
Appendix

A LEAST SQUARES ANALYSIS

A.1 Restated result

Recall that, after normalizing according to (9) and using the closed form solution for the optimal scaling
factor g∗ := −

(
u>w

)
/‖w‖S, optimizing the ordinary least squares objective can be written as the following

minimization problem

min
w∈Rd

(
ρ(w) := −w>uu>w

w>Sw

)
. (12 revisited)

We consider optimizing the above objective by Gd which takes iterative steps of the form

wt+1 = wt − ηt∇ρ(wt), (23)

where

∇ρ(wt) = −2 (Bwt + ρ(wt)Swt) /w
>
t Swt. (24)

Furthermore, we choose

ηt =
w>t Swt

2L|ρ(wt)|
. (25)

Our analysis relies on the (weak) data distribution assumption stated in A1. It is noteworthy that ρ(w) ≤ 0,∀w ∈
Rd \ {0} holds under this assumption. In the next theorem, we establish a convergence rate of Gd in terms of
function value as well as gradient norm.

Theorem 1. [Convergence rate on least squares] Suppose that the (weak) Assumption 1 on the data distribu-
tion holds. Consider the Gd iterates {wt}t∈N+ given in Eq. (13) with the stepsize ηt = w>t Swt/(2L|ρ(wt)|)
and starting from ρ(w0) 6= 0. Then,

∆ρt ≤
(

1− µ

L

)2t

∆ρ0, (14)

where ∆ρt := ρ(wt)− ρ(w∗). Furthermore, the S−1-norm of the gradient ∇ρ(wt) relates to the suboptimality
as

‖wt‖2S‖∇ρ(wt)‖2S−1/|4ρ(wt)| = ∆ρt. (15)

The proof of this result crucially relies on the insight that the minimization problem given in (11) resembles
the problem of maximizing the generalized Rayleigh quotient which is commonly encountered in generalized
eigenproblems. We will thus first review this area, where convergence rates are usually provided in terms of the
angle of the current iterate with the maximizer, which is the principal eigenvector. Interestingly, this angle can
be related to both, the current function value as well as the the norm of the current gradient. We will make use
of these connections to prove the above Theorem in Section A.5. Although not necessarily needed for convex
function, we introduce the gradient norm relation as we will later go on to prove a similar result for possibly
non-convex functions in the learning halfspace setting (Theorem 4).

A.2 Background on eigenvalue problems

A.2.1 Rayleigh quotient

Optimizing the Rayleigh quotient is a classical non-convex optimization problem that is often encountered in
eigenvector problems. Let B ∈ Rd×d be a symmetric matrix, then w1 ∈ Rd is the principal eigenvector of B if it

Exponential convergence rates for Batch Normalization

maximizes

q(w) =
w>Bw

w>w
(26)

and q(w) is called the Rayleigh quotient. Notably, this quotient satisfies the so-called Rayleigh inequality

λmin(B) ≤ q(w) ≤ λ1(B), ∀w ∈ R \ {0},

where λmin(B) and λ1(B) are the smallest and largest eigenvalue of B respectively.

Maximizing q(w) is a non-convex (strict-saddle) optimization problem, where the i-th critical point vi constitutes
the i-th eigenvector with corresponding eigenvalue λi = q(wi) (see (Absil et al., 2009), Section 4.6.2 for details).
It is known that optimizing q(w) with Gd - using an iteration-dependent stepsize - converges linearly to the
principal eigenvector v1. The convergence analysis is based on the ”minidimensional” method and yields the
following result

λ1 − q(wt)

cos2 ∠(wt,v1)
≤
(

1− λ1 − λ2

λ1 − λmin

)2t
λ1 − q(w0)

cos2 ∠(w0,v1)
(27)

under weak assumptions on w0. Details as well as the proof of this result can be found in (Knyazev and
Shorokhodov, 1991).

A.2.2 Generalized rayleigh quotient

The reparametrized least squares objective (12), however, is not exactly equivalent to (26) because of the covariance
matrix that appears in the denominator. As a matter of fact, our objective is a special instance of the generalized
Rayleigh quotient

ρ̃(w) =
w>Bw

w>Aw
, (28)

where B is defined as above and A ∈ Rd×d is a symmetric positive definite matrix.

Maximizing (28) is a generalized eigenproblem in the sense that it solves the task of finding eigenvalues λ of the
matrix pencil (B,A) for which det(B− λA) = 0, i.e. finding a vector v that obeys Bv = λAv. Again we have

λmin(B,A) ≤ ρ̃(w) ≤ λ1(B,A), ∀w ∈ R \ {0}.

Among the rich literature on solving generalized symmetric eigenproblems, a Gd convergence rate similar to (27)
has been established in Theorem 6 of (Knyazev and Neymeyr, 2003), which yields

λ1 − ρ(wt+1)

ρ(wt+1)− λ2
≤
(

1− λ1 − λ2

λ1 − λmin

)2t
λ1 − ρ(wt)

ρ(wt)− λ2
,

again under weak assumptions on w0.

A.2.3 Our contribution

Since our setting in Eq. (12) is a minimization task, we note that for our specific choice of A and B we have
−ρ̃(w) = ρ(w) and we recall the general result that then

min ρ(w) = −max(ρ̃(w)).

More importantly, we here have a special case where the nominator of ρ(w) has a particular low rank structure.
In fact, B := uu> is a rank one matrix. Instead of directly invoking the convergence rate in (Knyazev and
Neymeyr, 2003), this allows for a much simpler analysis of the convergence rate of Gd on ρ(w) since the rank
one property yields a simpler representation of the relevant vectors. Furthermore, we establish a connection
between suboptimality on function value and the S−1-norm of the gradient. As mentioned earlier, we need
such a guarantee in our future analysis on learning halfspaces which is an instance of a (possibly) non-convex
optimization problem.

A.3 Preliminaries

Notations Let A be a symmetric positive definite matrix. We introduce the following compact notations that
will be used throughout the analysis.

• A-inner product of w,v ∈ Rd: 〈w,v〉A = w>Av.

• A-norm of w ∈ Rd: ‖w‖A =
(
w>Aw

)1/2
.

• A-angle between two vectors w,v ∈ Rdn{0}:

∠A (w,v) := arccos

(
〈w,v〉A
‖w‖A‖v‖A

)
(29)

• A-orthogonal projection ŵ of w to span{v} for w,v ∈ Rdn{0}:

ŵ ∈ span{v} with 〈w − ŵ,v〉A = 0 (30)

• A-spectral norm of a matrix C ∈ Rd×d:

‖C‖A := max
w∈Rd/{0}

‖Cw‖A
‖w‖A

(31)

These notations allow us to make the analysis similar to the simple Rayleigh quotient case. For example, the
denominator in (28) can now be written as ‖w‖2A.

Properties We will use the following elementary properties of the induced terms defined above.

(P.1) sin2 ∠A(w,v) = 1− cos2 ∠A(w,v)

(P.2) If ŵ is the A-orthogonal projection of w to span{v}, then it holds that

cos2 ∠A(w,v) =
‖ŵ‖2A
‖w‖2A

, sin∠Awv =
‖w − ŵ‖A
‖w‖A

(32)

(P.3) The A-spectral norm of a matrix can be written in the alternative form

‖C‖A = max
w∈Rd\{0}

‖A1/2Cw‖2
‖A1/2w‖2

(33)

= max
w∈Rd\{0}

‖
(
A1/2CA−1/2

)
A1/2w‖2

‖A1/2w‖2
(34)

= ‖A1/2CA−1/2‖2 (35)

(P.4) Let C ∈ Rd×d be a square matrix and w ∈ Rd, then the following result holds due to the definition of
A-spectral norm

‖Bw‖A ≤ ‖B‖A‖w‖A (36)

A.4 Characterization of the LS minimizer

By setting the gradient of (10) to zero and recalling the convexity of fols we immediately see that the minimizer
of this objective is

w̃∗ := −S−1u. (37)

Indeed, one can easily verify that w̃∗ is also an eigenvector of the matrix pair (B,S) since

Bw̃∗ = uu>(−S−1u) = −‖u‖2S−1u

=(‖u‖2S−1)S(−S−1u) = λ1Sw̃∗
(38)

Exponential convergence rates for Batch Normalization

where λ1 := ‖u‖2S−1 is the corresponding generalized eigenvalue. The associated eigenvector with λ1 is

v1 := w̃∗/‖u‖S−1 . (39)

Thereby we extend the normalized eigenvector to an S-orthogonal basis (v1,v2, . . . ,vd) of Rd such that

〈vi,vj〉S =

{
0, i 6= j

1, i = j
(40)

holds for all i, j. Let V2 := [v2,v3, . . . ,vd] be the matrix whose (i − 1)-th column is vi, i ∈ {2, . . . , d}. The
matrix B is orthogonal to the matrix V2 since

BV2 = uu>V2 = uu>S−1SV2

(39)
= ‖S−1u‖Su

−v>1 SV2︸ ︷︷ ︸
0

 ,
(41)

which is a zero matrix due to the A-orthogonality of the basis (see Eq. (40)). As a result, the columns of V2 are
eigenvectors associated with a zero eigenvalue. Since v1 and V2 form an S-orthonormal basis of Rd no further
eigenvalues exist. We can conclude that any vector w∗ ∈ span{v1} is a minimizer of the reparametrized ordinary
least squares problem as presented in (12) and the minimum value of ρ relates to the eigenvalue as

λ1 = −min
w

ρ(w).

Spectral representation of suboptimality Our convergence analysis is based on the angle between the
current iterate wt and the leading eigenvector v1, for which we recall property (P.1). We can express w ∈ Rd in
the S-orthogonal basis that we defined above:

w = α1v1 + V2α2, α1 ∈ R, α2 ∈ Rd−1 (42)

and since α1v1 is the S-orthogonal projection of w to span{v1}, the result of (P.2) implies

cos2 ∠S(w,v1) =
‖α1v1‖2S
‖w‖2S

=
α2

1

‖w‖2S
. (43)

Clearly this metric is zero for the optimal solution v1 and else bounded by one from above. To justify it is a
proper choice, the next proposition proves that suboptimality on ρ, i.e. ρ(w) − ρ(v1), relates directly to this
angle.

Proposition 1. The suboptimality of w on ρ(w) relates to sin2 ∠S(w,v1) as

ρ(w)− ρ(v1) = λ1 sin2 ∠S(w,v1), (44)

where ρ(v1) = λ1. This is equivalent to

ρ(w) = −λ1 cos2 ∠S(w,v1). (45)

Proof. We use the proposed eigenexpansion of Eq. (42) to rewrite

Bw = (α1Bv1 + BV2α2)
(41)
= α1Bv1

(38)
= α1λ1Sv1 (46)

and replace the above result into ρ(w). Then

ρ(w) = −w>Bw

w>Sw

(46)
= −α1λ1

(α1v1 + V2α2)>Sv1

‖w‖2S
(40)
= −λ1

α2
1

‖w‖2S
(43)
= −λ1 cos2 ∠S(w,v1),

which proves the second part of the proposition. The first follows directly from property (P.1).

Gradient-suboptimality connection Fermat’s first-order optimality condition implies that the gradient is
zero at the minimizer of ρ(w). Considering the structure of ρ(w), we propose a precise connection between the
norm of gradient and suboptimality. Our analysis relies on the representation of the gradient ∇ρ(w) in the
S-orthonormal basis {v1, . . . ,vd} which is described in the next proposition.

Proposition 2. Using the S-orthogonal basis as given in Eq. (40), the gradient vector can be expanded as

‖w‖2S∇ρ(w)/2 =− λ1α1 sin2 ∠S(w,v1)Sv1

+ λ1 cos2 ∠S(w,v1)SV2α2

(47)

Proof. The above derivation is based on two results: (i) v1 is an eigenvector of (B,S) and (ii) the representation
of ρ(w) in Proposition 1. We recall the definition of ∇ρ(w) in (24) and write

∇ρ(w)‖w‖2S/2 = −ρ(w)Sw −Bw

(46)
= −ρ(w)S (α1v1 + V2α2) + λ1α1Sv1

(45)
= −(1− cos2 ∠S(w,v1))λ1α1Sv1

+λ1 cos2 ∠S(w,v1)SV2α2

= −λ1α1 sin2 ∠S(w,v1)Sv1

+λ1 cos2 ∠S(w,v1)SV2α2

(48)

Exploiting the gradient representation of the last proposition, the next proposition establishes the connection
between suboptimality and the S−1-norm of gradient ∇wρ(w).

Proposition 3. Suppose that ρ(w) 6= 0, then the S−1-norm of the gradient ∇ρ(w) relates to the suboptimality as

‖w‖2S‖∇ρ(w)‖2S−1/(4|ρ(w)|) = ρ(w)− ρ(v1) (49)

Proof. Multiplying the gradient representation in Proposition 2 by S−1 yields

S−1∇ρ(w)‖w‖2S/2 =− λ1α1 sin2 ∠S(w,v1)v1

+ λ1 cos2 ∠S(w,v1)V2α2.

By combining the above result with the S-orthogonality of the basis (v1,V2), we derive the (squared) S−1-norm
of the gradient as

∇ρ(w)>S−1∇ρ(w)/4
(40)
= T1 + T2,

T1 := ‖w‖−4
S λ2

1α
2
1 sin4 ∠S(w,v1),

T2 := ‖w‖−4
S λ2

1 cos4 ∠S(w,v1)‖α2‖2.

(50)

It remains to simplify the terms T1 and T2. For T1,

‖w‖2S
λ2

1 sin4 ∠S(w,v1)
T1 = ‖w‖−2

S α2
1

(43)
= cos2 ∠S(w,v1).

Similarly, we simplify T2:

‖w‖2S
λ2

1 cos4 ∠S(w,v1)
T2 = ‖w‖−2

S ‖α2‖2

= ‖w‖−2
S

(
‖w‖2S − α2

1

)
= 1− α2

1

‖w‖2S
(43)
= 1− cos2 ∠S(w,v1)

= sin2 ∠S(w,v1)

Exponential convergence rates for Batch Normalization

Replacing the simplified expression of T1 and T2 into Eq. (50) yields

‖w‖2S‖∇wρ(w)‖2S−1/4 =λ2
1 cos2 ∠S(w,v1) sin2 ∠S(w,v1)

(
sin2 ∠S(w,v1) + cos2 ∠S(w,v1)

)
=λ2

1 cos2 ∠S(w,v1) sin2 ∠S(w,v1),

(45)
= |ρ(w)|λ1‖ sin2 ∠S(w,v1)

(44)
= |ρ(w)| (ρ(w)− ρ(v1)) .

A rearrangement of terms in the above equation concludes the proof.

A.5 Convergence proof

We have seen: suboptimality in ρ(w) directly relates to sin2 ∠S(w,v1) for all w \ {0}. In the next lemma we
prove that this quantity is strictly decreased by repeated Gd updates at a linear rate.

Lemma 3. Suppose that Assumption 1 holds and consider Gd (Gd) steps on (12) with stepsize ηt =
‖wt‖2S

2L|ρ(wt)| .

Then, for any w0 ∈ Rd such that ρ(w0) < 0, the updates of Eq. (23) yield the following linear convergence rate

sin2 ∠S(wt,v1) ≤
(

1− µ

L

)2t

sin2 ∠S(w0,v1) (51)

Proof. To prove the above statement, we relate the sine of the angle of a given iterate wt+1 with v1 in terms of
the previous angle ∠(wt,v1). Towards this end, we assume for the moment that ρ(wt) 6= 0 but note that this
naturally always holds whenever ρ(w0) 6= 0,6 such that the angle relation can be recursively applied through all
t ≥ 0 to yield Eq. (51).

(i) We start by deriving an expression for sin∠S(v1,wt). By (30) and the definition ρ(wt), we have that −ρ(wt)wt

is the S-orthogonal projection of S−1Bwt to span{wt}. Indeed,

〈S−1Bwt + ρ(wt)wt,wt〉S

=w>t BS−1Swt −
w>t Bwt

w>t Swt
w>t Swt = 0.

Note that S−1Bwt =
(
S−1u

) (
u>wt

)
is a nonzero multiple of v1 and thus sin∠S(S−1Bwt,wt) = sin∠S(v1,wt).

Thus, by (P.2) we have

sin∠S(v1,wt) = sin∠S(S−1Bwt,wt)

=
‖S−1Bwt + ρ(wt)wt‖S

‖S−1Bwt‖S
.

(52)

(ii) We now derive an expression for sin∠S(v1,wt+1). Let at+1 ∈ R such that at+1wt+1 ∈ Rd is the S-orthogonal
projection of S−1Bwt to span{wt+1}. Then

〈S−1Bwt − at+1wt+1,wt+1〉S = 0

⇒ 〈S−1Bwt − at+1wt+1, (at+1 + ρ(wt))wt+1〉S = 0.
(53)

By the Pythagorean theorem and (53), we get

‖S−1Bwt + ρ(wt)wt+1‖2S = ‖S−1Bwt − at+1wt+1‖2S
+ ‖(at+1 + ρ(wt))wt+1‖2S
≥ ‖S−1Bwt − at+1wt+1‖2S.

(54)

6as we will show later by induction.

Hence, again by (P.2)

sin∠S(v1,wt+1) = sin∠S(S−1Bwt,wt+1)

=
‖S−1Bwt − at+1wt+1‖S

‖S−1Bwt‖S
(54)

≤ ‖S
−1Bwt + ρ(wt)wt+1‖S
‖S−1Bwt‖S

.

(55)

(iii) To see how the two quantities on the right hand side of (52) and (55) relate, let us rewrite the Gd updates
from Eq. (23) as follows

ρ(wt)wt+1 = ρ(wt)wt −
S

L

(
S−1Bwt + ρ(wt)wt

)
⇔ S−1Bwt + ρ(wt)wt+1 = S−1Bwt + ρ(wt)wt −

S

L

(
S−1Bwt + ρ(wt)wt

)
⇔ S−1Bwt + ρ(wt)wt+1 =

(
I− S

L

)(
S−1Bwt + ρ(wt)wt

)
.

(56)

By taking the S-norm we can conclude

‖S−1Bwt + ρ(wt)wt+1‖S
(56)

≤ ‖I− S

L
‖S · ‖S−1Bwt + ρ(wt)wt‖S

≤
(

1− µ

L

)
‖S−1Bwt + ρ(wt)wt‖S,

(57)

where the first inequality is due to property (P.4) of the S-spectral norm and the second is due to Assumption (1)
and (P.3) , which allows us to bound the latter in term of the usual spectral norm as follows

‖I− S/L‖S
(P.3)
= ‖S1/2 (I− S/L) S−1/2‖2

=‖I− S/L‖2
(2)

≤ 1− µ/L.
(58)

(iv) Combining the above results yields the desired bound

sin∠S(v1,wt+1)
(55)

≤ ‖S
−1Bwt + ρ(wt)wt+1‖S
‖S−1Bwt‖S

(57)

≤
(

1− µ

L

) ‖S−1Bwt + ρ(wt)wt‖S
‖S−1Bwt‖S

(52)
=
(

1− µ

L

)
sin∠S(v1,wt).

(59)

(v) Finally, we show that the initially made assumption ρ(wt) 6= 0 is naturally satisfied in all iterations. First,
ρ(w0) < 0 by assumption. Second, assuming ρ(wt̂) < 0 for an arbitrary t̂ ∈ N+ gives that the above analysis
(i-iv) holds for t̂+ 1 and thus (59) together with (44) and the fact that λ1 > 0 give

ρ(wt̂+1) = −λ1(1− sin2(v1,wt̂+1))

< −λ1(1− sin2(v1,wt̂)) = ρ(wt̂) < 0,

where the last inequality is our induction hypothesis. Thus ρ(wt̂+1) < 0 and we can conclude by induction that
ρ(wt) < 0,∀t ∈ N+.

As a result, (59) holds ∀t ∈ N+, which (applied recursively) proves the statement (51).

Exponential convergence rates for Batch Normalization

We are now ready to prove Theorem 1.

Proof of Theorem (1): By combining the results of Lemma 3 as well as Proposition 1 and 3, we can complete
the proof of the Theorem 1 as follows

‖wt‖2S‖∇wρ(wt)‖2S−1/|4ρ(wt)|
(49)
= (ρ(wt)− ρ(w∗))

(44)
= λ1 sin2 ∠S(wt,v1)

(51)

≤
(

1− µ

L

)2t

λ1 sin2 ∠S(w0,v1)

(44)
=
(

1− µ

L

)2t

(ρ(w0)− ρ(w∗)) .

B LEARNING HALFSPACES ANALYSIS

In this section, we provide a convergence analysis for Algorithm 1 on the problem of learning halfspaces

min
w̃∈Rd

(
flh(w̃) := Ey,x

[
ϕ(−yx>w̃)

]
= Ez

[
ϕ(z>w̃)

])
. (16 revisited)

As before, we reparametrize w̃ by means of the covariance matrix S as

w̃ := gw/‖w‖S. (9 revisited)

We assume that the domain of flh(w̃) is Rd but exclude 0 such that (9) is always well defined. Thus, the domain
of the new parameterization is (w, g) ∈

(
Rd \ {0}

)
⊗ R ⊂ Rd+1.

B.1 Preliminaries

Recall the normality assumption on the data distribution.

Assumption 2. [Normality assumption] We assume that z is a multivariate normal random variable distributed
with mean E [z] = E [−yx] = u and second-moment E

[
zz>

]
−E[z]E[z]> = E

[
xx>

]
− uu> = S− uu>.

Under the above assumption we have that for a differentiable function g(z) : Rd → R the following equality holds

Ez [g(z)z] = Ez [g(z)] u + (S− uu>)Ez [∇zg(z)] . (60)

This result, which can be derived using a simple application of integration by parts, is called Stein’s lemma
(Landsman and Nevslehová, 2008). In the next lemma, we show that this allows us to simplify the expression of
the gradient of Eq. 16.

Lemma 4 (restated result from (Erdogdu et al., 2016)). Under the normality assumption on the data distribu-
tion (Assumption 2), the gradient of fLH (Eq. 16) can be expressed as

∇w̃flh(w̃) = c1(w̃)u + c2(w̃)Sw̃, (61)

where ci ∈ R depends on the i-th derivative of the loss function denoted by ϕ(i) as

c1(w̃) = Ez

[
ϕ(1)(z>w̃)

]
−Ez

[
ϕ(2)(z>w̃)

]
(u>w̃),

c2(w̃) = Ez

[
ϕ(2)(z>w̃)

]
Proof. The gradient of fLH can be written as follows

∇fLH = E
[
ϕ(1)(z>w̃)z

]
. (62)

A straight forward application of Stein’s lemma (Eq. (60)) yields

∇fLH = E
[
ϕ(1)(z>w̃)

]
u + (S− uu>)E

[
ϕ(2)(z>w̃)

]
w̃, (63)

which –after rearrangement – proves the result. See detailed derivation in (Erdogdu et al., 2016).

In addition to the assumption on the data distribution, the proposed analysis also requires a rather weak
assumption on flh and loss function ϕ.

Assumption 3. [Assumptions on loss function] We assume that the loss function ϕ : R → R is infinitely
differentiable, i.e. ϕ ∈ C∞(R,R), with a bounded derivative, i.e. ∃Φ > 0 such that |ϕ(1)(β)| ≤ Φ,∀β ∈ R.

Assumption 4. [Smoothness assumption] We assume that the objective f : Rd → R is ζ-smooth if it is differen-
tiable on R and its gradient is ζ-Lipschitz. Furthermore, we assume that a solution α∗ := arg minα ‖∇f(αw)‖2
exists that is bounded in the sense that ∀w ∈ Rd,−∞ < α∗ <∞.7

Recall that ζ-smoothness of flh, which is mentioned in the last assumption, implies that the gradient of flh is
ζ-Lipschitz, i.e.

‖∇flh(w̃1)−∇flh(w̃2)‖ ≤ ζ‖w̃1 − w̃2‖. (64)

B.2 Global characterization

Here, we prove a result about a global property of the solution of the problem of learning halfspaces.

Lemma 1. Under Assumptions 1 and 2, all bounded critical points w̃∗ of flh have the general form

w̃∗ = g∗S
−1u,

where the scalar g∗ ∈ R depends on w̃∗ and the choice of the loss function ϕ.

Proof. Setting the gradient of the objective flh as given in Eq. (61) to zero directly gives the result.

B.3 Established Convergence Rate

Based on this assumption, we derive a linear convergence rate for Gdnp presented in Algorithm 1. We first
restate the convergence guarantee before providing a detailed proof.

Theorem 4. [Convergence rate of Gdnp on learning halfspaces] Suppose Assumptions 1– 4 hold. Let w̃Td

be the output of Gdnp on flh with the following choice of stepsizes

st := s(wt, gt) = − ‖wt‖3S
Lgth(wt, gt)

(65)

for t = 1, . . . , Td, where
h(wt, gt) :=Ez

[
ϕ′
(
z>w̃t

)]
(u>wt)

−Ez

[
ϕ′′
(
z>w̃t

)] (
u>wt

)2 (66)

is a stopping criterion. If initialized such that ρ(w0) 6= 0 (see Eq. (12)), then w̃Td
is an approximate critical

point of flh in the sense that

‖∇w̃f(w̃Td
)‖2 ≤(1− µ/L)2TdΦ2 (ρ(w0)− ρ∗)

+ 2−Tsζ|b(0)
t − a

(0)
t |/µ2. (67)

7This is a rather technical but not so restrictive assumption. For example, it always holds for the sigmoid loss unless
the classification error of w is already zero.

Exponential convergence rates for Batch Normalization

B.3.1 Proof sketch

As mentioned earlier, the objective flh on Gaussian inputs has a particular global property. Namely, all its
critical points are aligned along the same direction. The key idea is that S-reparameterization provides this global
information to a local optimization method through an elegant length-direction decoupling. This allows Gdnp to
mimic the behaviour of Gradient Descent on the above mentioned Rayleigh quotient for the directional updates
and thereby inherit the linear convergence rate. At the same time, the scaling factor can easily be brought to a
critical point by a fast, one dimensional search algorithm. We formalize and combine these intuitions in a detailed
proof below.

B.3.2 Gradient in the normalized parameterization

Since Gdnp relies on the normalized parameterization, we first need to derive the gradient of the objective in this
parameterization

min
w,g

(
flh(w, g) := Ez

[
ϕ

(
g

z>w

‖w‖S

)])
. (68)

Straight forward calculations yield the following connection between the gradient formulation in the original
parameterization ∇w̃flh = Ez[ϕ(1)(w̃>z)z] and the gradient in the normalized parameterization

∇wflh(w, g) = gAw∇w̃flh(w̃),

∂gflh(w, g) = w>∇w̃flh(w̃)/‖w‖S
(69)

where
Aw := I/‖w‖S − Sww>/‖w‖3S. (70)

Note that the vector Sw is orthogonal to the column space of Aw since

AwSw =

(
Sw − ‖w‖

2
S

‖w‖2S
Sw

)
/‖w‖S = 0. (71)

We will repeatedly use the above property in our future analysis. In the next lemma, we establish a connection
between the norm of gradients in different parameterizations.

Proposition 4. Under the reparameterization (9), the following holds:

‖∇w̃f(w̃)‖2S−1 =‖w‖2S‖∇wf(w, g)‖2S−1/g2

+ (∂gf(w, g))
2

(72)

Proof. We introduce the vector q1 = Sw/‖w‖S that has unit S−1-norm, i.e. ‖q1‖S−1 = 1.

According to Eq. (71),

Awq1 = 0

holds. Now, we extend this vector to an S−1-orthogonal basis {q1,q2, . . . ,qd} of Rd such that

〈qi,qi〉S−1 = 1, ∀i and 〈qi,qj〉S−1 = 0, ∀i 6= j.

Let Q2 be a matrix whose columns are {q2, . . . ,qd}. The choice of q1 together with S−1-orthogonality of the
basis imply that w is orthogonal to Q2:

w>qj = ‖w‖S〈q1,qj〉S−1 = 0,∀j 6= 1

Consider the gradient expansion in the new basis, i.e.

∇w̃f(w̃) = α1q1 + Q2α2, ‖∇w̃f(w̃)‖2S−1 = α2
1 + ‖α2‖22

Plugging the above expansion into Eq. (69) yields

∇wf(w, g) = gQ2α2/‖w‖S, ∂gf(w, g) = α1 (73)

hence the S−1-norm of the directional gradient in the new parameterization is

‖∇wf(w, g)‖2S−1 = g2‖α2‖22/‖w‖2S (74)

Therefore, one can establish the following connection between the S−1-norm of gradient in the two different
parameterizations:

‖∇w̃f(w̃)‖2S−1 = α2
1 + ‖α2‖22

(73)
= (∂gf(w, g))

2
+ ‖α2‖2

(74)
= (∂gf(w, g))

2
+
‖w‖2S‖∇wf(w, g)‖2S−1

g2

The above lemma allows us to first analyze convergence in the (w, g)-parameterization and then we relate the
result to the original w̃-parameterization in the following way: Given that the iterates {wt, gt}t∈N+ converge
to a critical point of flh(w, g), one can use Eq. (73) to prove that w̃t = gtwt/‖wt‖S also converges to a critical
point of flh(w̃).

For the particular case of learning halfspaces with Gaussian input, the result of Lemma 4 allows us to write the
gradient ∇flh as

∇w̃flh(w̃) = c1(w̃)u + c2(w̃)Sw̃, (75)

where the constants c1 and c2 are determined by the choice of the loss. Replacing this expression in Eq. (69)
yields the following formulation for the gradient in normalized coordinates

∇wflh(w) = gc1(w, g)Awu + gc2(w, g)AwSw, (76)

where ci(w, g) = ci(w̃(w, g)). Yet, due to the specific matrix Aw that arises when reparametrizing according to
(9), the vector Sw is again in the kernel of Aw (see Eq. (71)) and hence

∇wflh(w) = gc1(w, g)Awu. (77)

B.3.3 Convergence of the scalar g

Lemma 5 (Convergence of scalar). Under the assumptions of Theorem 4, in each iteration t ∈ N+ of Gdnp
(Algorithm 1) the partial derivative of fLH as given in Eq. (68) converges to zero at the following linear rate(

∂gflh(wt, a
(Ts)
t)

)2

≤ 2−Tsζ|b(0)
t − a

(0)
t |/µ2. (78)

Proof. According to Algorithm 1, the length of the search space for g is cut in half by each bisection step and
thus reduces to

|a(Ts)
t − b(Ts)

t | ≤ 2−Ts |b(0)
t − a

(0)
t |

after Ts iterations. The continuity of ∂gflh given by Assumption 4 and the fact that Algorithm 1 guarantees

∂gflh(wt, a
(m)
t) · ∂gflh(wt, b

(m)
t) < 0, ∀m ∈ N+ allow us to conclude that there exists a root g∗ for ∂gflh between

a
(Ts)
t and b

(Ts)
t for which

|a(Ts)
t − g∗| ≤ 2−Ts |b(0)

t − a
(0)
t |

holds.

Exponential convergence rates for Batch Normalization

The next step is to relate the above distance to the partial derivative of flh(w, g) w.r.t g. Consider the compact
notation w′t = wt/‖wt‖S. Using this notation and the gradient expression in Eq. (69), the difference of partial
derivatives can be written as (

∂gflh(wt, a
(Ts)
t)

)2

=
(
∂gflh(wt, a

(Ts)
t)− ∂gflh(wt, g

∗)
)2

=

((
∇w̃flh(a

(Ts)
t w′t)−∇w̃flh(g∗w′t)

)>
w′t

)2

.

(79)

Using the smoothness assumption on flh we bound the above difference as follows

((
∇w̃flh(a

(Ts)
t w′t)−∇w̃flh(g∗w′t)

)>
w′t

)2

≤‖w′t‖2‖∇w̃flh(a
(Ts)
t w′t)−∇w̃flh(g∗w′t)‖2

(64)

≤ ζ‖w′t‖2‖a
(Ts)
t w′t − g∗w′t‖2

≤ζ‖w′t‖4(a
(Ts)
t − g∗)2

≤ζ‖wt‖4‖wt‖−4
S (a

(Ts)
t − g∗)2

(2)

≤ζµ−2(a
(Ts)
t − g∗)2,

(80)

where the last inequality is due to Assumption 1.

Combining (79) and (80) directly yields

(
∂gflh(wt, a

(Ts)
t)

)2

≤ 2−Tsζ|b(0)
t − a

(0)
t |/µ2, (81)

which proves the assertion.

B.3.4 Directional convergence

Lemma 6 (Directional convergence). Let all assumptions of Theorem 4 hold. Then, in each iteration t ∈ N+ of
Gdnp (Algorithm 1) with the following choice of stepsizes

st := s(wt, gt) = − ‖wt‖3S
Lgth(wt, gt)

, t = 1, . . . , Td (82)

where

h(wt, gt) :=Ez [ϕ′ (w̃t)]
(
u>wt

)
−Ez [ϕ′′(w̃t)]

(
u>wt

)2 6= 0. (83)

The norm of the gradient w.r.t. w of flh as in Eq. (68) converges at the following linear rate

‖wt‖2S‖∇wflh(wt, gt)‖2S−1 ≤ (1− µ

L
)2tΦ2g2

t (ρ(w0)− ρ∗) .

Proof. The key insight for this proof is a rather subtle connection between the gradient of the reparametrized

least squares objective (Eq. (12)) and the directional gradient of the learning halfspace problem (Eq. (68)):

∇wflh(w, g)
(77)
= gc1(w, g)Awu

= gc1(w, g)

(
u−

(
w>u

‖w‖2S

)
Sw

)
/‖w‖S

= g
c1(w, g)

u>w

(
u>wu− (w>u)2

‖w‖2S
Sw

)
/‖w‖S

= g
c1(w, g)‖w‖S

u>w
(Bwt + ρ(w)Sw) /‖w‖2S

(24)
= −g

(
c1(w, g)‖w‖S

2u>w

)
∇wρ(w).

(84)

Therefore, the directional gradients ∇wρ(w) and ∇wflh(w, g) align in the same direction for all w ∈ Rd \ {0}.
Based on this observation, we propose a stepsize schedule for Gdnp such that we can exploit the convergence
result established for least squares in Theorem 1. The iterates {wt}t∈N+ of Gdnp on flh can be written as

wt+1 = wt − st∇wflh(wt, g)

(84)
= wt + st

(
gtc1(wt, gt)‖wt‖S

2u>wt

)
∇wρ(wt).

(85)

The stepsize choice of Eq.(82) guarantees that

st

(
gtc1(wt, gt)‖wt‖S

2u>wt

)
= − ‖wt‖4S

(2L(w>t u)2)

(25)
= −ηt.

Thus, Eq. (85) can be rewritten as

wt+1 = wt − ηt∇wρ(wt),

which exactly matches the Gd iterate sequence of Eq. (13) on ρ(w). At this point, we can invoke the result of
Theorem 1 to establish the following convergence rate:

‖wt‖2S‖∇wflh(wt, gt)‖2S−1

(84)
= ‖wt‖2Sc21(wt, gt)g

2
t ‖∇wρ(wt)‖2S−1/

(
2(u>wt)/‖wt‖S

)2
(3)

≤Φ2‖wt‖2Sg2
t ‖∇wρ(wt)‖2S−1/

(
2(u>wt)/‖wt‖S

)2
≤Φ2‖wt‖2Sg2

t ‖∇wρ(wt)‖2S−1/|4ρ(wt)|
(15)

≤ Φ2g2
t (ρ(wt)− ρ∗)

(14)

≤ (1− µ/L)2tΦ2g2
t (ρ(w0)− ρ∗) .

(86)

B.3.5 Combined convergence guarantee

Using Proposition 4 and combining the results obtained for optimizing the directional and scalar components, we
finally obtain the following convergence guarantee:

‖∇w̃flh(w̃Td
)‖2S−1

(72)
= ‖wTd

‖2S‖∇wflh(wTd
, gTd

)‖2S−1/g2
Td

+ (∂gflh(wTd
, gTd

))
2

(86)

≤ (1− µ/L)2TdΦ2 (ρ(w0)− ρ∗)

+ (∂gflh(wTd
, gTd

))
2

(81)

≤ (1− µ/L)2TdΦ2 (ρ(w0)− ρ∗)

+ 2−Tsζ|b(0)
Td
− a(0)

Td
|/µ2.

Exponential convergence rates for Batch Normalization

Algorithm 3 Bisection

1: Input: Ts, a
(0)
t , b

(0)
t , f

2: Choose a
(0)
t and b

(0)
t such that ∂gf(a

(0)
t ,wt) · ∂gf(b

(0)
t ,wt) > 0.

3: for m = 0, . . . , Ts do
4: c = (a(m) + b(m))/2

5: if ∂gf(c,wt) · ∂gf(a(m),wt) > 0 then

6: a(m+1) ← c
7: else
8: b(m+1) ← c
9: end if

10: end for
11: g ← a(Ts)

12: return g

B.3.6 A word on Weight Normalization

The improved convergence rate for Batch Normalization (Theorem 4) relies heavily on the fact that normalizing
and backpropagating through the variance term resembles splitting the optimization task into a length- and
directional component. As mentioned in the introduction, this feature is also present in Weight Normalization and
it is thus an obvious question, whether Wn can achieve a similar convergence rate. From a theoretical perspective,
we were not able to prove this which is essentially due to the subtle difference in how the normalization is done:
While Bn normalizes the parameters to live on the S-sphere, Wn brings all parameters to the unit sphere.

The fast directional convergence rate of Bn on Learning Halfspaces is essentially inherited from the fast convergence
of Gradient Descent (with adaptive stepsize) on the Rayleight Quotient. This can be seen in the proof of Lemma
6 where we specifically use the fact that ∇wfLH and ∇wρ align in the same direction. To prove this fact we
need two ingredients (i) Stein’s Lemma which gives us the expression of ∇w̃fLH as in Eq. (75) and (ii) the
specific reparametrization of Bn as in Eq. (9) which lets us express the directional part of this gradient as
∇w̃fLH = gAw∇w̃flh(w̃). As we shall see, the second part is very specific to the reparametrization done by
Bn, which gives certain properties of Aw = I/‖w‖S − Sww>/‖w‖3S that then yield Eq. (77) which is simply a
scaled version of the Rayleigh Quotient gradient (see Eq. (24)). This fact arises particularly because (i) Aw is
orthogonal to Sw (see Eq. (70)) and (ii) Aw and ∇wρ both involve division by the S-norm. Both properties are
not given for the version of Aw,WN = I/‖w‖2 −ww>/‖w‖32 that would arise when using Weight Normalization
so the proof strategy breaks because we no longer match the gradients ∇wfLH and ∇wρ .

That said, we observe similar empirical convergence behaviour in terms of suboptimality for Bn and Wn (without
any adaptive stepsizes, see Section 4.4) but as can be seen on the right of Figure 7 the path that the two methods
take can be very different. We thus leave it as an interesting open question if other settings and proof strategies
can be found where fast rates for Wn are provable.

C NEURAL NETWORKS

Recall the training objective of the one layer MLP presented in Section 5:

min
W̃,Θ

(
fnn(W̃,Θ) := Ey,x

[
`
(
−yF (x,W̃,Θ)

)])
, (Revisited 20)

where

F (z,W̃,Θ)) :=

m∑
i=1

θ(i)ϕ(z>w̃(i)).

Figure 4 illustrates the considered architecture in this paper.

Since the activation function is assumed to be an odd function (tanh), this choice allows us to equivalently rewrite
the training objective as

min
W̃,Θ

(
fnn(W̃,Θ) = Ez

[
`(F

(
z,W̃,Θ)

)])
. (87)

z1

z2

...

zd

ϕ1

ϕ2

ϕm

...

F

w̃(1)

w̃(m)

θ(1)

θ(2)

θ(m)

Hidden

layer

Input

layer

Output

layer

Figure 4: Neural network architecture considered in this paper.

By means of Assumption 2 and Stein’s lemma (Eq. (60)) we can simplify the gradient w.r.t w̃i as follows

∇w̃(i)fnn(W̃,Θ)/θ(i) = Ez

[
`(1)(F (z,W̃,Θ))ϕ(1)(z>w̃(i))z

]
(88)

= α(i)u + β(i)Sw̃(i) +

m∑
j=1

γ(i,j)Sw̃(j), (89)

where the scalars α(i), β(i) and γ(i,j) are defined as

β(i) := Ez

[
`(1)(F (z,W̃,Θ))ϕ(2)(z>w̃(i))

]
(90)

γ(i,j) := θ(j)Ez

[
`(2)(F (z,W̃,Θ))ϕ(1)(z>w̃(i))ϕ(1)(z>w̃(j))

]
(91)

α(i) := Ez

[
`(1)(F (z,W̃,Θ))ϕ(1)(z>w̃(i))

]
−

m∑
j=1

γ(i,j)(u>w̃(j)), (92)

where l(i)(·) ∈ R and ϕ(i)(·) ∈ R represent the i-th derivative of l(·) and ϕ(·) with respect to their input (·).

C.1 Characterization of the objective

Interestingly, the normality assumption induces a particular global property on fnn(W̃). In fact, all critical
weights w̃i align along one single line in Rd, which only depends on incoming information into the hidden layer.
This result is formalized in the next lemma.

Lemma 2. Suppose Assumptions 1 and 2 hold and let ŵ(i) be a critical point of fnn(W̃) with respect to hidden
unit i and for a fixed Θ 6= 0. Then, there exits a scalar ĉ(i) ∈ R such that

ŵ(i) = ĉ(i)S−1u, ∀i = 1, . . . ,m. (21)

Proof. Recall the gradient of fnn as given in Eq. (88). Computing a first order critical point requires setting the
derivatives of all units to zero which amounts to solving the following system of non-linear equations:

(1) α(1)u + β(1)Sŵ(1) +

m∑
j=1

γ(1,j)Sŵ(j) = 0

(2) α(2)u + β(2)Sŵ(2) +

m∑
j=1

γ(2,j)Sŵ(j) = 0

...

(m) α(m)u + β(m)Sŵ(m) +

m∑
j=1

γ(m,j)Sŵ(j) = 0,

(93)

Exponential convergence rates for Batch Normalization

where each row (i) represents a system of d equations.

Matrix formulation of system of equations Let us rewrite (93) in matrix form. Towards this end, we define

U = [u,u, . . . ,u] ∈ Rd×m,

ŵ = [ŵ(1), ŵ(2), . . . , ŵ(m)] ∈ Rd×m

as well as

A = diag
(
α(1), α(2), . . . , α(m)

)
∈ Rm×m,

B = diag
(
β(1), β(2), . . . , β(m)

)
∈ Rm×m

and

Γ =


γ(1,1) γ(1,2) . . . γ(1,m)

γ(2,1) γ(2,2) . . . γ(2,m)

. . .

γ(m,1) γ(m,2) . . . γ(m,m).

 .
Note that Γ = Γ> since γ(i,j) = γ(j,i),∀i, j.

Solving the system of equations Using the notation introduced above, we can write (93) as follows

UA + SŴB + SŴΓ = 0

⇔SŴ(B + Γ) = −UA

⇔Ŵ = −S−1U A(B + Γ)†︸ ︷︷ ︸
:=D

,
(94)

where (B + Γ)† is the pseudo-inverse of (B + Γ).

As a result
[ŵ(1), ŵ(2), . . . , ŵ(m)]

=− [S−1u,S−1u, . . . ,S−1u][d1,d2, . . . ,dm]

and hence the critical points of the objective are of the following type

ŵ(i) = −S−1Ud1 = −

(
m∑
k=1

d
(k)
i

)
S−1u. (95)

C.2 Possible implications for deep neural networks

From Eq. (21) in the Lemma 2 we can conclude that the optimal direction of any ŵ(i) is independent of the
corresponding output weight θ(i), which only affects ŵ(i) through the scaling parameter ĉ(i). This is a very
appealing property: Take a multilayer network and assume (for the moment) that all layer inputs are Gaussian.
Then, Lemma 2 still holds for any given hidden layer and gives rise to a decoupling of the optimal direction of
this layer with all downstream weights, which in turn simplifies the curvature structure of the network since many
Hessian blocks become zero.

However, classical local optimizers such as Gd optimize both, direction and scaling, at the same time and
are therefore blind to the above global property. It is thus very natural that performing optimization in the
reparametrized weight space can in fact benefit from splitting the subtasks of optimizing scaling and direction in
two parts, since updates in the latter are no longer sensitive to changes in the downstream part of the network.
In the next section, we theoretically prove that such a decoupling accelerates optimization of weights of each
individual unit in the presence of Gaussian inputs. Of course, the normality assumption is very strong but
remarkably the experimental results of Section 5.3 suggest the validity of this result beyond the Gaussian design
setting and thus motivate future research in this direction.

C.3 Convergence analysis

Here, we prove the convergence result restated below.

Theorem 3. [Convergence of Gdnp on MLP] Suppose Assumptions 1– 4 hold. We consider optimizing the
weights (w(i), g(i)) of unit i, assuming that all directions {w(j)}j<i are critical points of fnn and wk = 0 for
k > i. Then, Gdnp with step-size policy s(i) as in (100) and stopping criterion h(i) as in (101) yields a linear
convergence rate on f (i) in the sense that

‖∇w̃(i)f(w̃
(i)
t)‖2S−1 ≤(1− µ/L)2tC (ρ(w0)− ρ∗)

+ 2−T
(i)
s ζ|b(0)

t − a
(0)
t |/µ2,

(22)

where the constant C > 0 is defined in Eq. (104).

Proof. According to the result of Lemma 2, all critical points of fnn are aligned along the same direction as the
solution of normalized least-squares. This property is similar to the objective of learning halfspaces (with Gaussian
inputs) and the proof technique below therefore follows similar steps to the convergence proof of Theorem 4.

Gradient in the original parameterization Recall the gradient of fnn is defined as

∇w̃(i)f (i)/θ(i) = α(i)u + β(i)Sw̃(i) +

m∑
j=1

γ(i,j)Sw̃(j). (88 revisited)

Gradient in the normalized parameterization: Let us now consider the gradient of fnn w.r.t the normalized
weights, which relates to the gradient in the original parameterization in the following way

∇wf(w, g) = gAw∇w̃f(w̃),

∂gf(w, g) =
w>∇w̃f(w̃)

‖w‖S
(69 revisited)

Replacing the expression given in Eq. (88) into the above formula yields

∇w(i)fnn/(g
(i)θ(i)) = α(i)Aw(i)u + β(i)Aw(i)Sw(i)

+

m∑
j=1

γ(i,j)Aw(i)Sw(j),
(96)

where

Aw(i) := I/‖w(i)‖S − Sw(i) ⊗w(i)/‖w(i)‖3S. (97)

Note that the constants α(i), β(i) and γ(i,j) all depend on the parameters w(i) and θ(j) of the respective units i
and j. The orthogonality of Sw(i) to Aw(i) (see Eq. (71)) allows us to simplify things further:

∇w(i)fnn/(g
(i)θ(i)) = α(i)Aw(i)u +

∑
j 6=i

γ(i,j)Aw(i)Sw(j) (98)

We now use the initialization of weights {w(k) = ckS
−1u}k<i and {w(j) = 0}j>i into the above expression to get

∇w(i)fnn = θ(i)g(i)ξtAw(i)u, ξ = α(i) +
∑
j<i

γ(i,j)cj

= θ(i)g(i)ξ
(
‖w(i)‖S/(2u>w(i))

)
∇ρ(w(i)) (99)

where ∇ρ(w) is the gradient of the normalized ordinary least squares problem (Eq. (12)), i.e.

−∇ρ(w)/2 =

(
uu>w +

(u>w)2

‖w‖2S
Sw

)
/‖w‖2S.

Exponential convergence rates for Batch Normalization

We conclude that the global characterization property described in Eq. (21) transfers to the gradient since the
above gradient aligns with the gradient of ρ(w).

Choice of stepsize and stopping criterion We follow the same approach used in the proof for learning

halfspaces and choose a stepsize to ensure that the gradient steps on f
(i)
nn match the gradient iterates on ρ, i.e.

w
(i)
t+1 = w

(i)
t − s

(i)
t θ(i)g

(i)
t ξt

(
‖w(i)

t ‖S/(2u>w(i))
)
∇ρ(w

(i)
t)

= w
(i)
t −

‖wt‖2S
2L|ρ(w

(i)
t)|
∇ρ(w

(i)
t),

which leads to the following choice of stepsize

s
(i)
t = ‖w(i)

t ‖3S/(Lθ(i)g
(i)
t ξtu

>w
(i)
t)

ξt = α
(i)
t +

∑
j<i

γ
(i,j)
t cj .

(100)

If ξt = 0, then the gradient is zero. Therefore, we choose the stopping criterion as follows

h
(i)
t = ξt = α

(i)
t +

∑
j<i

γ
(i,j)
t cj . (101)

Gradient norm decomposition Proposition 4 relates the S−1-norm of the gradient in the original space to
the normalized space as follows

‖∇w̃(i)f(w̃
(i)
t)‖2S−1 = ‖w(i)

t ‖2S‖∇w(i)f(w
(i)
t , g(i))‖2S−1/(g

(i)
t)2

+
(
∂g(i)f(w

(i)
t , g

(i)
t)
)2

. (72 revisited)

In the following, we will establish convergence individually in terms of g and w and then use the above result to
get a global result.

Convergence in scalar g(i) Since the smoothness property defined in Assumption 4 also holds for f
(i)
nn , we can

directly invoke the result of Lemma 5 to establish a convergence rate for g:(
∂g(i)f

(i)(w
(i)
t , g

(i)
Ts

)
)2

≤ 2−T
(i)
s ζ|b(0)

t − a
(0)
t |/µ2 (81 revisited)

Directional convergence By the choice of stepsize in Eq. (100), the gradient trajectory on fnn reduces to the
gradient trajectory on ρ(w). Hence, we can establish a linear convergence in w(i) by a simple modification of
Eq. (86):

‖w(i)
t ‖2S‖∇wf

(i)(w
(i)
t , g

(i)
t)‖2S−1 ≤ (1− µ/L)2tξ2

t g
2
t (ρ(w0)− ρ(w∗)) . (102)

The assumption 3 on loss with the choice of activation function as tanh allows us to bound the scalar ξ2
t :

ξ2
t ≤ 2Φ2 + 2i

∑
j<i

(θ(j)cj)
2. (103)

Combined convergence bound Combining the above results concludes the proof in the following way

‖∇w̃(i)f(w̃
(i)
t)‖2S−1 ≤(1− µ/L)2tC (ρ(w0)− ρ∗)

+ 2−T
(i)
s ζ|b(0)

t − a
(0)
t |/µ2,

where

C = 2Φ2 + 2i
∑
j<i

(θ(j)cj)
2 > 0. (104)

D EXPERIMENTAL DETAILS

D.1 Learning Halfspaces

Setting We consider empirical risk minimization (ERM) as a surrogate for (16) in the binary classification
setting and make two different choices for ϕ(·):

softplus(w>z) := Ez

[
log(1 + exp(w̃>z))

]
,

sigmoid(w>z) := Ez

[
1/(1 + exp(−w̃>z))

]
The first resembles classical convex logistic regression when yi ∈ {−1, 1}. The second is a commonly used
non-convex, continuous approximation of the zero-one loss in learning halfspaces (Zhang et al., 2015)

As datasets we use the common realworld dataset a9a (n = 32′561, d = 123) as well a synthetic data set drawn
from a multivariate gaussian distribution such that z ∼ N (u,S) (n = 1′000, d = 50).

Methods We compare the convergence behavior of Gd and Accelerated Gradient Descent (Agd) (Nesterov,
2013) to Batch Normalization plus two versions of Gd as well as Weight Normalization. Namely, we assess

• Gdnp as stated in Algorithm 1 but with the Bisection search replaced by multiple Gradient Descent steps
on g (10 per outer iteration)

• Batch Norm plus standard Gd which simultaneously updates w and g with one gradient step on each
parameter.

• Weight Normalization plus standard Gd as above. (Salimans and Kingma, 2016)

All methods use full batch sizes. Gdnp uses stepsizes according to the policy proposed in Theorem 4. On
the softplus, Gd, Agd, Wn and Bn are run with their own, constant, grid-searched stepsizes. Weight- and
Batch Norm use a different stepsize for direction and scaling but only take one gradient step in each parameter
per iteration. Since the sigmoid setting is non-convex and many different local minima and saddle points may
be approched by the different algorithms in different runs, there exist no meaningful performance measure to
gridsearch the stepsizes. We thus pick the inverse of the gradient Lipschitz constant ζ for all methods and all
parameters, except Gdnp. To estimate ζ, we compute ζsup := ‖Z>Z‖2/10 ≥

∑
i ϕ(w>zi)

(2)‖Z>Z‖2/n where
Z := [z1, . . . , zn]> ∈ Rn×d and ϕ(·)(2) ≤ 0.1. After comparison with the largest eigenvalue of the Hessian at a
couple of thousand different parameters w̃ we found the bound to be pretty tight. Note that for Gdnp, we use
L := ‖Z>Z‖2 which can easily be computed as a pre-processing step and is – contrary to ζ – independent of
w. Agd computes the momentum parameter βt = (t− 2)/(t+ 1) in the convex case and uses a (grid-searched)
constant βt = β ∈ [0, 1] in the non-convex setting. We initialize randomly, i.e. we draw w̃0 ∼ N (0, 1), set
w0 := w̃0 and choose g0 sucht that w̃0 = gw0/‖w0‖S.

Results The Gaussian design experiments clearly confirm Theorem 4 in the sense that the loss in the convex-, as
well as the gradient norm in the non-convex case decrease at a linear rate. The results on a9a show that Gdnp
can accelerate optimization even when the normality assumption does not hold and in a setting where no covariate
shift is present. This motivates future research of non-linear reparametrizations even in convex optimization.

Regarding Bn and Wn we found a clear trade-off between making fast progress in the beginning and optimizing
the last couple of digits. In the above results of Figure 2 and 5 we report runs with stepsizes that were optimized
for the latter case but we here note that early progress can easily be achieved in normalized parametrizations
(which the linear a9a softplus plot actually confirms) e.g. by putting a higher learning rate on g. In the long run
similar performance to that of Gd sets in, which suggests that the length-direction decoupling does not fully do
the trick. The superior performance of Gdnp points out that either an increased number of steps in the scaling
factor g or an adaptive stepsize scheme such as the one given in Eq. (25) (or both) may significantly increase the
performance of Batch Normalized Gradient Descent Bn.

It is thus an exciting open question whether such simple modifications to Gd can also speed up the training of
Batch Normalized neural networks. Finally, since Gdnp performs similar to Agd in the non-gaussian setting, it

Exponential convergence rates for Batch Normalization

gaussian softplus a9a softplus

gaussian sigmoid a9a sigmoid

Figure 5: The plots are the same as in Figure 2 but show results in linear instead of log terms: Results of an average
run (solid line) in terms of log suboptimality (softplus) and log gradient norm (sigmoid) over iterations as well as 90%
confidence intervals of 10 runs with random initialization.

gaussian sigmoid a9a sigmoid

Figure 6: Addition to Figure 2 and 5: Suboptimality on the non-convex sigmoid problems in linear terms.

is a logical next step to study how accelerated gradient methods like Agd or Heavy Ball perform in normalized
coordinates.

As a side note, Figure 7 shows how surprisingly different the paths that Gradient Descent takes before and after
normalization can be.

Figure 7: Normalization can lead to suprisingly different paths: Level sets and path (top) as well as sub-optimality (bottom)
of Gd, Bn and Wn (with constant step size and fixed number of iterations) on two instances of learning halfspaces with
Gaussian data (n = 5000, d = 2). Left: convex logistic regression, right: non-convex sigmoidal regression.

D.2 Neural networks

Setting and methods We test the validity of Theorem 3 and Lemma 2 outside the Gaussian setting and a
normalized and an unnormalized feedforward networks on the CIFAR10 image classification task. This dataset
consists of 60000 32x32 images in 10 classes, with 6000 images per class (Krizhevsky and Hinton, 2009). The
networks have six hidden layers with 50 hidden units in each of them. Each hidden unit has a tanh activation
function, except for the very last layer which is linear. These scores are fed into a cross entropy loss layer
which combines softmax and negative log likelihood loss. The experiments are implemented using the PyTorch
framework (Paszke et al., 2017).

The first network is trained by standard Gd and the second by Gd in normalized coordinates (i.e. Bn) with
the same fixed stepsize on and w, but we increase the learning rate on g by a factor of 10 which accelerates
training significantly. The second network thus resembles performing standard Gd in a network where all hidden
layers are Batch Normalized. We measure the cross-dependency of the central with all other layers in terms of

the Frobenius norm of the second partial derivatives ∂2fnn
∂W4∂Wi

. This quantity signals how the gradients of layer 4
change when we alter the direction of any other layer. From an optimization perspective, this is a sound measure
for the cross-dependencies: If it is close to zero (high), that means that a change in layer i induces no (a large)
change in layer 4. Compared to gradient calculations, computing second derivatives is rather expensive O(nd2)
(where d = 66700), which is why we evaluate this measure every only 250 iterations.

Results Figure 3 and 8 confirm that the directional gradients of the central layer are affected far more by the
upstream than by the downstream layers to a surprisingly large extent. Interestingly, this holds even before
reaching a critical point. The cross-dependencies are generally decaying for the Batch Normalized network (Bn)
while they remain elevated in the un-normalized network (Gd), which suggest that using Batch Normalization
layers indeed simplifies the networks curvature structure in w such that the length-direction decoupling allows
Gradient Descent to exploit simpler trajectories in these normalized coordinates for faster convergence. Of course,
we cannot untangle this effect fully from the covariate shift reduction that was mentioned in the introduction.

Exponential convergence rates for Batch Normalization

Figure 8: The plots are the same as in Figure 3 but show results in log instead of linear terms: (i) Loss, (ii) gradient norm
and dependencies between central- and all other layers for BN (iii) and GD (iv) on a 6 hidden layer network with 50 units
(each) on the CIFAR10 dataset.

Yet, the fact that the (de-)coupling increases in the distance to the middle layer (note how earlier (later) layers
are more (less) important for the W4) emphasizes the relevance of this analysis particularly for deep neural
network structures, where downstream dependencies might vanish completely with depth. This does not only
make gradient based training easier but also suggests the possibility of using partial second order information,
such as diagonal Hessian approximations (e.g. proposed in (Martens et al., 2012)).

