni-
modal behaviour as those of the Death Model, with the
only difference being that the SIR Model results in a
U(τ) with a peak that is more shifted towards lower
τ . The grid search and BO methods yield expected
utilities that are generally similar to each other, with
optimal design times τ∗ = 0.40 and τ∗ = 0.44, respec-
tively. The U(τ) computed via grid search, however,
has less resolution around the peak and generally more
fluctuations due to the Monte Carlo approximation.

After having found the optimal design points τ∗ from
the expected utilities in Figure 5, we generate a ’real-
world’ observation (S∗, I∗, R∗) by using βtrue = 0.15
and γtrue = 0.05. Using this data we then obtain
10, 000 samples from the posterior distribution, by
means of the procedure explained in Section 2; we do
this for both the grid search and BO method. We again
apply Gaussian KDE to these samples to smooth out
the posterior densities, and repeat this process for 50
real-world observations. The mean posterior densities
are shown in Figures 6(a) and 6(b).

Both posterior distributions show a wide spread in
β, a narrow spread in γ and have uni-modal peaks
that are in the same region. The median parame-
ter estimates when using the grid search method are
(β̂, γ̂) = (0.16, 0.05), and the 95% credibility inter-

vals are (0.02, 0.23) for β̂ and (0.01, 0.08) for γ̂. For

the BO method we obtain (β̂, γ̂) = (0.17, 0.04), and

95% credibility intervals equal to (0.03, 0.24) for β̂ and
(0.01, 0.07) for γ̂, both containing the true data gener-
ating parameters. Generally, the γ parameter is well-
estimated, whereas there is a marginal uncertainty in
estimating the β parameter.

High-Dimensional Designs As done for the Death
Model, we shall now consider non-myopic design for
the SIR Model, i.e. situations where we know that
we can take n measurements. As before, the design
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Figure 7: SIR Model with n = 8 design dimensions.
(a) Maximal utility U(d) identified as a function of
number of evaluations. (b) The posterior distribution
obtained with the optimal design d∗, smoothed out by
Gaussian kernel density estimation.

variable becomes n-dimensional, d = [τ1, τ2, . . . , τn]>,
with a similar constraint that the time must be or-
dered. The data vector is built from the obser-
vations S(τk), I(τk) and R(τk) at each time τk,
i.e. y = [S(τ1), I(τ1), R(τ1), . . . , S(τn), I(τn), R(τn)]>.
The computation of the LFIRE ratios is then done
as previously, with the exception that the design
variable is n-dimensional and the data vector is 3n-
dimensional. We again consider eight design dimen-
sions; the expected utility for n = 8 is evaluated as out-
lined in Algorithm 1 and then optimised via Bayesian
optimisation (BO), instead of grid search which is in-
feasible for n = 8.

Figure 7(a) shows that, using BO, we can converge
to the optimum in around 15 expected utility evalua-
tions. This is again a drastic difference to the num-
ber of evaluations we would have had to do with grid
search. We then generate 10,000 LFIRE posterior
samples at this optimal design, according to the pro-
cedure outlined in Section 2, and smooth these out
via Gaussian KDE. After repeating this process 50
times, the resulting mean posterior density is shown
in Figure 7(b), yielding parameter estimates (poste-

rior means) (β̂, γ̂) = (0.13, 0.05) and 95% credibility

intervals equal to (0.02, 0.18) for β̂ and (0.02, 0.07) for
γ̂, both containing the true data generating parame-
ters which were βtrue = 0.15 and γtrue = 0.05.

We again compute the expected utility value at a de-
sign point deq consisting of 8 equidistant times, in or-
der to compare it to the optimal design times. Using
Algorithm 1, we obtain U(deq) = 1.08 for the equidis-
tant design times and U(d∗) = 1.10 for the optimal
design times. While the optimal design has higher
utility, the difference is small, which is again natural
since the relative value of designing experiments gen-
erally diminishes as the amount of data that can be
gathered increases.

4 CONCLUSIONS

In this paper, we have presented a Bayesian experi-
mental design framework for implicit models, where
the likelihood is intractable but sampling from the
model is possible. We used the LFIRE approach to
obtain density ratios of the posterior to prior distri-
butions, which would otherwise not easily be possi-
ble with traditional likelihood-free inference methods
such as approximate Bayesian computation. This al-
lowed us to conveniently compute the mutual informa-
tion between model parameters and simulated data, a
notoriously difficult task for intractable models. We
then used this mutual information as a utility func-
tion to decide where we should take data next. We
optimised the expected utility by Bayesian Optimisa-
tion and found that this allowed us to find optimal de-
signs in design dimensions impossible with grid search.
An additional advantage of this approach is that it
smoothes out the noise introduced by Monte-Carlo ap-
proximations.

There are a few limitations to our proposed design
framework. First, high-dimensional Bayesian optimi-
sation is still an active research area and its applica-
bility in hundreds of dimensions remains to be inves-
tigated. Secondly, as with all likelihood-free inference
methods, posterior estimations are approximate. We
particularly noticed this when applying LFIRE to the
Death Model. While the resulting utility functions
were very similar and the optimal designs barely af-
fected, characterising more generally how the approx-
imation affects mutual information would be informa-
tive.

While we applied our framework to examples from epi-
demiology, the proposed methodology is general and
thus applicable to a wider range of models. Other im-
plicit models from neurobiology, cell biology or physics
might be of particular interest, including both tempo-
ral and spatial models. It would then also be valuable
to consider the cost or time required for doing an ex-
periment and not only the information gain.

Finally, preliminary results suggest that the proposed
framework extends to sequential designs where we up-
date our belief about the model parameters based on
the experimental outcome. This is a more realistic
setting, but has barely been touched upon for models
with intractable likelihoods.
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