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Abstract

We propose a class of optimal-rate primal-
dual algorithms for minimization of the sum
of three convex functions with a linear oper-
ator. We first establish the optimal conver-
gence rates for solving the saddle-point refor-
mulation of the problem only using first-order
information under deterministic and stochas-
tic settings, respectively. We then proceed
to show that the proposed algorithm class
achieves these rates. The studied algorithm
class does not require matrix inversion and
is simple to implement. To our knowledge,
this is the first work to establish and attain
the optimal rates for this class of problems
with minimal assumptions. Numerical exper-
iments show that our method outperforms
state-of-the-art methods.

1 Introduction

We consider an optimization problem involving sum of
three convex functions in the following form:

min
x∈Rp

f(x) + g(x) + h(Kx). (P)

The functions f : Rp → R, g : Rp → R ∪ {+∞}, and
h : Rl → R ∪ {+∞} are all assumed to be convex,
closed, and proper; K ∈ Rl×p is a linear operator. We
assume f is differentiable with Lf -Lipschitz gradient
∇f . The functions g and h are not necessarily smooth.
We assume that these possibly nonsmooth functions
are “proximable,” i.e., the proximity operators proxg
and proxh where

proxφ(u) = arg min
x∈Rp

{
φ(x) + (1/2)‖x− u‖22

}
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are easy to evaluate; ‖x‖2 denotes the standard Eu-
clidean norm of vector x.

Many important problems in statistics and machine
learning can be formulated as problem (P). The fol-
lowing illustrates a few examples.

Sparse generalized lasso The generalized lasso
(Tibshirani and Taylor, 2011) with an additional
sparsity-inducing penalty is formulated as

min
x∈Rp

n∑
i=1

li(a
T
i x, bi) + λ1‖x‖1 + λ2‖Dx‖1, (1)

where the set {(ai, bi) : ai ∈ Rp, bi ∈ R, i = 1, . . . , n}
constitutes a training sample, li : R2 → R is the loss
function that may depend on the sample index, D ∈
Rl×p is the structure-inducing matrix, and ‖ · ‖1 is
the `1 norm. In linear regression, li(·; bi) = 1

2 (· − bi)2,
and the first term in (1) (corresponding to f in (P))
has Lipschitz-continuous gradients with modulus Lf =
‖ATA‖2, with A = [a1, . . . , an]T ; ‖M‖2 is the standard
operator norm of matrix M (maximum singular value).
In logistic regression, li(·; bi) = −bi(·)− log(1 + e−(·))
and Lf = 1

4‖A
TA‖2.

Elastic net The elastic net (Zou and Hastie, 2005)
regularized regression use a linear combination of `1
and `2 penalties in order to promote both sparsity
of solution and the grouping effect that highly corre-
lated variables are selected or unselected together. The
relevant optimization problem is

min
x∈Rp

λ2

2
‖x‖22 + λ1‖x‖1 + l(Ax, b), (2)

where the data matrix A is the same as in the sparse
generalized lasso, and b = (b1, . . . , bn)T . The loss func-
tion l may also be nonsmooth, e.g., l(Ax, b) = ‖Ax−b‖2
(Belloni et al., 2011).

PET image reconstruction In positron emission
tomography (PET), photon emissions from a radioac-
tive tracer inside the brain are counted and the location-
dependent emission rates are estimated. In this task,
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the Radon transform (Jain, 1989) is often discretized
as matrix A. This results in a regularized nonnegative
least squares problem, which can be written as

min
x∈Rp

1

2
‖Ax− b‖22 + δ+(x) + λ‖Dx‖1, (3)

where x is the unknown emission map (image), b is
the vector of counts, and δ+ is the indicator function
of the nonnegative orthant defined by δ+(x) = 0 if
x1, . . . , xp ≥ 0 and δ+(x) = +∞ otherwise. The D is
a discrete gradient operator encoding penalty on total
variation.

1.1 Primal-dual formulation

Our major interest in this paper is efficient methods
of solving (P) using only first-order information (i.e.,
∇f , proxg, and proxh) and matrix-vector multiplica-
tions (i.e., Ku and KT v). For this purpose we propose
Algorithm 1, named OS3X, and show that it achieves
an optimal rate of convergence. We allow a stochastic
setting in which the evaluation of the gradient ∇f is
noisy. Such methods have gained a tremendous atten-
tion recently due to the advent of high-dimensional,
“big data”.

If h ≡ 0, then the famous proximal gradient algo-
rithm can be employed (Beck and Teboulle, 2009). In
deterministic setting, this method has an optimal con-
vergence rate of O(Lf/N

2), where N is the number of
iterations. However, in general, the presence of h with
K 6= I invalidates the assumption of easy proximabil-
ity. In this case it is often advantageous to reformulate
problem (P) as a saddle point problem

min
x∈X

max
y∈Y
L(x, y) := f(x) + g(x) + 〈Kx, y〉 − h∗(y),

(PD)

where X = dom g and Y = domh∗, denote the
effective domains of the functions g and h∗(v) =
supu∈Rl〈u, v〉 − h(u), the convex conjugate of h, with
domφ = {u : φ(u) <∞}; 〈u, v〉 denotes the standard
inner product uT v. Under a mild regularity condi-
tion, e.g., that 0 is included in the relative interior of
K dom g − domh, a solution (x?, y?) to (PD) exists.
Furthermore, x? is a (primal) solution to (P), and y?
is a solution to the associated dual

max
y∈Y∗

(
−(f + g)∗(−KT y)− h∗(y)

)
(D)

(Bauschke and Combettes, 2011, Theorem 19.1 and
Proposition 19.18). In the sequel, we assume that (PD)
has a solution and seek an algorithm that efficiently
finds it.

1.2 Optimal rate of convergence

In both deterministic and stochastic settings, we derive
the optimal rates of convergence for solving the saddle
point problem (PD), as follows.

Deterministic setting In the special case of g ≡ 0,
Chen et al. (2014) showed that (PD) can be solved at
the optimal rate

O

(
Lf
N2

+
LK
N

)
, (4)

where LK is an upper bound of ‖K‖2. It turns out,
this rate is also optimal for the general case g 6≡ 0, in
the following sense.

1. The optimal rate of solving minx∈X (f(x) + g(x))
by using any first-order method is O(Lf/N

2) (Nes-
terov, 2004), e.g., by using FISTA (Beck and
Teboulle, 2009).

2. For sufficiently large p, there exist b ∈ Y ⊂ Rl and
K ∈ Rl×p such that h∗(y) = 〈b, y〉 and the rate of
convergence for solving minx∈X maxy∈Y(〈Kx, y〉−
h∗(y)) = minx∈X maxy∈Y〈Kx− b, y〉 is Ω(LK/N)
(Nemirovsky, 1992; Nemirovski, 2004).

Stochastic setting The case that even the first-
order information on the objective of (P) cannot be
obtained exactly can be modeled by a stochastic or-
acle, which provides unbiased estimators of the first-
order information. To be precise, at the k-th iter-
ation we assume that the oracle returns a stochas-
tic gradient ∇̂f(xk) independently from the previous
iteration so that E[∇̂f(xk)] = ∇f(xk). If the vari-
ance of these estimators are uniformly bounded, i.e.,
E[‖∇̂f(xk)−∇f(xk)‖22] ≤ χ2, Chen et al. (2014) also
showed that when g ≡ 0, (PD) can be solved in expec-
tation at the optimal rate

O

(
Lf
N2

+
LK
N

+
χ√
N

)
. (5)

Like the deterministic setting, this rate is also optimal
for g 6≡ 0: for the first two terms the discussion of the
deterministic setting above carries over. For the last
term the argument by Chen et al. (2014) still applies.

1.3 Contributions

The major contributions of this paper are 1) establish-
ing optimal rates (4) and (5), as already made above,
2) showing that Algorithm 1 achieves these optimal
rates in their respective settings, for suitable choices
of parameters, and 3) demonstrating its superior prac-
tical performance to other state-of-the-art algorithms
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for solving (PD) in both deterministic and stochastic
settings. Closeness to a solution to (PD) is measured
by the duality gap between (P) and (D). To our knowl-
edge, this is the first work to establish and attain
optimal-rate convergence under the general template
(PD) with minimal assumptions, e.g., the absence of
strong convexity.

2 Related works

There is a vast literature on first-order methods for
solving (PD) under the deterministic setting. While the
Alternating Directions Method of Multipliers (ADMM,
Boyd et al., 2010) may be used to tackle (PD), this
method usually involves matrix inversion subproblems,
which becomes quickly intractable as the dimension p
increases. In the direction of avoiding this difficulty,
for g ≡ 0, the Primal Dual Hybrid Gradient method
(PDHG, Zhu and Chan, 2008; Esser et al., 2010; Cham-
bolle and Pock, 2011) has been widely studied. Condat
(2013) and Vũ (2013) extend PDHG for the general case
of g 6≡ 0. These methods fall into the forward-backward
operator splitting scheme (Bauschke and Combettes,
2011) and achieve the usual O(1/N)-rate. Another
forward-backward splitting method for g ≡ 0, by Loris
and Verhoeven (2011), is subsumed by the Primal-Dual
Fixed-Point algorithm (PDFP, Chen et al., 2016) for
the general case. Other operator splitting approaches
for g 6≡ 0 include the Davis-Yin three-operator split-
ting (Davis and Yin, 2017, for K = I), Asymmetric
Forward-Backward-Adjoint splitting (AFBA, Latafat
and Patrinos, 2017) and Primal-Dual 3-Operator split-
ting (PD3O, Yan, 2018). The latter two include the
above forward-backward splitting methods for g ≡ 0
as special cases, and allow general K. Acceleration
by using variable step sizes and inertia has been stud-
ied (Combettes and Vũ, 2014; Lorenz and Pock, 2015;
Boţ et al., 2015; Goldstein et al., 2015; Chambolle and
Pock, 2016). Despite the reduction of the constant,
they all remain in the O(1/N) regime or require strong
convexity.

On the other hand, interests in stochastic first-order
methods for (PD) in general settings appear to be
rather recent. When h ≡ 0, stochastic versions of the
proximal gradient method were considered (Hu et al.,
2009; Lin et al., 2014; Nitanda, 2014; Rosasco et al.,
2014; Atchadé et al., 2017). For the two-function prob-
lem (K 6= I but g ≡ 0), mirror-prox algorithms have
been considered (Nemirovski et al., 2009; Juditsky et al.,
2011; Lan, 2012). Ouyang and Gray (2012) developed
a near-optimal algorithm under a strong convexity as-
sumption on f and smoothing of g. Zhong and Kwok
(2014) achieved a similar rate to (5) under strong con-
vexity. Without additional assumptions on f or g but
assuming K = I, Yurtsever et al. (2016) introduced

Algorithm 1 Optimal Sum-of-3-function Acceleration
(OS3X)

Input: Initial point (x1, y1); positive sequences ρk,
θk, τk, and σk; matrix B ∈ Rl×p; number of itera-
tions N .
Initialization: Put x̃0 = x̃1 = x1, ỹ0 = ỹ1 = y1.
Main loop:
for k = 1, 2, . . . , N do

ūk = Kx̃k + θkK(x̃k − x̃k−1) (6a)

xkmd = (1− ρk)xk + ρkx̃
k (6b)

ỹk+1 = proxσkh∗
(ỹk + σkū

k) (6c)

ṽk+1 = KT ỹk+1 +BT (ỹk+1 − ỹk)

− θkBT (ỹk − ỹk−1) (6d)

x̃k+1 = proxτkg
(
x̃k − τk(∇̂f(xkmd) + ṽk+1)

)
(6e)

xk+1 = (1− ρk)xk + ρkx̃
k+1 (6f)

yk+1 = (1− ρk)yk + ρkỹ
k+1 (6g)

end for
Output: (xN , yN )

a stochastic variant of the Davis-Yin three-operator
splitting. For general K, the Stochastic Primal-Dual
algorithm for Three-composite Convex Minimization
method (SPDTCM, Zhao and Cevher, 2018) is pro-
posed. This method can be seen as a stochastic version
of Chambolle and Pock (2016), and has the rate of
O(Lf/N +LK/N +χ/

√
N). Note that this rate is not

optimal.

3 Algorithm OS3X

Our algorithm OS3X is presented in a separate panel
as Algorithm 1. If the gradient evaluation in step (6e)
is noisy, then iteration (6) generates a stochastic se-
quence. Otherwise, it is deterministic. Algorithm 1
includes many other algorithms as special cases. If
ρk ≡ 1, θk ≡ 0, σk ≡ σ, τk ≡ τ (constant step sizes)
and B = K, then it reduces to the dual version of
the extended PDHG by Condat (2013) and Vũ (2013);
if g ≡ 0, then it reproduces the class of optimal two-
function algorithms by Ko et al. (2019+), which extends
the optimal algorithm by Chen et al. (2014) (B = 0).
As claimed, this algorithm involves only the evaluation
of ∇f , proxg, and proxh and matrix-vector multipli-
cations; Moreau’s identity x = proxh(x) + proxh∗(x)
converts the evaluation of proxh∗ to that of proxh.

In the next section, we show that for the following
choices of the matrix B, relaxation parameter sequences
{ρk}, {θk}, and step size sequences {σk}, {τk}, itera-
tion (6) converges at the rate (4) for the deterministic
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setting, and at the rate (5) for the stochastic setting,
which are respectively optimal.

Choice of the matrix parameter. While the
choice of matrices B can be made quite flexible, the
choices of B = 0 and B = −K make the step (6d) the
simplest. In general B = αK for some scalar α yields
a simple update rule.

Choice of the relaxation parameters. For all
cases, we choose the relaxation parameter ρk and the
extrapolation parameter θk as

ρk =
2

k + 1
, θk =

k − 1

k
. (7)

Choice of the step sizes.
1) Bounded domains, deterministic: in the determin-
istic setting, if the diameter of the domains X and Y
can be estimated so that

sup
x,x′∈X

‖x− x′‖22 ≤ 2Ω2
X , sup

y,y′∈Y
‖y − y′‖22 ≤ 2Ω2

Y , (8)

we consider increasing primal step sizes {τk} and a
constant dual step size σk:

τk =
kΩX

2P1LfΩX + kP2LKΩY
, σk =

ΩY
ΩXLK

(9)

for some properly chosen positive constants P1 and P2.
The primal step size τk increases over iterates, while
the dual step size σk is kept a constant. The choice for
P1 and P2 is discussed in §4.

2) Unbounded domains, deterministic: for the cases
where bounds for primal or dual variables are unknown,
we assume that the horizon N is known in advance and
consider increasing step sizes:

τk =
k

2P1Lf + P2NLK
, σk =

k

NLK
. (10)

3) Bounded domains, stochastic: now for the stochastic
setting, where the domain bounds (8) are known, our
choice of the step sizes is

τk =
ΩXk

2P1LfΩX + P2LKΩY k + P3χk3/2
,

σk =
ΩY

LKΩX
, (11)

for some positive constants P1, P2, and P3. The choices
for P1, P2, and P3 that achieve the optimal rates are
discussed in §4.

4) Unbounded domains, stochastic: on the other hand,
if bounds (8) are unknown, the choices are:

τk =
k

2P1Lf + P2LK(N − 1) + P3N
√
N − 1χ

,

σk =
k

(N − 1)LK + P3N
√
N − 1χ

.

(12)

As in the deterministic counterpart (10), we assume
that the horizon N is known in advance.

Remark 1. Using four algorithm parameters
(ρk, θk, τk, σk) is common in accelerated algorithms,
e.g., Chen et al. (2014), Zhao and Cevher (2018), and
Ko et al. (2019+). Dependence of step sizes σk and
τk on ΩX and ΩY also appears in Chen et al. (2014).
In fact, we can always overestimate either bound so
that ΩX = ΩY . In this case, step sizes in (9) become
independent of ΩX and ΩY . For (11), we can choose
P3 = ΩX or ΩY and again make the step sizes inde-
pendent of these bounds; see Corollary 3. Estimation
of the Lipschitz constant Lf and the bound LK can be
carried out by backtracking and the power method.

4 Convergence anlaysis

In this section, we show that Algorithm 1 achieves
the theoretically optimal rate of convergence for each
of the four settings discussed in §3. We define the
pre-gap function G(z̃, z) := L(x̃, y)− L(x, ỹ), and the
duality gap function G̃?(z̃) := supz∈Z G(z̃, z), where
z = (x, y), z̃ = (x̃, ỹ), and Z = X × Y. Nonnegativity
of G?(z̃) guarantees that x̃ is a solution to (P) under
the assumption that (PD) has a solution. Convergence
is thus measured by how fast G?(z̃) approaches to zero.
When Z is unbounded, however, the gap G?(z̃) may
tend to positive infinity. In this case, we consider the
perturbed gap function instead:

G̃(z̃, v) := sup
z∈Z
G(z̃, z)− 〈v, z̃ − z〉. (13)

It is known that there always exists a perturbation
vector v that makes function (13) finite (Monteiro and
Svaiter, 2011). We find a sequence of vanishing pertur-
bation vectors {vk} that make G̃(z̃k, vk) small.

4.1 Deterministic setting

4.1.1 Bounded domains

We first consider the case in which the bound for X
and Y are known. Under this assumption, we have the
following bound for the duality gap:

Theorem 1. Let {zk} = {(xk, yk)} be the sequence
generated by Algorithm 1. Assume for some ΩX , ΩY >
0,

sup
x,x′∈X

‖x− x′‖22 ≤ 2Ω2
X , sup

y,y′∈Y
‖y − y′‖22 ≤ 2Ω2

Y ,

(14)

and the parameter sequences {ρk}, {θk}, {τk}, and
{σk} satisfy ρ1 = 1 and

ρ−1
k+1 − 1 = ρ−1

k θk+1, (15a)
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(1− q)/τk − Lfρk − (1/r)L2
Kσk ≥ 0, (15b)

(1− r)/σk − (τk/q)‖B‖22 ≥ 0 (15c)

for some q ∈ (0, 1), r ∈ (0, 1). Further suppose that

0 < θk ≤ min(τk−1/τk, σk−1/σk),

max(τk−1/τk, σk−1/σk) ≤ 1.
(16)

Then for all k ≥ 1,

G?(zk+1) ≤ ρk
τk

Ω2
X + ρk

σk
Ω2
Y . (17)

For the discussed choice of the algorithm parameters,
we obtain the claimed optimal convergence rate.
Corollary 1. Assume that ‖B‖2 ≤ bLK for some
b > 0. Choose the parameter sequences {ρk}, {θk} as
in (7), and {τk}, {σk} as in (9). Finally, if

P1 = 1
1−q , P2 = max

{
1

(1−q)r ,
b2

q(1−r)

}
(18)

holds, then

G?(zk) ≤ 4P1Ω2
X

k(k−1)Lf + 2ΩXΩY (P2+1)
k LK , ∀k ≥ 2.

(19)

Remark 2. Setting B = 0 satisfies the assumption in
Corollary 1. In this case Algorithm 1 resembles Chen
et al. (2014) for sum of two functions. It is interesting
that other selections such as B = K or B = −K also
achieve the optimal rate.

4.1.2 Unbounded domains

Now we consider the case where the bounds for X or
Y are not known in advance.
Theorem 2. Suppose that {zk} = {(xk, yk)} are gen-
erated by Algorithm (6). If the parameter sequences
{ρk}, {θk}, {τk}, and {σk} satisfy (15) and

θk = τk−1/τk = σk−1/σk ≤ 1 (20)

for some 0 < q < 1 and 0 < r < 1/2. Then there exists
a vector vk+1 such that for any k ≥ 1,

G̃(zk+1, vk+1) ≤ ρk
τk

(
2 + q

1−q + 2r+1
1−2r

)
R2, (21)

and

‖vk+1‖2 ≤
(
ρk
τk
‖x̂− x̃1‖2 + ρk

σk
‖ŷ − ỹ1‖2

)
+
[
ρk
τk

(
µ+ τ1

σ1
ν
)

+ 2ρk(µLK + ν‖B‖2)
]
R, (22)

where (x̂, ŷ) is a pair of solutions to (PD), and

R =
√
‖x̂− x̃1‖22 + τ1/σ1‖ŷ − ỹ1‖22,

µ = 1/
√

1− q, ν =
√

2σ1/τ1(1− 2r).
(23)

For the choice of parameters given by (7) and (10), we
obtain the optimal rate.

Corollary 2. Assume that ‖B‖2 ≤ bLK for some
b > 0. Choose the parameter sequences {ρk}, {θk} as
in (7), and {τk}, {σk} as in (10). Finally, if

P1 = 1
1−q , P2 = max

{
1

(1−q)r ,
b2

q(1−r) , 1
}

(24)

holds, then

εN+1 ≤
(

4P1Lf

N2 + 2P2LK

N

) [
2−q
1−q + r+1/2

1/2−r

]
R2 (25)

and

‖vN+1‖2 ≤ 4P1DLf

N2 + LK

N [2P2D + 4R(µ+ bν)] , (26)

where D = ‖x̂− x̃1‖2 + ‖ŷ − ỹ1‖2 +R (µ+ τ1ν/σ1).

Remark 3. The (xN , yN ) in Corollary 2 can be con-
sidered an approximation to a solution to the problem
(PD) in a sense that for any pair of positive scalars
(ρ, ε), there is an N such that ‖vN‖ ≤ ρ and εN ≤ ε.
This analysis has to do with a (ρ, ε)-saddle point of of
problem (PD) (Monteiro and Svaiter, 2011, Definition
3.10), and ε-subgradient of h∗ for arbitrarily small ρ
and ε. In a nutshell, when the perturbed gap G̃(z̃, v) is
small and ‖v‖2 is also small, then x̃ has a small opti-
mal gap for the primal (P) and ỹ has a small optimal
gap for dual (D); see also Proposition 4 in Ko et al.
(2019+) and the discussion thereafter. A very similar
idea of a “nearly optimal” solution is used in Goldstein
et al. (2015, Eq. (19)).

4.2 Stochastic setting

Recall the assumptions stated above equation (5):

E[∇̂f(xk)] = ∇f(xk), E[‖∇̂f(xk)−∇f(xk)‖22] ≤ χ2.
(27)

4.2.1 Bounded domains

When the bounds for X and Y are known in advance,
the following holds.

Theorem 3. Let {zk} = {(xk, yk)} be the sequence
generated by Algorithm 1, where ∇̂f satisfies condition
(27). Suppose that the boundness condition (8) holds
for some ΩX , ΩY > 0. Also assume that for all k ≥ 1,
the parameter sequences {ρk}, {θk}, {τk}, and {σk}
satisfy ρ1 = 1, (15a), (16), and

(s− q)/τk − Lfρk − L2
Kσk/r ≥ 0,

(t− r)/σk − τk‖B‖22/q ≥ 0
(28)

for some q, r, s, t ∈ (0, 1). Then the following holds.
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E[G?(zk+1)] ≤ 2ρk

(
Ω2

X

τk
+

Ω2
Y

σk

)
+

ρk
2γk

k∑
i=1

(2− s)τiγi
1− s

χ2, (29)

where

γk =

{
1 if k = 1

γk−1/θk if k ≥ 2
. (30)

The claimed optimal rate is obtained as follows.

Corollary 3. Let {zk} = {(xk, yk)} be the sequence
generated by (6), where ∇̂f satisfies condition (27).
Assume the condition (8) holds. In the stochastic vari-
ant of Algorithm 1, suppose ‖B‖2 ≤ bLK for some
b > 0, and the parameters are set as in (7) and (11).
Let P1, P2, and P3 be constants such that

P1 = 1
s−q , P2 ≥ max

{
1

r(s−q) ,
b2

q(t−r)

}
,

P3 > 0, (31)

where q, r, s, t ∈ (0, 1), q < s, r < t. Then we have

E[G?(xk+1, yk+1)] ≤ 8P1LfΩ2
X

k(k+1) + 4ΩXΩY LK(P2+1)
k+1

+
(

4P3 + 2
√

2(2−s)
3P3(1−s)

)
χΩX√
k

(32)

for any k ≥ 1.

Remark 4. Zhao and Cevher (2018, Remark 3), who
achieve the rate O(Lf/N + LK/N + χ/

√
N), suggest

that the rate for the smooth part f may be improved to
O(Lf/N

2). We have shown that this is indeed possible
and the resulting rate is optimal.

4.2.2 Unbounded domains

Now we consider the case where bounds for X and Y
are unavailable.

Theorem 4. Let {zk} = {(xk, yk)} be the sequence
generated by Algorithm 1, where ∇̂f satisfies the con-
dition (27). Suppose that for all k ≥ 1, the parameter
sequences {ρk}, {θk}, {τk}, and {σk} satisfy ρ1 = 1,
(15a), (20), and (28) for some q, s, t ∈ (0, 1) and
r ∈ (0, 1/2). Then there exists a perturbation vector
vk+1 such that

E[G̃(zk+1, vk+1)] ≤ ρk
τk

[(
6 + 4q

1−q + 4(r+1/2)
1/2−r

)
R2

+
(

5
2 + 2q

1−q + 2(r+1/2)
1/2−r

)
S2
]

(33)

for each k ≥ 1. Furthermore,

E[‖vk+1‖2] ≤ 2ρk‖x̂−x1‖2
τk

+ 2ρk‖ŷ−y1‖2
σk

+
√

2R2 + S2

[
ρk(1+µ)

τk
+
(
ν + σ1

τ1

)
ρk
σk

+ 2ρk(LKµ+ ‖B‖2ν)

]
, (34)

where (x̂, ŷ) is a pair of solutions for (PD), R, µ, and
ν are as defined in (23), and

S =
√∑k

i=1(2− s)τ2
i χ

2/(1− s). (35)

The desired optimal rate can be obtained as follows.

Corollary 4. Assume that the condition (27) holds.
In the stochastic variant of Algorithm 1, suppose the
horizon (number of iterations) N ≥ 1 is given, ‖B‖2 ≤
bLK for some b > 0, and the parameters are set as
in (7) and (12). Let P1, P2, and P3 be constants such
that

P1 = 1
s−q , P2 ≥ max

{
1

r(s−q) ,
b2

q(t−r) , 1
}
,

P3 =
√

2−s
1−s/R̃ (36)

for some R̃ > 0, where q, s, t ∈ (0, 1), r ∈ (0, 1/2),
q < s, and r < t. Then we have

E[G̃(zN , vN )] ≤
(

4P1Lf

N(N−1) + 2P2LK

N +
√

2−s
1−s

2χ/R̃√
N−1

)
×
[(

6 + 4q
1−q + 4(r+1/2)

1/2−r

)
R2

+ 1
3

(
5
2 + 2q

1−q + 4(r+1/2)
1/2−r R̃2

)]
,

E[‖vN‖2] ≤
(

4P1Lf

N(N−1) + 2P2LK

N +
√

2−s
1−s

2χ/R̃√
N−1

)
×
[
2R
(

1 +
√

σ1

τ1

)
+ (
√

2R+ R̃/
√

3)
(

1 + µ+
(√

σ1

τ1
+ ν)

))]
+ 4LK

N (
√

2R+ R̃/
√

3) (µ+ bν) .

4.3 Outline of the proofs

The following proposition is a key in proving the above
results.

Proposition 1. Assume that ρk ≤ 1 for any k. If
zk = (xk, yk) is generated by (6), then for any z =
(x, y) ∈ Z,

ρ−1
k G(zk+1, z)− (ρ−1

k − 1)G(zk, z)

≤ 〈∇f(xkmd), x̃
k+1 − x〉+

ρkLf
2
‖x̃k+1 − x̃k‖22

+ g(x̃k+1)− g(x) + h∗(ỹk+1)− h∗(y)

+ 〈Kx̃k+1, y〉 − 〈Kx, ỹk+1〉.
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Lemmas B.1 and C.1 in Supplementary Material are
derived from Proposition 1. Theorems 1–4 follow from
these lemmas. Detailed proofs are provided in Supple-
mentary Material.

5 Numerical experiments

5.1 Setup

We compare the practical performance of OS3X (Algo-
rithm 1) with the benchmark methods. For the deter-
ministic setting, we consider Condat-Vũ (CV), PDFP,
AFBA, PD3O, and SPDTCM without noisy gradients.
For the stochastic setting, we compare OS3X with
SPDTCM with noise. We tested with two instances of
(PD), namely graph-guided fused lasso and overlapping
group elastic net. We averaged 10 separate runs for all
stochastic experiments. For each experiment, primal
gap versus the number of epochs is shown. An epoch
was defined as (cumulative number of data points used
in the estimation of ∇̂f)/(number of data points in
the dataset). The primal gap is the difference between
the objective value at the epoch and the optimal objec-
tive value, approximated by the objective value after
100000 epochs of deterministic OS3X. We tested three
instances of OS3X: B = 0, B = −0.5K, and B = −K.
The algorithms were implemented in Matlab R2017a
on a machine with two Intel E5-2650 v4 processors and
256 GB RAM.

Parameter selection In the deterministic setting,
we chose q = 0.3 and r = 0.7 from Corollary 1 and
Corollary 2, and set P1 = 0.9 for OS3X. For stochastic
setting, (q, r, s, t) from Corollary 3 and Corollary 4 were
chosen as (0.3, 0.3, 0.7, 0.7). The variance χ was set
1000. For CV, PDFP, AFBA, and PD3O, we chose
τ = 1.9/Lf and σ = 1/(4τ). Finally, for SPDTCM,
we used the constant parameter recipe as provided by
Zhao and Cevher (2018).

Stochastic gradient At iteration k, the stochastic
gradient ∇̂f(xk) was obtained from a random subsam-
ple of A. For a random permutation π, we define
a subsample Ã := Aπ(1):π(ns),: (in Matlab notation),
where ns = b0.2nc. Thus for the quadratic loss, we
have ∇̂f(xk) = (n/ns)Ã

T (Ãx− b).

5.2 Graph-guided sparse fused lasso

The graph-guided fused lasso is formulated as

min
x

1

2
‖Ax− b‖22 + λ1‖x‖1 + λ2‖Dx‖1,

where D is the difference matrix on a given undirected
graph. The data were generated following the tran-
scription factor (TF) model of Zhu (2017). The graph

had J fully connected subgraphs of size T , where each
subgraph had one node designated as TF and the rest
were regulatory targets. TF variables were sampled
independently from N (0, 1). Target genes were sam-
pled so that each target gene and the corresponding TF
has a bivariate normal with zero mean, unit variance,
and correlation of 0.7. Target genes were conditionally
independent given the TF. For j-th subgraph, we chose

xi =

{
(−1)j+1

⌊
j+1

2

⌋
if j = 1, . . . , Ja

0 otherwise
,

where i = (j − 1)r + 1, . . . , jr, and Ja is the number
of active subgraphs. Response bi was sampled so that
bi = Ax+ εi, where εi

i.i.d.∼ N (0, 1002). In addition, we
added random edges between active nodes and inactive
nodes. For each active node, we added edges connecting
this node and J − 1 distinct inactive nodes. We used
T = 10, Ja = 20, and J = 1000 so that p = 10000.
The data matrix A was sampled i.i.d. from N (0, 1).
Penalty parameters were set λ1 = 1 = λ2. Domain
boundaries were estimated as ΩX = 200, ΩY = 450.
All the iterates remained within these boundaries. For
stochastic unbounded parameter settings, we chose
R̃ = 100. The results are shown in Figure 1(a-c).
The convergence speed gap between OS3X and the
other methods is clear (note the log-log scale). Using
the parameters with known bounds is faster than the
parameters that do not involve bound assumption, but
we still achieve faster convergence compared to other
methods without the bound assumption. There was no
noticeable difference between the choices of B.

5.3 Overlapping group elastic net

The overlapping group elastic net problem with a
quadratic loss with an additional ridge penalty is:

min
x

1

2
‖b−Ax‖22 +

λ1

2
‖x‖22 + λ2

100∑
j=1

√
|Gj |‖xGj

‖2.

The test dataset was generated based on Chen et al.
(2012). We defined 100 groups of 100 variables of
adjacent indices, with 10 overlaps of adjacent groups.
i.e., Gj = {90(j − 1) + 1, . . . , 90j + 10}, thus p = 9010.
We set xj = (−1)j exp(−(j − 1)/100) for j = 1, . . . , p.
We sampled each element of A i.i.d. from N (0, 1), and
added a Gaussian noise ε ∼ N (0, I) to Ax to generate
b = Ax+ ε. The sample size was n = 5000. We chose
λ1 = 0.1, λ2 = 0.3, and set ΩX = 20, ΩY = 45. For
stochastic case with unbounded parameter setting, we
chose R̃ = 50. The results are shown in Figure 1(d-
f). All the instances of OS3X converged faster than
SPDTCM. Stochastic variants of OS3X start slowly,
but they surpass SPDTCM eventually.
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(a) Fused lasso, deterministic, bounded
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(b) Fused lasso, deterministic, un-
bounded
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(c) Fused lasso, stochastic
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(d) Group elastic net, deterministic,
bounded
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(e) Group elastic net, deterministic, un-
bounded
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(f) Group elastic net, stochastic

Figure 1: Convergence of deterministic and stochastic OS3X under various parameter settings and other methods
for a sparse graph-guided fused lasso model (a-c) and a overlapping group elastic net (d-f). (a), (d), deterministic
OS3X with bounded parameter settings with SPDTCM with deterministic updates, CV, PDFP, AFBA, and
PD3O. (b), (e), deterministic OS3X with unbounded parameter settings with SPDTCM with deterministic
updates, CV, PDFP, AFBA, and PD3O. (c), (f), stochastic OS3X with bounded and unbounded parameter
settings with SPDTCM.

6 Discussion

It is interesting that the middle-step aggregation strat-
egy for accelerating PDHG-type algorithms for a three-
function sum achieves the optimal rate. (This strategy
is the key idea of Chen et al. (2014).) Our results thus
provide a partial answer to the popularity of the base
algorithm by Condat (2013) and Vũ (2013).

There remain several avenues of future research. First,
in this work we maintain a minimal assumption on the
convexity of the functions since the interest is in the
worst-case rates. How the bounds of our algorithm class
can be improved with additional assumptions, e.g., the
strong convexity of g (Ghadimi and Lan, 2012), would
be of interest. Second, in the unbounded settings we
assume the horizon N is known in advance. Using step
sizes that depend on N at least dates back to Nesterov
(2005); achieving optimal rates without this information
is a challenging task (Zhao and Cevher (2018) report
a factor of logN slowdown in the asymptotic rate).
However, in many scenarios (e.g., early stopping) the

knowledge of N is unavailable, horizon-independent
convergence analysis is warranted. Third, techniques
for estimating the problem parameters Lf and LK and
combining them with algorithm parameter selection
will have an important practical impact.
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