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Abstract

Normalization techniques such as Batch Nor-
malization have been applied successfully for
training deep neural networks. Yet, despite
its apparent empirical benefits, the reasons
behind the success of Batch Normalization
are mostly hypothetical. We here aim to pro-
vide a more thorough theoretical understand-
ing from a classical optimization perspective.
Our main contribution towards this goal is
the identification of various problem instances
in the realm of machine learning where Batch
Normalization can provably accelerate opti-
mization. We argue that this acceleration
is due to the fact that Batch Normalization
splits the optimization task into optimizing
length and direction of the parameters sepa-
rately. This allows gradient-based methods to
leverage a favourable global structure in the
loss landscape that we prove to exist in Learn-
ing Halfspace problems and neural network
training with Gaussian inputs. We thereby
turn Batch Normalization from an effective
practical heuristic into a provably converg-
ing algorithm for these settings. Furthermore,
we substantiate our analysis with empirical
evidence that suggests the validity of our the-
oretical results in a broader context.

1 INTRODUCTION

One of the most important recent innovations for opti-
mizing deep neural networks is Batch Normalization
(BN) (Toffe and Szegedyl, |2015). This technique has
been proven to successfully stabilize and accelerate
training of deep neural networks and is thus by now
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standard in many state-of-the art architectures such
as ResNets (He et al., |2016)) and the latest Inception
Nets (Szegedy et al., 2017)). The success of Batch Nor-
malization has promoted its key idea that normalizing
the inner layers of a neural network stabilizes train-
ing which recently led to the development of many
such normalization methods such as (Arpit et al.l [2016}
Klambauer et al., [2017; [Salimans and Kingmal 2016)
and (Ba et al.l |2016)) to name just a few.

Yet, despite the ever more important role of Batch
Normalization for training deep neural networks, the
Machine Learning community is mostly relying on em-
pirical evidence and thus lacking a thorough theoretical
understanding that can explain such success. Indeed
— to the best of our knowledge — there exists no theo-
retical result which provably shows faster convergence
rates for this technique on any problem instance. So
far, there only exists competing hypotheses that we
briefly summarize below |

1.1 Related work

Internal Covariate Shift The most widespread
idea is that Batch Normalization accelerates training by
reducing the so-called internal covariate shift, defined
as the change in the distribution of layer inputs while
the conditional distribution of outputs is unchanged.
This change can be significant especially for deep neu-
ral networks where the successive composition of layers
drives the activation distribution away from the ini-
tial input distribution. [loffe and Szegedy| (2015) argue
that Batch Normalization reduces the internal covari-
ate shift by employing a normalization technique that
enforces the input distribution of each activation layer
to be whitened - i.e. enforced to have zero means and
unit variances - and decorrelated . Yet, as pointed out
by [Lipton and Steinhardt| (2018), the covariate shift
phenomenon itself is not rigorously shown to be the
reason behind the performance of Batch Normalization.
Furthermore, a recent empirical study published by
(Santurkar et al. 2018) provides strong evidence sup-
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porting the hypothesis that the performance gain of
Batch Normilization is not explained by the reduction
of internal covariate shift.

Smoothing of objective function Recently, [San-
turkar et al.|(2018) argue that under certain assump-
tions a normalization layer simplifies optimization by
smoothing the loss landscape of the optimization prob-
lem of the preceding layer. Yet, we note that this effect
may - at best - only improve the constant factor of
the convergence rate of Gradient Descent and not the
rate itself (e.g. from sub-linear to linear). Furthermore,
the analysis treats only the largest eigenvalue and thus
one direction in the landscape (at any given point) and
keeps the (usually trainable) BN parameters fixed to
zero-mean and unit variance. For a thorough conclu-
sion about the overall landscape, a look at the entire
eigenspectrum (including negative and zero eigenval-
ues) would be needed. Yet, this is particularly hard
to do as soon as one allows for learnable mean and
variance parameters since the effect of their interplay
on the distribution of eigenvalues is highly non-trivial.

Length-direction decoupling Finally, a different
perspective was brought up by another normalization
technique termed Weight Normalization (WN) (Sali-
mans and Kingmal 2016)). This technique performs a
very simple normalization that is independent of any
data statistics with the goal of decoupling the length of
the weight vector from its direction. The optimization
of the training objective is then performed by training
the two parts separately. As discussed in Section 2] BN
and WN differ in how the weights are normalized but
share the above mentioned decoupling effect. Interest-
ingly, weight normalization has been shown empirically
to benefit from similar acceleration properties as Batch
Normalization (Gitman and Ginsburg, |2017}; [Salimans
and Kingmal, 2016]). This raises the obvious question
whether the empirical success of training with Batch
Normalization can (at least partially) be attributed to
its length-direction decoupling aspect.

1.2 Contribution and organization

We contribute to a better theoretical understanding
of Batch Normalization by analyzing it from an opti-
mization perspective. In this regard, we particularly
address the following question:

Can we find a setting in which Batch Normalization
provably accelerates optimization with Gradient
Descent and does the length-direction decoupling play a
role in this phenomenon?

We answer both questions affirmatively. In particular,

we show that the specific variance transformation of
BN decouples the length and directional components
of the weight vectors in such a way that allows local
search methods to exploit certain global properties of
the optimization landscape (present in the directional
component of the optimal weight vector). Using this
fact and endowing the optimization method with an
adaptive stepsize scheme, we obtain an exponential (or
as more commonly termed linear) convergence rate for
Batch Norm Gradient Descent on the (possibly) non-
convex problem of Learning Halfspaces with Gaussian
inputs (Section , which is a prominent problem in
machine learning |[Erdogdu et al.| (2016). We thereby
turn BN from an effective practical heuristic into a prov-
ably converging algorithm. Additionally we show that
the length-direction decoupling can be considered as a
non-linear reparametrization of the weight space, which
may be beneficial for even simple convex optimization
tasks such as logistic regressions. Interestingly, non-
linear weightspace transformations have received little
to no attention within the optimization community (see
(Mikhalevich et al., [1988]) for an exception).

Finally, in Section [f] we analyze the effect of BN for
training a multilayer neural network (MLP) and prove
— again under a similar Gaussianity assumption — that
BN acts in such a way that the cross dependencies be-
tween layers are reduced and thus the curvature struc-
ture of the network is simplified. Again, this is due
to a certain global property in the directional part of
the optimization landscape, which BN can exploit via
the length-direction decoupling. As a result, gradient-
based optimization in reparametrized coordinates (and
with an adaptive stepsize policy) can enjoy a linear
convergence rate on each individual unit. We substan-
tiate both findings with experimental results on real
world datasets that confirm the validity of our analysis
outside the setting of our theoretical assumptions that
cannot be certified to always hold in practice.

2 BACKGROUND

2.1 Assumptions on data distribution

Suppose that x € R? is a random input vector and y €
{£1} is the corresponding output variable. Throughout
this paper we recurrently use the following statistics

u=E[-yx], S:=E [xx] (1)

and make the following (weak) assumption.

Assumption 1. [Weak assumption on data distribu-
tion] We assume that E [x] = 0. We further assume
that the spectrum of the matrix S is bounded as

0 <t :=Amin (S), L := Apax (S) < oo. (2)



As a result, S is the symmetric positive definite covari-
ance matriz of x.

The part of our analysis presented in Section [f] and
relies on a stronger assumption on the data distribu-
tion. In this regard we consider the combined random
variable

Z = —YX, (3)
whose mean vector and covariance matrix are u and S
as defined above in Eq. .

Assumption 2. [Normality assumption] We assume
that z is a multivariate normal random variable dis-

tributed with mean E [z] = E[—yx] = u and second-
moment E [zz"] — E[z]E[z]" = E[xx"] —uu' =
S—uu'.

In the absence of further knowledge, assuming Gaussian
data is plausible from an information-theoretic point
of view since the Gaussian distribution maximizes the
entropy over the set of all absolutely continuous distri-
butions with fixed first and second moment (Dowson
and Wragg, [1973)). Thus, many recent studies on neural
networks make this assumption on x (see e.g. (Brutzkus
and Globerson, 2017} Du and Lee, 2018)). Here we
assume Gaussianity on yx instead which is even less
restrictive in some casedl

2.2 Batch normalization as a
reparameterization

In neural networks a BN layer normalizes the input
of each unit of the following layer. This is done on
the basis of data statistics in a training batch, but for
the sake of analyzablility we will work directly with
population statistics. In particular, the output f of a
specific unit, which projects an input x to its weight
vector w and applies a sufficiently smooth activation
function ¢ : R — R as follows

f(w) = Ex [¢ (x"w)] (4)

is normalized on the pre-activation level. That is, the
input-output mapping of this unit becomes

fn(W,9,7) =Ex [¢ (BN(xTw))]. (5)

As stated (in finite-sum terms) in Algorithm 1 of
(Toffe and Szegedy, [2015) the normalization operation
amounts to computing

x'w — Ex[xw]

BN(x'w) =g + 7, (6)

vary[x | w|1/2

'For example, suppose that conditional distribution
P(x|y = 1) is gaussian with mean p for positive labels
and —pu for negative labels (mixture of gaussians). If the
covariance matrix of these marginal distributions are the
same, z = yx is Gaussian while x is not.

where ¢ € R and v € R are (trainable) mean and
variance adjustment parameters. In the following, we
assume that x is zero mean (Assumption [1) and omit
~yE| Then the variance can be written as follows

varg[x' w] = Ex [(x"w)?] = Ex [(wx)(x w)]

7

= WTEx [XXT} w=wSw @
and replacing this expression into the batch normalized
output of Eq. yields

T

X w
fen(w,g) = Ex @(QW

)| - (8)

In order to keep concise notations, we will often use the
induced norm of the positive definite matrix S defined
as ||wl|s = (WTSW)1/2. Comparing Eq. and
it becomes apparent that BN can be considered as a
reparameterization of the weight space. We thus define

A%
Wi=g— 9
9wl ©)

and note that w accounts for the direction and g for
the length of w. As a result, the batch normalized out-
put can then be written as fzn(w,g) = Ex [p(xTW)] .
Note that Weight Normalization (WN) is another in-
stance of the above reparametrization, where the co-
variance matrix S is replaced by the identity matrix I
(Salimans and Kingmay, [2016]). In both cases, the objec-
tive becomes invariant to linear scaling of w. From a
geometry perspective, the directional part of WN can
be understood as performing optimization on the unit
sphere while BN operates on the S-sphere (ellipsoid)
(Cho and Lee, 2017)). Note that one can compute the
variance term ([7) in a matrix-free manner, i.e. S never
needs to be computed explicitly for BN.

Of course, this type of reparametrization is not exclu-
sive to applications in neural networks. In the follow-
ing two sections we first show how reparametrizing the
weight space of linear models can be advantageous from
a classical optimization point of view. In Section [5| we
extend this analysis to training Batch Normalized neu-
ral networks with adaptive-stepsize Gradient Descent
and show that the length-direction split induces an
interesting decoupling effect of the individual network
layers which simplifies the curvature structure.

3 ORDINARY LEAST SQUARES

As a preparation for subsequent analyses, we start
with the simple convex quadratic objective encountered

?In the (non-compositional) models of Section [3] and
fulfilling the assumption that x is zero-mean is as simple
as centering the dataset. Yet, we also omit centering a
neurons input as well as learning « for the neural network
analysis in Section
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when minimizing an ordinary least squares problem

s st By [ 7))

(am) (10)
< min (2uT\7V + V~VTSV~V) .

weRd

One can think of this as a linear neural network with

just one neuron and a quadratic loss. Thus, applying

BN resembles reparametrizing w according to Eq. @[)

and the objective turns into the non-convex problem

llTW

. . 2
el g st ) =20 7))
Despite the non-convexity of this new objective, we
will prove that Gradient Descent (GD) enjoys a lin-
ear convergence rate. Interestingly, our analysis estab-
lishes a link between fq,s in reparametrized coordinates
(Eq. (1)) and the well-studied task of minimizing (gen-
eralized) Rayleigh quotients as it is commonly encoun-
tered in eigenvalue problems (Argentati et al., [2017)).

3.1 Convergence analysis

To simplify the analysis, note that, for a given w,
the objective of Eq. is convex w.r.t. the scalar
g and thus the optimal value ¢, can be found by
setting ag—;“ = 0, which gives g}, :== — (u’'w) /||w]|s.
Replacing this closed-form solution into Eq. yields
the following optimization problem

) w uu'w
werﬂr&l;{l{o} <p(w) T wSw ) ’ (12)
which — as discussed in Appendix [A72] - is a special
case of minimizing the generalized Rayleigh quotient
for which an extensive literature exists (Knyazev, [1998;
D’yakonov and McCormick, [1995)). Here, we particu-
larly consider solving with GD, which applies the
following iterative updates to the parameters

((u"wy)u+ p(wy)Swy)
w, Swy )

Wiyl 1= Wy + 21 (13)
Based upon existing results, the next theorem estab-
lishes a linear convergence rate for the above iterates
to the minimizer w* in the normalized coordinates.

Theorem 1. [Convergence rate on least squares] Sup-
pose that the (weak) Assumption[]] on the data distri-
bution holds. Consider the GD iterates {w;}ien+ given
in Eq. with the stepsize n; = w, Swy/(2L|p(w;)|)
and starting from p(wq) # 0. Then,

Ap < (1 - %>2t Apo, (14)

where Ap; = p(w;) — p(w*). Furthermore, the S™1-
norm of the gradient Vp(wy) relates to the suboptimal-
ity as

[wellSIVo(we)llg-1/14p(we)|l = Ape. (15)

This convergence rate is of the same order as the rate of
standard GD on the original objective fo.s of Eq. (10))
(Nesterov}, 2013)). Yet, it is interesting to see that the
non-convexity of the normalized objective does not slow
gradient-based optimization down. In the following, we
will repeatedly invoke this result to analyze more com-
plex objectives for which GD only achieves a sublinear
convergence rate in the original coordinate space but is
provably accelerated after using Batch Normalization.

4 LEARNING HALFSPACES

We now turn our attention to the problem of Learning
Halfspaces, which encompasses training the simplest
possible neural network: the Perceptron. This opti-
mization problem can be written as

min (fus(W) := By x [p(z" W)]) (16)

weRd
where z := —yx and ¢ : R — R7 is a loss function.
Common choices for ¢ include the zero-one, piece-wise

linear, logistic and sigmoidal loss. We here tailor our
analysis to the following choice of loss function.

Assumption 3. [Assumptions on loss function] We
assume that the loss function ¢ : R — R is infinitely dif-
ferentiable, i.e. o € C*(R,R), with a bounded deriva-
tive, i.e. 3® > 0 such that | (B)] < ®,V3 € R.

Furthermore, we need fiy to be sufficiently smooth.

Assumption 4. [Smoothness assumption] We as-
sume that the objective f : R* — R is (-smooth
if it is differentiable on R and its gradient is (-
Lipschitz. Furthermore, we assume that a solution
a* = argmin, ||V f(aw)||? exists that is bounded in
the sense that Yw € R%, —oco < a* < 00

Since globally optimizing is in general NP-hard
(Guruswami and Raghavendray, 2009), we instead fo-
cus on understanding the effect of the normalized pa-
rameterization when searching for a stationary point.
Towards this end we now assume that z is a multivari-
ate normal random variable (see Assumption [2| and
discussion there).

4.1 Global characterization of the objective

The learning halfspaces objective fi; — on Gaussian
inputs — has a remarkable property: all critical points
lie on the same line, independent of the choice of the
loss function ¢. We formalize this claim in the next
lemma.

3This is a rather technical but not so restrictive assump-
tion. For example, it always holds for the sigmoid loss
unless the classification error of w is already zero.



Lemma 1. Under Assumptions[1] and[3, all bounded
critical points w, of fiy have the general form

- -1
W, = g*S u,

where the scalar g. € R depends on w, and the choice
of the loss function .

Interestingly, the optimal direction of these critical
points spans the same line as the solution of a corre-
sponding least squares regression problem (see Eq.
in Appendix A). In the context of convex optimization
of generalized linear models, this fact was first pointed
out in 2012). Although the global optima
of the two objectives are aligned, classical optimization
methods - which perform updates based on local infor-
mation - are generally blind to such global properties
of the objective function. This is unfortunate since
Gradient Descent converges linearly in the quadratic
least-squares setting but only sublinearly on general
Learning Halfspace problems (Zhang et all, [2015]). To
accelerate the convergence of Gradient Descent,
|dogdu et al| (2016) thus proposed a two-step global
optimization procedure for solving generalized linear
models, which first involves finding the optimal di-
rection by optimizing a least squares regression as a
surrogate objective and secondly searching for a proper
scaling factor of that minimizer. Here, we show that
running GD in coordinates reparameterized as in Eq. @
makes this two-step procedure redundant. More specifi-
cally, splitting the optimization problem into searching
for the optimal direction and scaling separately, allows
even local optimization methods to exploit the property
of global minima alignment. Thus - without having to
solve a least squares problem in the first place - the
directional updates on the Learning Halfspace prob-
lem can mimic the least squares dynamics and thereby
inherit the linear convergence rate. Combined with a
fast (one dimensional) search for the optimal scaling
in each step the overall convergence stays linear.

As an illustration, Figure [I] shows the level sets as
well as the optimal direction of a least squares-, a
logistic- and a sigmoidal regression problem on the
same Gaussian dataset. Furthermore, it shows iterates
of GD in original coordinates and a sequential version
of GD in normalized coordinates that first optimizes
the direction and then the scaling of its parameters
(GDNPgeq). Both methods start at the same point and
run with an infinitesimally small stepsize. It can be
seen that, while GD takes completely different paths
towards the optimal points of each problem instance,
the dynamics of GDNP,, are exactly the same until
the optimal directiorﬁ is found and differ only in the
final scaling.

4Depicted by the dotted red line. Note that — as a result
of Lemma 1 — this line is identical in all problems.

Figure 1: Level sets and path of GD (left) and GDNPeq
(right) for a (i) least squares-, (ii) logistic-, and (iii) sig-
moidal regression on a Gaussian dataset. All iterates are
shown in original coordinates. Note that the GDNP4eq paths
are identical until the optimal direction (red line) is found.

4.2 Local optimization in normalized
parameterization

Let fuu(w,g) be the S-reparameterized objective with
w = gw/|wl||s as defined in Eq. (9). We here con-
sider optimizing this objective using Gradient Descent
in Normalized Parameters (GDNP). In each iteration,
GDNP performs a gradient step to optimize f; with
respect to the direction w and does a one-dimensional
bisection search to estimate the scaling factor g (see
Algorithm . It is therefore only a slight modification
of performing Batch Normalization plus Gradient De-
scent: Instead of taking a gradient step on both w and
g, we search for the (locally)-optimal scaling g at each
iteration. This modification is cheap and it simplifies
the theoretical analysis but it can also be substituted
easily in practice by performing multiple GD steps on
the scaling factor, which we do for the experiments in

Section [4.4]

4.3 Convergence result

We now show that Algorithm [I] can achieve a linear
convergence rate to a critical point on the possibly non-
convex objective fiy with Gaussian inputs. Note that
all information for computing the adaptive stepsize s;
is readily available and can be computed efficiently.

Theorem 2. [Convergence rate of GDNP on learning
halfspaces] Suppose Assumptions hold. Let wr, be
the output of GDNP on fiy with the following choice of
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stepsizes
[wellg
sg:=8(Wg,gy) = ————>— 17
! (Wi, 9:) Lgih(wt, g¢) {17
fort=1,...,T,, where
h(wi,g1) =Eq [¢' (27 W1)] (u"wy) (18)

SB[ (2T w)] (uw)

is a stopping criterion. If initialized such that p(wq) #
0 (see Eq. ), then W, is an approximate critical
point of fiu in the sense that
IV f (W) |* <(1 = p/L)* 292 (p(wo) — p*)
+27 ¢ —al” /. (19)

To complete the picture, Table[I] compares this result to
the order complexity for reaching an e-optimal critical
point w (i.e.||Vw fuu(W)| < €) of Gradient Descent
and Accelerated Gradient Descent (AGD) in original
coordinates. Although we observe that the accelerated
rate achieved by GDNP is significantly better than
the best known rate of AGD for non-convex objective
functions, we need to point out that the rate for GDNP
relies on the assumption of a Gaussian data distribution.
Yet, Section[d.4]includes promising experimental results
in a more practical setting with non-Gaussian data.

Finally, we note that the proof of this result re-
lies specifically on the S-reparametrization done by
Batch Normalization. In Appendix [B:3.6] we detail
out why our proof strategy is not suitable for the I-
reparametrization of Weight Normalization and thus
leave it as an interesting open question if other settings
(or proof strategies) can be found where linear rates
for WN are provable.

4.4 Experiments I

Setting In order to substantiate the above analysis
we compare the convergence behavior of GD and AGD

Algorithm 1 Gradient Descent in Normalized Parame-
terization (GDNP)
1: Input: Ty, Ts, stepsize policy s, stopping criterion h
and objective f

2: g + 1, and initialize wo such that p(wo) # 0

3: fort=1,...,74 do

4:  if h(wy, g¢) # 0 then

5: st < s(Wit, gt)

6: Wit1 — Wi — stVwf(We,g¢)  # directional step
7:  end if

8: gt + Bisection(Ty, f,w:) # see Alg.

9: end for
10: W, < gr,wr,/[|wr, s
11: return wr,

to three versions of Gradient Descent in normalized
coordinates. Namely, we benchmark (i) GDNP (Algo-
rithm [1)) with multiple gradient steps on g instead of
Bisection, (ii) a simpler version (BN) which updates
w and g with just one fixed step-size gradient ste
and (iii) Weight Normalization (WN) as presented in
(Salimans and Kingmal, [2016)). All methods use full
batch sizes and — except for GDNP on w — each method
is run with a problem specific, constant stepsize.

We consider empirical risk minimization as a surrogate
for fiy on the common real-world dataset a9a as
well as on synthetic data drawn from a multivariate
Gaussian distribution. We center the datasets and use
two different functions ¢(+). First, we choose the soft-
plus which resembles the classical logistic regression
(convex). Secondly, we use the sigmoid which is a com-
monly used (non-convex) continuous approximation of
the 0-1 loss (Zhang et all 2015). Further details can
be found in Appendix D.

200 400 600 80 1000 1200

a9a sigmoid

gaussian sigmoid

Figure 2: Results of an average run (solid line) in terms of
log suboptimality (softplus) and log gradient norm (sigmoid)
over iterations as well as 90% confidence intervals of 10 runs
with random initialization.

Results The Gaussian design experiments clearly
confirm Theorem M in the sense that the loss in the
convex-, as well as the gradient norm in the non-convex
case decrease at a linear rate. The results on a9a show
that GDNP can accelerate optimization even when the
normality assumption does not hold and in a setting
where no covariate shift is present, which motivates
future research of normalization techniques in optimiza-
tion. Interestingly, the performance of simple BN and
WN is similar to that of GD, which suggests that the
length-direction decoupling on its own does not cap-
ture the entire potential of these methods. GDNP on

5Thus BN is conceptually very close to the classical Batch
Norm Gradient Descent presented in (loffe and Szegedyl

2017




Method Assumptions Complexity Rate Reference

GD Smoothness O(Tgae ?) Sublinear  (Nesterov, [2013)
AcGD Smoothness O(Tgae *log(1/€)) Sublinear (Jin et al., [2017)
AGD Smoothness+convexity ~O(Tgae ') Sublinear  (Nesterov [2013)
GDNP and O(Tyalog®(1/e)) Linear This paper -

Table 1: Computational complexity to reach an e-critical point on fiz — with a (possibly) non-convex loss function .
O(T,a) represents the time complexity of computing a gradient for each method.

the other hand takes full advantage of the parameter
splitting, both in terms of multiple steps on g and —
more importantly — adaptive stepsizes in w.

5 NEURAL NETWORKS

We now turn our focus to optimizing the weights of
a multilayer perceptron (MLP) with one hidden layer
and m hidden units that maps an input x € R? to a
scalar output in the following way

F(W,0) = fp(x "W).
i=1

The w(?) € R? and ) € R terms are the input and
output weights of unit ¢ and ¢ : R — R is a so-called
activation function. We assume ¢ to be a tanh, which is
a common choice in many neural network architectures
used in practice. Given a loss function £ : R — R™, the
optimal input- and output weights are determined by
minimizing the following optimization problem

min (fNN(VW 0) = E,x [6( — Y (W, @))D, (20)
V~V7:: W owm e =W, .. ™),

In the following, we analyze the optimization of the
input weights W with frozen output weights © and
thus write F(W) hereafter for simplicity. As previ-
ously assumed for the case of learning halfspaces, our
analysis relies on Assumption [2 This approach is
rather common in the analysis of neural networks, e.g.
Brutzkus and Globerson| (2017) showed that for a spe-
cial type of one-hidden layer network with isotropic
Gaussian inputs, all local minimizers are global. Un-
der the same assumption, similar results for different
classes of neural networks were derived in (Li and Yuan)
2017; |Soltanolkotabi et al.| [2017; |Du et al.| 2017)).

5.1 Global characterization of the objective

We here show that, under the same assumption, the
landscape of fyy exhibits a global property similar to
one of the Learning Halfspaces objective (see Section
4.1). In fact, the critical points W; of all neurons in
a hidden layer align along one and the same single
line in R¢ and this direction depends only on incoming
information into the hidden layer.

Lemma 2. Suppose Assumptions [1 and [3 hold and
let W be a critical point of fu(W) with respect to
hidden unit i and for a fired © # 0. Then, there ezits
a scalar ¢ € R such that

w() = a8y,

(21)

Vi=1,...,m.

See Appendix for a discussion of possible implica-
tions for deep neural networks.

Algorithm 2 Training an MLP with GpNP

1: Input: Téi), Ts(i), step-size policies s, stopping crite-
rion A

22 W, <0,g,1=1

3: fori=1,...,m do
W, = {w(1>, .. ,w(’;l),w(”l), .
{9(1)7 R G DR DA 7g(M)}
f(i>(w(i)7g(i)) .= f]\'N(W(i)7g(i>7W/i7g/i)
(W(i>’g(i)) . GDNP(f(i)7 Téi), Ts(“, s, h(i))

end for

return W := [w(l)7 . ,w(m)},g =1[g"...,9

7W(m)}7 g/i ‘=

5.2 Convergence result

We again consider normalizing the weights of each
unit by means of its input covariance matrix S, i.e.
w® = gOw® /|wd|g, Vi = 1,...,m and present
a simple algorithmic manner to leverage the input-
output decoupling of Lemma[2] Contrary to BN, which
optimizes all the weights simultaneously, our approach
is based on alternating optimization over the different
hidden units. We thus adapt GDNP to the problem of
optimizing the units of a neural network in Algorithm 2]
but note that this modification is mainly to simplify
the theoretical analysis.

Optimizing each unit independently formally results
in minimizing the function f® (w(®, ¢(*) as defined in
Algorithm [2] In the next theorem, we prove that this
version of GDNP achieves a linear rate of convergence
to optimize each f().

Theorem 3. [Convergence of GDNP on MLP] Suppose
Assumptions [1}-[f] hold. We consider optimizing the
weights (w®, g of unit i, assuming that all directions
{wD}, i are critical points of fu and w* = 0 for
k > i. Then, GDNP with step-size policy s as in
(100) and stopping criterion h'D as in yields a
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linear convergence rate on f) in the sense that

[V FOFEZ0 <(1— p/L)*C (p(wo) — p*)
+ 277 — af?|/u?,

(22)

where the constant C > 0 is defined in Eq. (104)).

The result of Theorem [3] relies on the fact that each
w() j = i is either zero or has zero gradient. If we
assume that an exact critical point is reached after
optimizing each individual unit, then the result directly
implies that the alternating minimization presented
in Algorithm 2 reaches a critical point of the overall
objective. Since the established convergence rate for
each individual unit is linear, this assumption sounds
realistic. We leave a more precise convergence analysis,
that takes into account that optimizing each individual
unit for a finite number of steps may yield numerical
suboptimalities, for future work.

5.3 Experiments II

Setting In the proof of Theorem [3| we show that
GDNP can leverage the length-direction decoupling in
a way that lowers cross-dependencies between hidden
layers and yields faster convergence. A central part of
the proof is Lemma [2| which says that — given Gaus-
sian inputs — the optimal direction of a given layer
is independent of all downstream layers. Since this
assumption is rather strong and since Algorithm [2|is
intended for analysis purposes only, we test the validity
of the above hypothesis outside the Gaussian setting
by training a Batch Normalized multilayer feedforward
network (BN) on a real-world image classification task
with plain Gradient Descent. For comparison, a second
unnormalized network is trained by GD. To validate
Lemma [2] we measure the interdependency between
the central and all other hidden layers in terms of the
Frobenius norm of their second partial cross derivatives
(in the directional component). Further details can be
found in Appendix D.

Results Figure |3| confirms that the directional gra-
dients of the central layer are affected far more by
the upstream than by the downstream layers to a sur-
prisingly large extent. Interestingly, this holds even
before reaching a critical point. The downstream cross-
dependencies are generally decaying for the Batch Nor-
malized network (BN) (especially in the first 1000 iter-
ations where most progress is made) while they remain
elevated in the un-normalized network (GD), which
suggest that using Batch Normalization layers indeed
simplifies the networks curvature structure in w such
that the length-direction decoupling allows Gradient
Descent to exploit simpler trajectories in these normal-
ized coordinates for faster convergence. Of course, we
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Figure 3: (i) Loss, (ii) gradient norm and dependencies
between central- and all other layers for BN (iii) and GD
(iv) on a 6 hidden layer network with 50 units (each) on the
CIFAR10 dataset (5 runs with random initialization, 5000
iterations, curvature information computed each 200th).

cannot untangle this effect fully from other possible
positive aspects of training with BN (see introduction).
Yet, the fact that the (de-)coupling increases in the
distance to the middle layer (note how earlier (later)
layers are more (less) important for Wy) emphasizes
the relevance of this analysis particularly for deep neu-
ral network structures, where downstream dependen-
cies might vanish completely with depth. This does
not only make gradient based training easier but also
suggests the possibility of using partial second order
information, such as diagonal Hessian approximations
(e.g. proposed in (Martens et al., 2012)).

6 CONCLUSION

We took a theoretical approach to study the accelera-
tion provided by Batch Normalization. In a simplified
setting, we have shown that the reparametrization per-
formed by Batch Normalization leads to a provable
acceleration of gradient-based optimization by splitting
it into subtasks that are easier to solve. In order to
evaluate the impact of the assumptions required for our
analysis, we also performed experiments on real-world
datasets that agree with the results of the theoretical
analysis to a surprisingly large extent.

We consider this work as a first step for two partic-
ular directions of future research. First, it raises the
question of how to optimally train Batch Normalized
neural networks. Particularly, our results suggest that
different and adaptive stepsize schemes for the two
parameters - length and direction - can lead to signif-
icant accelerations. Second, the analysis of Section
and [f] reveals that a better understanding of non-linear
coordinate transformations is a promising direction for
the continuous optimization community.
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