
Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in RL

A Notations in Theoretical Analysis

We introduce notations used in Appendices.

A.1 General Notations

If two functions f and g satisfy f(x) > (≥) g(x) for each x in the domain of f and g, we write f > (≥) g. We
denote a constant function by its value. For example, if a function in Q takes c ∈ R at each (s, a) ∈ S × A, the
function is denoted as c.

We define the following quantities:

ω :=
1

1− γ
, ωk :=

1− γk

1− γ
,Ek :=

k∑
l=0

αlεk−l, and Ak :=

k−1∑
l=0

αl,

where A0 := 0, and error functions εl depend on context, which shall be clear.

A.2 Notations Related to Softmax Operators

We call the following policy a Boltzmann policy (given a function f ∈ Q):

bβ(a|s; f) :=
exp (βf(s, a))∑
b∈A exp (βf(s, b))

,

where β ∈ (0,∞) is the inverse temperature. A Boltzmann-softmax operator bβ is a mapping f ∈ Q 7→ bβf ∈ V
such that

(bβf) (s) :=
∑
a∈A

bβ(a|s; f)f(s, a)

for any state s ∈ S. Note that the Boltzmann-softmax operator is not a linear operator, as it depends on input
f . We define m∞ and b∞ to be m. As we show later, mβf ≤ bβf and limβ→∞ bβf = limβ→∞mβf = mf
hold.

A.3 Notations Related to Other Operators

n-th power of an operator O is recursively defined by OnQ := On−1 (OQ), where O0 is an identity operator I.
Linear operators can be expressed as matrices. The addition of linear operators, say O1 and O2, is defined as

O1 +O2 : f 7→ O1f +O2f

analogously to the definition of the addition of two matrices. The multiplication of a linear operator O with a
scalar c is defined as

cO : f 7→ c (Of) .

(Recall that the multiplication of a scalar d and a function g means a function that satisfies (dg) (x) := dg(x)
for any x in the domain of g.)

Suppose a policy π. We define an operator

Pπ : f ∈ Q 7→ Pπf ∈ Q

and a Bellman operator

Tπ : f ∈ Q 7→ r + γPπf ∈ Q.

For any policy π, an operator

(I − γPπ)
−1

: f ∈ Q 7→
∞∑
t=0

γt (Pπ)
t
f ∈ Q

is well defined. As the notation implies, (I − γPπ)
−1

(I − γPπ) f = f holds. We note that (I − γPπ)
−1

is a

monotone operator. In other words, if f ≥ g, (I − γPπ)
−1
f ≥ (I − γPπ)

−1
g holds. Furthermore, we note that

Qπ = (I − γPπ)
−1
r.
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B Lemmas on the Mellowmax and Boltzmann-Softmax Operators

Here, we prove lemmas on the mellowmax and Boltzmann-softmax operators.

The following lemma shows a relationship between the mellowmax and Boltzmann-softmax operators.

Lemma 5. For any inverse temperature β ∈ (0,∞) and function f ∈ Q,

1

β
log |A| ≥ bβf −mβf ≥ 0. (20)

Proof. Let H(s) denote the entropy of bβ(·|s; f), that is,

H(s) := −
∑
a∈A

bβ(a|s; f) log bβ(a|s; f).

It can be rewritten as

H(s) = −
∑
a∈A

exp (βf(s, a))

Z(s)
(βf(s, a)− logZ(s))

= logZ(s)− β (bβf) (s)

= β (mβf) (s)− β (bβf) (s) + log |A|,

where Z(s) :=
∑
a∈A exp (βf(s, a)), and the last line is obtained by using (1/β) log (Z(s)/|A|) = (mβf) (s).

Because 0 ≤ H(s) ≤ log |A|, the claim holds.

Lemma 7, which is proven by using the following lemma, states that the mellowmax and Boltzmann-softmax
operators are close to the max operator.

Lemma 6. For any inverse temperature β ∈ (0,∞), state s ∈ S and function f ∈ Q, (mβf) (s) is non-decreasing
in β while (mβf) (s) + (log |A|) /β is non-increasing in β.

Proof. The former claim holds since

∂

∂β
(mβf) (s) =

1

β
((bβf) (s)− (mβf) (s)) ≥ 0,

where the inequality is due to Lemma 5.

On the other hand,

∂

∂β

(
(mβf) (s) +

1

β
log |A|

)
=

1

β

(
(bβf) (s)− (mβf) (s)− 1

β
log |A|

)
≤ 0,

where the inequality is again due to Lemma 5.

Lemma 7. For any inverse temperature β ∈ (0,∞) and function f ∈ Q,

mf − bβf ≤mf −mβf ≤
1

β
log |A|.

Proof. As shown in Lemma 6, (mβf) (s) + (log |A|) /β is non-increasing in β. Therefore, for any s ∈ S,

(mβf) (s) +
1

β
log |A| ≥ lim

β→∞
(mβf) (s) = (mf) (s),

where the last equality is proven in Asadi and Littman (2017). From Lemma 5, mβf ≤ bβf , and thus, the claim
holds.
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C Proof of theorems

In this appendix, we prove Theorem 1, 2, 4 and Proposition 3.

To begin with, we prove several lemmas used throughout the paper. The following lemma not only makes our
theoretical analysis simpler, but also shows that the behavior of CVI is determined by a series of functions whose
update rule is simpler.

Lemma 8. Suppose series of policies pk and functions εk ∈ Q, where k = 0, 1, . . .. Define Φk ∈ Q recursively by

Φk+1 := T pkΦk + α (Φk − pkΦk) + εk,

where Φ0 ∈ Q. For any positive integer K,

ΦK = AKφK + αKφ0 − αpK−1

(
AK−1φK−1 + αK−1φ0

)
(21)

holds, where φk is recursively defined by φ0 := Φ0 and

Ak+1φk+1 := AkT
pkφk + αkT pkφ0 + Ek. (22)

Proof. We prove the claim by induction. For K = 1, Φ1 = T p0Φ0 + α (Φ0 − p0Φ0) + ε0 = A1φ1 + αφ0 − αp0φ0.
Therefore, the claim holds for K = 1.

Next, suppose that up to K − 1 (K > 1), the claim holds. Then,

T pK−1ΦK−1 = T pK−1
[
AK−1φK−1 + αK−1φ0 − αpK−2

(
AK−2φK−2 + αK−2φ0

)]
=
(
AK−1 + αK−1 − αAK−2 − αK−1

)
r

+ γAK−1P
pK−1φK−1 + αK−1γP pK−1φ0 − αγAK−2P

pK−2φK−2 − αK−1γP pK−2φ0

= AK−1T
pK−1φK−1 + αK−1T pK−1φ0 − αAK−2T

pK−2φK−2 − αK−1T pK−2φ0

= AKφK − αAK−1φK−1 − EK−1 + αEK−2

= AKφK − αAK−1φK−1 − εK−1,

where the second line follows because AK−1 − αAK−2 = 1. Furthermore,

ΦK−1 − pK−1ΦK−1 = AK−1φK−1 + αK−1φ0 − pK−1

(
AK−1φK−1 + αK−1φ0

)
.

In the consequence,

ΦK = T pK−1ΦK−1 + α (ΦK−1 − pK−1ΦK−1) + εK−1 = AKφK + αKφ0 − αpK−1

(
AK−1φK−1 + αK−1φ0

)
.

This concludes the proof.

The following lemma is frequently used in our theoretical analysis.

Lemma 9. Suppose series of functions Φk and φk defined in Lemma 8. For any non-negative integer K and a
policy ρ satisfying ρ ≥ΦK

mβ,

ρ

(
AK
AK+1

φK +
αK

AK+1
φ0

)
≥m

(
AK
AK+1

φK +
αK

AK+1
φ0

)
− log |A|
βAK+1

holds.

Proof. From Lemma 8 and the definition of ρ,

ρΦK = ρ
(
AKφK + αKφ0

)
− αpK−1

(
AK−1φK−1 + αK−1φ0

)
≥mβΦK

= mβ

(
AKφK + αKφ0

)
− αpK−1

(
AK−1φK−1 + αK−1φ0

)
,
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and thus,

ρ
(
AKφK + αKφ0

)
≥mβ

(
AKφK + αKφ0

)
.

As a result,

ρ

(
AK
AK+1

φK +
αK

AK+1
φ0

)
≥
mβ

(
AKφK + αKφ0

)
AK+1

= mβAK+1

(
AK
AK+1

φK +
αK

AK+1
φ0

)
≥m

(
AK
AK+1

φK +
αK

AK+1
φ0

)
− log |A|
βAK+1

,

where the last line follows from Lemma 7.

C.1 Proof of Theorem 1

We are going to prove Theorem 1. For ease of reading, we state settings in the theorem again.

We suppose Ψk ∈ Q recursively defined by

Ψk+1 := T νkΨk + α (Ψk − νkΨk) + εk

where Ψ0 ∈ Q, and νk is a policy such that νk ≥Ψk
mβ . Let ρk be a policy such that ρk ≥Ψk

νk. The initial
function Ψ0 is assumed to be a constant function whose value is 0. Ek defined with εk above is used. We let ψk
denote a function (φk) obtained by applying Lemma 8 to Ψk.

By the decomposition of Q∗−QρK to Q∗− q and − (QρK − q), where q is some function, it is clear that we need
an upper bound of Q∗ − q and a lower bound of QρK − q to show a point-wise upper bound of Q∗ −QρK , from
which lp-norm performance bounds can be derived. The following two lemmas give us those upper and lower
bounds.

Lemma 10. Suppose series of functions Ψk, ψk and policies ρk explained in the beginning of this subsection.
The following upper bound for Q∗ − ψK+1 holds for any non-negative integer K:

Q∗ − ψK+1 ≤ −
1

AK+1

K∑
k=0

(γP ∗)
k
EK−k +

γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|. (23)

Proof of Lemma 10. We prove the claim by induction.

Note that AK + αK = 1 + α+ · · ·+ αK = AK+1. Therefore, from (22) and Lemma 9,

ψK+1 = r + γP νK
(

AK
AK+1

ψK +
αk

AK+1
ψ0

)
+

EK
AK+1

≥ r + γP ∗
(

AK
AK+1

ψK +
αk

AK+1
ψ0

)
+

EK
AK+1

− γ log |A|
βAK+1

.

Accordingly, for K = 0,

Q∗ − ψ1 = γP ∗Q∗ − γP ν0ψ0 −
E0

A1
≤ γP ∗Q∗ − γP ∗ψ0 −

E0

A1
≤ γVmax

A1
− E0

A1
,

where the last inequality is due to Q∗ ≤ Vmax. Therefore, the claim holds for K = 0.

Suppose that the claim holds up to K − 1 (K > 0). Then, for any positive integer K,

Q∗ − ψK+1 ≤
γAK
AK+1

P ∗ (Q∗ − ψK) +
γαK

AK+1
P ∗ (Q∗ − ψ0)− EK

AK+1
+
γ log |A|
βAK+1

≤ γAK
AK+1

P ∗ (Q∗ − ψK) +
γαK

AK+1
Vmax −

EK
AK+1

+
γ log |A|
βAK+1

,
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where the inequalities are obtained similarly to the case in which K = 0. By the assumption of the induction,

Q∗ − ψK+1 ≤
γAK
AK+1

P ∗ (Q∗ − ψK) +
γαK

AK+1
Vmax −

EK
AK+1

+
γ log |A|
βAK+1

≤ − 1

AK+1

K−1∑
k=0

(γP ∗)
k+1

EK−k−1 +
γVmax
AK+1

K−1∑
k=0

γk+1αK−k−1 +
γ2ωK
βAK+1

log |A|

+
γαK

AK+1
Vmax −

EK
AK+1

+
γ log |A|
βAK+1

≤ − 1

AK+1

K∑
k=0

(γP ∗)
k
EK−k +

γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|.

Therefore, the claim holds.

Lemma 11. Suppose series of functions Ψk, ψk and policies ρk explained in the beginning of this subsection.
The following lower bound for QρK − ψK+1 holds for any non-negative integer K:

QρK − ψK+1 ≥ −
1

AK+1

K∑
k=0

γkQK,K−kEK−k −
γVmax
AK+1

K∑
k=0

γkαK−k − γ2ωωK
βAK+1

log |A|, (24)

where

QK,K−k :=

{
I for k = 0

(I − γP ρK )−1P ρKP ρK−1 · · ·P ρK−k+2P ρK−k+1(I − γP ρK−k) for 1 ≤ k ≤ K
.

Proof of Lemma 11. We first note that for any non-negative integer K,

νK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
≤ ρK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
. (25)

Indeed, from Lemma 8,

νK
(
AKψK + αKψ0

)
= νK

(
ΨK + ανK−1

(
AK−1φK−1 + αK−1φ0

))
≤ ρKΨK + ανK−1

(
AK−1φK−1 + αK−1φ0

)
= ρK

(
ΨK + ανK−1

(
AK−1φK−1 + αK−1φ0

))
= ρK

(
AKψK + αKψ0

)
.

As both νK and ρK are linear operators, the inequality (25) is obtained by dividing both sides by AK+1.

For any non-negative integer K,

(I − γP ρK ) (QρK − ψK+1)

= γP ρK

(
T νK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
+

EK
AK+1

)
− γP νK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
− EK
AK+1

≥ γP ρK

(
T νK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
+

EK
AK+1

)
− γP ρK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
− EK
AK+1

= γP ρK

(
T νK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
−
(

AK
AK+1

ψK +
αK

AK+1
ψ0

))
− 1

AK+1
(I − γP ρK )EK ,
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where the inequality (25) is used. Accordingly, from Lemma 9,

(I − γP ρK ) (QρK − ψK+1)

≥ γP ρK

(
T νK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
−
(

AK
AK+1

ψK +
αK

AK+1
ψ0

))
− 1

AK+1
(I − γP ρK )EK

≥ γP ρK

(
T ρK−1

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
−
(

AK
AK+1

ψK +
αK

AK+1
ψ0

))
− 1

AK+1
(I − γP ρK )EK −

γ2 log |A|
βAK+1

= γP ρK (I − γP ρK−1)

(
QρK−1 − AK

AK+1
ψK −

αK

AK+1
ψ0

)
− 1

AK+1
(I − γP ρK )EK −

γ2 log |A|
βAK+1

.

By noting that AK + αK = AK+1,

γP ρK (I − γP ρK−1)

(
QρK−1 − AK

AK+1
ψK −

αK

AK+1
ψ0

)
=

γAK
AK+1

P ρK (I − γP ρK−1) (QρK−1 − ψK) +
γαK

AK+1
P ρK (I − γP ρK−1) (QρK−1 − ψ0)

≥ γAK
AK+1

P ρK (I − γP ρK−1) (QρK−1 − ψK)− γ(1− γ)αK

AK+1
Vmax,

where the inequality follows from (I − γP ρK−1)QρK−1 = r ≥ −rmax = −(1− γ)Vmax. Therefore,

(I − γP ρK ) (QρK − ψK+1) = T ρKψK+1 − ψK+1

≥ γAK
AK+1

P ρK (I − γP ρK−1) (QρK−1 − ψK)− γ(1− γ)αK

AK+1
Vmax −

1

AK+1
(I − γP ρK )EK −

γ2 log |A|
βAK+1

.

By continuing the same argument, we obtain

(I − γP ρK ) (QρK − ψK+1) ≥ γK

AK+1
P ρK · · ·P ρ1 (I − γP ρ0) (Qρ0 − ψ1)− γ(1− γ)Vmax

AK+1

K−1∑
k=0

αK−kγk

− 1

AK+1

K−1∑
k=0

γk (I − γP ρK )QK,K−kEK−k −
γ2ωK log |A|
βAK+1

.

Since

(I − γP ρ0) (Qρ0 − ψ1) = T ρ0ψ1 − ψ1

≥ γP ρ0 (r + γP ν0ψ0 + E0 − ψ0)− E0

≥ −γ(1− γ)Vmax − (I − γP ρ0)E0

we finally obtain

(I − γP ρK ) (QρK − ψK+1)

≥ − γK

AK+1
P ρK · · ·P ρ1 (I − γP ρ0)E0 −

1

AK+1

K−1∑
k=0

γk (I − γP ρK )QK,K−kEK−k

− γK+1(1− γ)

AK+1
Vmax −

γ(1− γ)Vmax
AK+1

K−1∑
k=0

αK−kγk − γ2ωK log |A|
βAK+1

= − 1

AK+1

K∑
k=0

γk (I − γP ρK )QK,K−kEK−k −
γ(1− γ)Vmax

AK+1

K∑
k=0

αK−kγk − γ2ωK log |A|
βAK+1

.

Recall that (I − γP ρK )
−1

is monotone and linear. Therefore, by applying it to both sides of the inequality, it
is confirmed that the claim holds.
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By combining Lemma 10 and 11, the following proposition is obtained. (Note that the first summation in (26)

is from k = 1 to K because QK,K = (P ∗)
0

= I for k = 0.)

Proposition 12. Suppose series of functions Ψk, ψk and policies ρk explained in the beginning of this subsection.
The following point-wise upper bound for Q∗ −QρK holds for any non-negative integer K:

Q∗ −QρK ≤ 1

AK+1

K∑
k=1

γk
(
QK,K−kEK−k − (P ∗)

k
EK−k

)
+

2γVmax
AK+1

K∑
k=0

γkαK−k +
γωωK
βAK+1

log |A|, (26)

and
∑0
k=1Qk means a constant function whose value is 0 for any sequence of functions Qk.

Now, we prove Theorem 1. We only prove l∞-norm performance bound. A proof of lp-norm performance bound
is similar to that of (17) given in Appendix C.4. However, we omit it because it is notationally very cluttered.

From Proposition 12 and |Q∗(s, a)−QρK (s, a)| = Q∗(s, a)−QρK (s, a),

‖Q∗ −QρK‖∞
= max

s,a
(Q∗ −QπK ) (s, a)

= max
s,a

(Q∗ − ψK+1 − (QπK − ψK+1)) (s, a)

≤ max
s,a

K∑
k=1

γk

AK+1

(
QK,K−kEK−k − (P ∗)

k
EK−k

)
(s, a) +

2γVmax
AK+1

K∑
k=0

γkαK−k +
γωωK
βAK+1

log |A|.

Because ‖QK,K−kQ‖∞ ≤ ω(1 + γ) ‖Q‖∞ for any Q ∈ Q,

‖Q∗ −QρK‖∞ ≤
2

1− γ

K∑
k=1

γk
∥∥∥∥EK−kAK+1

∥∥∥∥
∞

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γωωK
βAK+1

log |A|

=
2γ

1− γ

K−1∑
k=0

γk
∥∥∥∥EK−k−1

AK+1

∥∥∥∥
∞

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γωωK
βAK+1

log |A|.

C.2 Proof of Theorem 2

K-1 K K-11 2 30 ・・・ ・・・

Figure 2: A deterministic environment used to prove the asymptotic tightness of (14) in Theorem 1. This
environment is taken from Bertsekas and Tsitsiklis (1996) and Scherrer and Lesner (2012) in which existing
performance bounds for VI and policy iteration are proven to be tight. There are two actions: s (stay) and m

(move). Except for state 0, staying costs an agent −r(l, s) = 2
∑l−1
k=0 γ

kε, where ε ∈ (0,∞) is a fixed positive
real value, and l is an index of a state. At state 0, no cost is incurred. Therefore, an optimal action is m (move)
at all states.

We are going to prove Theorem 2. For ease of reading, we state settings in the theorem again.

Recall that β is assumed to be ∞. Therefore, Ψk ∈ Q is recursively defined by

Ψk+1 := TΨk + α (Ψk −mΨk) + εk

where Ψ0 ∈ Q. Note that ρk is a greedy policy with respect to Ψk. The initial function Ψ0 is assumed to be a
constant function whose value is 0. Ek defined with εk above is used. We let ψk denote a function (φk) obtained
by applying Lemma 8 to Ψk.

Since the proof is lengthy, we first provide a sketch of the proof. Then, we provide a full proof.
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C.2.1 Proof Sketch

Consider a deterministic environment depicted in Figure 2. Expected immediate reward of staying at state l is
given as r(l, s) = −2

∑l−1
k=0 γ

kε, where ε ∈ (0,∞) is a prescribed positive real value. We assume that

• For any state l and action a, Ψ0(l, a) = 0.

• For any state l and action a, Ek(l, a) = 0 except state l = k + 1 and l = k + 2 where

Ek(k + 1, s) = Ak+1ε, Ek(k + 1,m) = −Ak+1ε− αkγ
1− γk

1− γ
ε,

Ek(k + 2, s) = 0, Ek(k + 2,m) = Ak+1ε+ αk+1 1− γk+1

1− γ
ε.

Under these assumptions, we prove that for any positive integer K ≥ 1, (i) ψK(K, s) = ψK(K,m) and (ii)
ψK(K + L, s) < ψK(K + L,m), where L ∈ {1, 2, . . .}. Thus, from Lemma 8, one of greedy policies with respect

to ΨK chooses action s (stay) at state K resulting in cumulative rewards of −2
∑∞
t=0 γ

t
∑K−1
k=0 γkε. We set ρK

to that greedy policy. As a result,

‖Q∗ −QρK‖∞ = Q∗(K, s)−QρK (K, s) =
2γ(1− γK)

(1− γ)2
ε

since Q∗(K, s) = −2
∑K−1
k=0 γkε is cumulative rewards when s is taken once at state K and m is repeatedly taken

afterwards.

On the other hand, it is obvious that either

‖Ek‖∞ = |Ek(k + 1,m)| or ‖Ek‖∞ = |Ek(k + 2,m)|

holds. In any case, we have

‖Ek‖∞ = Ak+1ε+O(αk).

Thus, the right hand side of (14) becomes

r.h.s. =
2γε

1− γ

K−1∑
k=0

γK−k−1 Ak+1

AK+1
+ o(1)

=
2γε

1− γ

K−1∑
k=0

γK−k−1

(
1− αkAK−k+1

AK+1

)
+ o(1)

=
2γ(1− γK)

(1− γ)2
ε− 2ε

(1− γ)AK+1

K−1∑
k=0

γkαK−kAk+1 + o(1).

The second term converges to 0. Indeed, when 0 ≤ α < 1,

0 ≤ 1

AK+1

K−1∑
k=0

γkαK−kAk+1 ≤ αK
K−1∑
k=0

(γ
α

)k
=
αK − γK

α− γ
.

(When α = γ, the last term is KαK , which converges to 0.) On the other hand, when α = 1,

0 ≤ 1

AK+1

K−1∑
k=0

γkαK−kAk+1 =
1

K

K−1∑
k=0

γk(k + 1) =
1− γK

(1− γ)2K
− γK

1− γ
,
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where the second equality is obtained as follows: let SK denote
∑K−1
k=0 γk(k + 1). Because

SK − γSK =

K−1∑
k=0

γk(k + 1)−
K−1∑
k=0

γk+1(k + 1)

=

K−1∑
k=0

γk(k + 1)−
K∑
k=1

γkk

=

K−1∑
k=0

γk − γKK,

it follows that SK =
1− γK

(1− γ)2
− γKK

1− γ
. As a result,

lim
K→∞

r.h.s. =
2γε

(1− γ)2
= lim
K→∞

‖Q∗ −QρK‖∞.

C.2.2 Full Proof

By induction, we prove that for any positive integer K ≥ 1

ψK(K, s) = ψK(K,m) = −1− γK

1− γ
ε, (27)

ψK(K + 1,m) =
AK+1

AK

1− γK

1− γ
ε, (28)

ψK(K + L, s) < ψK(K + L,m), (29)

where L ∈ {1, 2, . . .}.

Recall that the update rule of ψk is

ψk = r + γ
Ak−1

Ak
Pmψk−1 +

1

Ak
Ek−1,

as we assume that ψ0 = Ψ0 = 0. For K = 1, as ψ0 = Ψ0 = 0,

ψ1(1, s) = r(1, s) + E0(1, s) = −1− γ1

1− γ
ε = r(1,m) + E0(1,m) = ψ1(1,m)

ψ1(2,m) = r(2,m) + E0(2,m) = ε+ αε =
A2

A1

1− γ1

1− γ
ε

ψ1(1 + L, s) = r(1 + L, s) + E0(1 + L, s) < 0 ≤ r(1 + L,m) + E0(1 + L,m) = ψ1(1 + L,m).

Therefore, (27), (28) and (29) hold for K = 1.

Suppose that (27), (28) and (29) hold up to K − 1 (K > 1). First, note that

ψK(K,m) = γ
AK−1

AK
max{ψK−1(K − 1, s), ψK−1(K − 1,m)}+

1

AK
EK−1(K,m)

= −γAK−1

AK

1− γK−1

1− γ
ε− ε− αK−1

AK
γ

1− γK−1

1− γ
ε

= −ε− 1

AK

(
AK−1 + αK−1

)
γ

1− γK−1

1− γ
ε,

= −1− γK

1− γ
ε,
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where we used max{ψK−1(K−1, s), ψK−1(K−1,m)} = ψK−1(K−1, s) = ψK−1(K−1,m) and AK−1 +αK−1 =
AK . Next, note that

ψK(K, s) = r(K, s) + γ
AK−1

AK
max{ψK−1(K, s), ψK−1(K,m)}+

1

AK
EK−1(K, s)

= −2
1− γK

1− γ
ε+ γ

1− γK−1

1− γ
ε+ ε

= −1− γK

1− γ
ε,

where we used ψK−1(K, s) < ψK−1(K,m) to obtain max{ψK−1(K, s), ψK−1(K,m)} = ψK−1(K,m). Therefore,
(27) holds. Furthermore,

ψK(K + 1,m) = γ
AK−1

AK
max{ψK−1(K, s), ψK−1(K,m)}+

1

AK
EK−1(K + 1,m)

= γ
1− γK−1

1− γ
ε+ ε+

αK

AK

1− γK

1− γ
ε

=

(
1 +

αK

AK

)
1− γK

1− γ
ε

=
AK+1

AK

1− γK

1− γ
ε,

where we again used ψK−1(K, s) < ψK−1(K,m) to obtain max{ψK−1(K, s), ψK−1(K,m)} = ψK−1(K,m). Thus,
(28) holds. Finally, noting that ψK−1(K + L− 1, s) < ψK−1(K + L− 1,m),

ψK(K + L,m) = γ
AK−1

AK
max{ψK−1(K + L− 1, s), ψK−1(K + L− 1,m)}+

1

AK
EK−1(K + L,m)

= γ
AK−1

AK
ψK−1(K + L− 1,m) +

1

AK
EK−1(K + L,m)

= γ2AK−2

AK
ψK−2(K + L− 2,m) +

1

AK
(EK−1(K + L,m) + γEK−2(K + L− 1,m))

...

=
1

AK

(
EK−1(K + L,m) + γEK−2(K + L− 1,m) + · · ·+ γK−1E0(L+ 1,m)

)
.

Because L ≥ 1, EK−1−i(K + L− i,m) ≥ 0, and thus, ψK(L,m) ≥ 0. On the other hand,

ψK(K + L, s) = r(K + L, s) + γ
AK−1

AK
max{ψK−1(K + L, s), ψK−1(K + L,m)}+

1

AK
EK−1(K + L, s)

= r(K + L, s) + γ
AK−1

AK
ψK−1(K + L,m)

= r(K + L, s) +
1

AK

(
γEK−2(K + L,m) + · · ·+ γK−1E0(L+ 2,m)

)
.

Because L ≥ 1, EK−2−i(K + L− i,m) = 0, and thus, ψK(K + L,m) = r(K + L, s) < 0. Therefore, (29) holds.
Given those results,

lim
K→∞

r.h.s. =
2γε

(1− γ)2
= lim
K→∞

‖Q∗ −QρK‖∞

can be shown by following the proof sketch we have provided in Appendix C.2.

C.3 Proof of Proposition 3

We aim at proving Proposition 3. For the ease of reading, we state settings in the proposition again.
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We suppose a series of functions Ψk ∈ Q defined by

Ψk+1 := TβΨk + α (Ψk −mβΨk) + εk,

where Ψ0 ∈ Q. The initial function Ψ0 is assumed to be a constant function whose value is 0. Furthermore,
‖εl‖∞ ≤ ε is assumed. Ek defined with εk above is used. We let ψk denote a function (φk) obtained by applying
Lemma 8 to Ψk. A policy is given as

πk+1(a|s) ∝ exp (βΨk+1(s, a)) ∝ exp (βAk+1ψk+1(s, a)) .

As explained in Asadi and Littman (2017), there exists a policy µk such that mβΨk = µkΨk. From Lemma 8,
it follows that

mβ

(
Akψk + αkψ0

)
= µk

(
Akψk + αkψ0

)
.

Let us start the proof. Since

log
πK(a|s)
πK−1(a|s)

= β {AKψK(s, a)−AK−1ψK−1(s, a)− [mβ (AKψK)−mβ (AK−1ψK−1)]} ,

we have (note that the mellowmax is a non-expansion)∥∥∥∥∥∑
a

πK(a|·) log
πK(a|·)
πK−1(a|·)

∥∥∥∥∥
∞

≤ 2β ‖AKψK −AK−1ψK−1‖∞ .

By definition, AKψK = AK−1T
µK−1ψK−1+αK−1r+EK−1 = AKr+γPmβ (AK−1ψK−1)+EK−1 as we assumed

ψ0(s, a) = Ψ0(s, a) = 0. Therefore,

‖AKψK −AK−1ψK−1‖∞ =
∥∥αK−1r + γPmβ (AK−1ψK−1)− γPmβ (AK−2ψK−2) + εK−1 − (1− α)EK−2

∥∥
∞

≤ αK−1rmax + γ ‖AK−1ψK−1 −AK−2ψK−2‖∞ + 2ε.

By induction, it is easy to see that

‖AKψK −AK−1ψK−1‖∞ ≤ γ
K−1 ‖A1ψ1‖∞ + 2(1 + γ + · · ·+ γK−2)ε+ (αK−1 + αK−2γ + · · ·+ αγK−2)rmax

≤ 2
1− γK

1− γ
ε+ rmax

K−1∑
k=0

αkγK−k−1.

As a result,

∥∥∥∥∑a πK(a|·) log
πK(a|·)
πK−1(a|·)

∥∥∥∥
∞
≤ 4β

(
1− γK

1− γ
ε+ rmax

K−1∑
k=0

αkγK−k−1

)
.

C.4 Proof of Theorem 4

In this appendix, we prove Theorem 4. A basic strategy we take is almost same as the one we used in the proof
of Theorem 1. For the ease of reading, we state settings in the theorem again.

We suppose a series of functions Ψk ∈ Q defined by

Ψk+1 := TβΨk + α (Ψk −mβΨk) + εk,

where Ψ0 ∈ Q. The initial function Ψ0 is assumed to be a constant function whose value is 0. Ek defined with
εk above is used. We let ψk denote a function (ψk) obtained by applying Lemma 8 to Ψk. A policy is given as

πk+1(a|s) ∝ exp (βΨk+1(s, a)) .

As explained in Asadi and Littman (2017), there exists a policy µk such that mβΨk = µkΨk. From Lemma 8,
it follows that

mβ

(
Akψk + αkψ0

)
= µk

(
Akψk + αkψ0

)
.
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Dividing both sides by Ak+1,

mβAk+1

(
Ak
Ak+1

ψk +
αk

Ak+1
ψ0

)
= µk

(
Ak
Ak+1

ψk +
αk

Ak+1
ψ0

)
.

We extensively use this equation.

First, we show an upper bound of difference between Q-value functions of two policies.

Lemma 13. For any pair of policies π and µ, the maximum difference between their Q-value functions is bounded
by
√

2γωVmaxδ
1/2, where δ = maxsDKL (π(·|s)|µ(·|s)).

Proof. We have

Qπ −Qµ = γP πQπ − γP µQµ = γP (πQπ − µQπ) + γP µ (Qπ −Qµ)

= γ (I − γP µ)
−1
P (πQπ − µQπ) .

Therefore,

‖Qπ −Qµ‖∞ ≤ γω ‖πQ
π − µQπ‖∞ ≤ γωmax

s∈S

∑
a∈A
|(π(a|s)− µ(a|s))Qπ(s, a)|

≤ γωVmax max
s∈S

∑
a∈A
|π(a|s)− µ(a|s)| ,

where the last inequality follows from Hölder’s inequality and ‖Qπ‖∞ ≤ Vmax. By Pinsker’s inequality,
maxs

∑
a |π(a|s)− µ(a|s)| ≤

√
2δ1/2. In the consequence, ‖Qπ −Qµ‖∞ =

√
2γωVmaxδ

1/2.

The following lemma gives us a different upper bound for QπK − ψK+1.

Lemma 14. Suppose series of functions Ψk, ψk and policies πk explained in the beginning of this subsection.
Let δk be an upper bound of maxsDKL(πk(·|s)|πk−1(·|s)). The following lower bound for QπK − ψK+1 holds for
any non-negative integer K:

QπK − ψK+1 ≥ −
1

AK+1

K∑
k=0

γkPK,K−k+1EK−k −
γVmax
AK+1

K∑
k=0

γkαK−k −
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k, (30)

where
∑0
k=1Qk means a constant function whose value is 0 for any sequence of functions Qk, and

PK,K−k+1 :=

{
I for k = 0

P πKP πK−1 · · ·P πK−k+2P πK−k+1 for 1 ≤ k ≤ K

Proof. For any non-negative integer K ≥ 0,

QπK − ψK+1 = γP πKQπK − γP µK

(
AK
AK+1

ψK +
αK

AK+1
ψ0

)
− EK
AK+1

≥ γ AK
AK+1

P πK (QπK−1 − ψK)− EK
AK+1

− γVmax
AK+1

αK + γ
AK
AK+1

P πK (QπK −QπK−1)

≥ γ AK
AK+1

P πK (QπK−1 − ψK)− EK
AK+1

− γVmax
AK+1

αK −
√

2γ2ωVmax
AK
AK+1

δ
1/2
K .

(The first and last term disappear if K = 0.) It is clear that the claim holds for K = 0. It is not difficult to
prove the claim by induction with the aid of the above inequality.

By combining Lemma 10 and 14, the following proposition is obtained. (Note that the summation in (31) is

from k = 1 to K because PK,K+1 = (P ∗)
0

= I for k = 0.)
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Proposition 15. Suppose series of functions Ψk, ψk and policies πk explained in the beginning of this subsection.
Let δk denote an upper bound of maxsDKL(πk(·|s)|πk−1(·|s)). The following point-wise upper bound for Q∗−QπK

holds for any non-negative integer K:

Q∗ −QπK ≤ 1

AK+1

K∑
k=1

γk
(
PK,K−k+1EK−k − (P ∗)

k
EK−k

)
+

2γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|+
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k, (31)

where Pk,l are defined in Lemma 14, and
∑0
k=1Qk means a constant function whose value is 0 for any sequence

of functions Qk.

Now we prove Theorem 4. We first prove l∞-norm performance bound. From Proposition 15 and by noting that
|Q∗(s, a)−QπK (s, a)| = Q∗(s, a)−QπK (s, a),

‖Q∗ −QπK‖∞
= max

s,a
(Q∗ −QπK ) (s, a)

= max
s,a

(Q∗ − ψK+1 − (QπK − ψK+1)) (s, a)

≤ max
s,a∈S×A

K∑
k=1

γk

AK+1

(
PK,K−k+1EK−k − (P ∗)

k
EK−k

)
(s, a)

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|+
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k.

Because ‖PK,K−k+1Q‖∞ ≤ ‖Q‖∞ for any Q ∈ Q,

‖Q∗ −QπK‖∞ ≤ 2γ

K∑
k=1

γk
∥∥∥∥EK−kAK+1

∥∥∥∥
∞

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|+
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k.

Loosening it by replacing AK−k/AK+1 with 1, we conclude the proof for the l∞-norm performance bound.

Next, we prove lp-norm performance bound.

|Q∗ −QπK | = Q∗ −QπK

≤
K∑
k=1

γk

AK+1

(
PK,K−k+1EK−k − (P ∗)

k
EK−k

)
+

2γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|+
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k

≤
K∑
k=1

γk

AK+1

(
PK,K−k+1 |EK−k|+ (P ∗)

k |EK−k|
)

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|+
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k,

where |Q|, Q ∈ Q is a function such that |Q|(s, a) = |Q(s, a)| for any state-action pair (s, a) ∈ S × A. Because
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f(x) = xp is monotonically increasing in x for any p ∈ [0,∞),

|Q∗ −QπK |p ≤

[
K∑
k=1

γk

AK+1

(
PK,K−k+1 |EK−k|+ (P ∗)

k |EK−k|
)

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γωK
βAK+1

log |A|+
√

2γ2ωVmax

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k

]p
,

where Qp, Q ∈ Q is a function such that Qp(s, a) = Q(s, a)p for any state-action pair (s, a) ∈ S ×A. Now, let us
introduce variables λ1,i, λ2,i, λ3, λ4 and λ5,i. We temporarily do not specify values as they are just introduced
to be used with Jensen’s inequality as follows:

|Q∗ −QπK |p ≤
(

Λ

AK+1

)p [ K∑
k=1

(
γkλ1,K−k

Λ
PK,K−k+1

∣∣∣∣ EK−kλ1,K−k

∣∣∣∣+
γkλ2,K−k

Λ
(P ∗)

k

∣∣∣∣ EK−kλ2,K−k

∣∣∣∣)

+
λ3

Λ

2γVmax
∑K
k=0 γ

kαK−k

λ3
+
λ4

Λ

γωK log |A|
βλ4

+

K−1∑
k=0

γkλ5,K−k

Λ

√
2γ2ωδ

1/2
K−kAK−kVmax

λ5,K−k

]p
,

where Λ is a normalization coefficient defined by

Λ :=

K∑
k=1

γk (λ1,K−k + λ2,K−k) + λ3 + λ4 +

K−1∑
k=0

γkλ5,K−k.

By using Jensens’ inequality twice (firstly considering coefficients and secondly considering Pi,j as well as P ∗),

|Q∗ −QπK |p

≤ Λp−1

ApK+1

K∑
k=1

(
γk

λp−1
1,K−k

PK,K−k+1 |EK−k|p +
γk

λp−1
2,K−k

(P ∗)
k |EK−k|p

)

+
Λp−1

ApK+1


(

2γVmax
∑K
k=0 γ

kαK−k
)p

λp−1
3

+

(
γωK

β log |A|
)p

λp−1
4

+

K−1∑
k=0

γk

(√
2γ2ωδ

1/2
K−kAK−kVmax

)p
λp−1

5,K−k

 .

Now, it is seen that we need lp-norm bounds of
∑
s,a∈S×A ρP

πKPπK−1 · · ·PπK−k+2PπK−k+1(s, a) |EK−k|p (s, a)

and
∑
s,a∈S×A ρP

∗ · · ·P ∗(s, a) |EK−k|p (s, a)

Let us focus on
∑
s,a∈S×A ρP

∗ · · ·P ∗(s, a) |EK−k|p (s, a).

∑
s,a∈S×A

ρP ∗ · · ·P ∗(s, a) |EK−k|p (s, a) = E(S,A)∼ν

[
ρP ∗ · · ·P ∗(S,A)

ν(S,A)
|EK−k|p (S,A)

]

≤ c(ρ, ν;

k︷ ︸︸ ︷
π∗, . . . , π∗)E(S,A)∼ν

[
|EK−k|2p (S,A)

]1/2
= c(ρ, ν;π∗, . . . , π∗) ‖EK−k‖pν,2p ,

where Cauchy–Schwarz inequality is used. A bound for
∑
s,a∈S×A ρP

πK · · ·PπK−k+1(s, a) |EK−k|p (s, a) can be
similarly obtained. Therefore,

E(S,A)∼ρ |Q∗ −QπK |p (S,A)

≤ Λp−1

ApK+1

K∑
k=1

 γk

λp−1
1,K−k

c(ρ, ν;πK , . . . , πK−k+1) +
γk

λp−1
2,K−k

c(ρ, ν;

k︷ ︸︸ ︷
π∗, . . . , π∗)

 ‖EK−k‖pν,2p
+

Λp−1

ApK+1


(

2γVmax
∑K
k=0 γ

kαK−k
)p

λp−1
3

+

(
γωK

β log |A|
)p

λp−1
4

+

K−1∑
k=0

γk

(√
2γ2ωδ

1/2
K−kAK−kVmax

)p
λp−1

5,K−k

 .
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By setting

λ1,K−k = c(ρ, ν;πK , . . . , πK−k+1)1/p ‖EK−k‖ν,2p ,

λ2,K−k = c(ρ, ν;

k︷ ︸︸ ︷
π∗, . . . , π∗)1/p ‖EK−k‖ν,2p ,

λ3 = 2γVmax

K∑
k=0

γkαK−k,

λ4 =
γωK
β

log |A|,

λ5,K−k =
√

2γ2ωδ
1/2
K−kAK−kVmax,

we obtain

E(S,A)∼ρ |Q∗ −QπK |p (S,A) ≤ Λp−1

ApK+1

(
K∑
k=1

γk (λ1,K−k + λ2,K−k) + λ3 + λ4 +

K−1∑
k=0

γkλ5,K−k

)
=

Λp

ApK+1

.

Accordingly,

‖Q∗ −QπK‖ρ,p ≤
Λ

AK+1

=
2γ

AK+1

K−1∑
k=0

γk
c(ρ, ν, 2;πK , . . . , πK−k)

1/p

+ c(ρ, ν, 2;

k+1︷ ︸︸ ︷
π∗, . . . , π∗)1/p

2
‖EK−k−1‖ν,2p

+
2γVmax
AK+1

K∑
k=0

γkαK−k +
γ(1− γK)

β(1− γ)AK+1
log |A|+

√
2γ2Vmax
1− γ

K−1∑
k=0

γk
AK−k
AK+1

δ
1/2
K−k.

Loosening it by replacing AK−k/AK+1 with 1 and taking supπK ,...,π0
, we conclude the proof.


