Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in RL

A Notations in Theoretical Analysis
We introduce notations used in Appendices.

A.1 General Notations

If two functions f and g satisfy f(z) > (>) g(x) for each x in the domain of f and g, we write f > (>) g. We

denote a constant function by its value. For example, if a function in Q takes ¢ € R at each (s,a) € S x A, the
function is denoted as c.

We define the following quantities:

1

k k—1

1—’yk l l

W= —— W 1= By = a'ep_y, and Ay = o,
I—vy I—vy l; ;

where Ag := 0, and error functions ; depend on context, which shall be clear.

A.2 Notations Related to Softmax Operators

We call the following policy a Boltzmann policy (given a function f € Q):

__ exp(Bf(s.a)
2beaexp (Bf(s,0))’

where 8 € (0, 00) is the inverse temperature. A Boltzmann-softmax operator bg is a mapping f € Q — bgf € V
such that

ba(als; f) :

(bsf) (s) =Y bslals; f)f(s,a)

acA

for any state s € S. Note that the Boltzmann-softmax operator is not a linear operator, as it depends on input
f. We define my, and b, to be m. As we show later, mgf < bgf and limg_,o bgf = limg_,oc mgf = mf
hold.

A.3 Notations Related to Other Operators

n-th power of an operator O is recursively defined by O"Q := O™ ! (OQ), where OV is an identity operator I.

Linear operators can be expressed as matrices. The addition of linear operators, say Oy and Os, is defined as
O014+0:: f—=O1f+0:f

analogously to the definition of the addition of two matrices. The multiplication of a linear operator O with a
scalar c is defined as

cO: f— c(Of).

(Recall that the multiplication of a scalar d and a function g means a function that satisfies (dg) (z) := dg(z)
for any « in the domain of g.)

Suppose a policy 7. We define an operator
P":feQw— PrfeQ
and a Bellman operator
T":feQ—r+yPrfcQ.
For any policy 7, an operator .
(I-vP™) 'ifeQm ) A (PT) feQ

t=0

is well defined. As the notation implies, (I — 'yP’T)f1 (I —yP7™) f = f holds. We note that (I — ’yP")f1 is a

monotone operator. In other words, if f > g, (I — fyP"’)f1 f>- 'yP’T)f1 ¢ holds. Furthermore, we note that
Q" = (I —~P™) 'r.
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B Lemmas on the Mellowmax and Boltzmann-Softmax Operators

Here, we prove lemmas on the mellowmax and Boltzmann-softmax operators.
The following lemma shows a relationship between the mellowmax and Boltzmann-softmax operators.

Lemma 5. For any inverse temperature 3 € (0,00) and function f € Q,

%log |A| > bgf —mgaf > 0. (20)

Proof. Let H(s) denote the entropy of bg(-|s; f), that is,
H(s) :=— Z ba(als; f)logba(als; f).
acA

It can be rewritten as

Ho =3 ‘Wwﬂs, a) — log Z(s))

=log Z(s) — B (bsf) (s)
= B (mgaf)(s) — B (bsf) (s) +log|Al,

Y acaxp(Bf(s,a)), and the last line is obtained by using (1/3)log(Z(s)/|Al) = (mgsf) (s).
s) < log|A|, the claim holds. O

where Z(s) =
Because 0 < H(

Lemma 7, which is proven by using the following lemma, states that the mellowmax and Boltzmann-softmax
operators are close to the max operator.

Lemma 6. For any inverse temperature B € (0,00), state s € S and function f € Q, (mgf) (s) is non-decreasing
in 8 while (mgf) (s) + (log|A|) /B is non-increasing in (5.

Proof. The former claim holds since

% (mpf)(s) = % ((bsf) (s) = (mpf) (s)) = 0,
where the inequality is due to Lemma 5.
On the other hand,
0 1 1 1
55 ((man )+ G108 A1) = 5 (@6) ()~ (maf) o) = S 1oe14l) <0,
where the inequality is again due to Lemma 5. O

Lemma 7. For any inverse temperature 8 € (0,00) and function f € Q,
1
mf —bsf <mf—msf < glog|A|.
Proof. As shown in Lemma 6, (mgf) (s) + (log|A|) /8 is non-increasing in 5. Therefore, for any s € S,

() () + 5 og 4] = Jim (ms ) (s) = (mf) (5,

where the last equality is proven in Asadi and Littman (2017). From Lemma 5, mgf < bgf, and thus, the claim
holds. O
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C Proof of theorems

In this appendix, we prove Theorem 1, 2, 4 and Proposition 3.

To begin with, we prove several lemmas used throughout the paper. The following lemma not only makes our
theoretical analysis simpler, but also shows that the behavior of CVI is determined by a series of functions whose
update rule is simpler.

Lemma 8. Suppose series of policies py, and functions e, € Q, where k =0,1,.... Define @ € Q recursively by
Ppy1 1= TP*Qp + a (Py — PePi) + ey,
where ®g € Q. For any positive integer K,
Px = Axox + ¢ — apr_1 (Axk—10x-1 + " '¢y) (21)
holds, where ¢y, is recursively defined by ¢g := Py and

Ap10r41 = ATP* ¢ + o TP* ¢ + E,. (22)
Proof. We prove the claim by induction. For K =1, ®; = TPo®g + o (Dg — poPo) + €0 = A101 + adg — apodo.
Therefore, the claim holds for K = 1.
Next, suppose that up to K — 1 (K > 1), the claim holds. Then,
TPe-1®p g =TP5= [Ax_16x—1 + " '¢g — aprx_2 (Axk—20K—2 + ™ 2¢)]
= (AK_1 + o1 — aAg_o — O(Kil) r
+yAg 1 PPE g g + o Ty PPR-1g) — ay AR o PPEX-2¢g 5 — o Iy PPR-2¢,

= Ag 1 TPX g 1 + T TPR1 ¢y — Ak oTPK 2 ¢ 5 — a1 TPK2¢,

= Ax¢rx — Ak 191 — Ex1 + abk 2

= Axdx — aAk 10K -1 — €K1,
where the second line follows because Ax_1 — @Ak _o = 1. Furthermore,

P 1 —Ppr-1Px-1=Axg_10K-1+ " "dg — pr_1 (Axk_10K -1+ " ).
In the consequence,

Py =TPE1Qp g +a(Pr_1 —Pr-1Pr_1) +ex—1 = Axdx + "o — apr_1 (Axk-10x-1 + " '¢y).

This concludes the proof. O

The following lemma is frequently used in our theoretical analysis.

Lemma 9. Suppose series of functions ®p and ¢y defined in Lemma 8. For any non-negative integer K and a
policy p satisfying p >¢, mg,

A K A K log | A
P(AK oK + a ¢0)2m< K ok + e ¢0> 0g ||
K+1

Ag 1 A 7 Ag  BAg

holds.

Proof. From Lemma 8 and the definition of p,
pPx = p (Axdr +a"do) — apr—1 (Ax—10K-1 + " 1¢p)
> mgPx
=mg (Axdr +a"¢o) — apx_1 (Axk-10x-1+a"'¢y),
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and thus,
p (Axdr +af¢g) > mg (Axdx + o).
As a result,
A K mg (A +aX
p( K et -2 ¢0> > M (Axdx +a% o)
Agi1 Ag i1 Akt
AK OéK
=MpAg, (AK+1 oK + Aros ¢0)
Ag X > log |A|
>m + - ,
(AK+1 ox Arq1 %o BAK+1
where the last line follows from Lemma 7. O

C.1 Proof of Theorem 1

We are going to prove Theorem 1. For ease of reading, we state settings in the theorem again.

We suppose ¥ € Q recursively defined by
Vi1 =TV + a (V) — v W) + e

where ¥y € Q, and v, is a policy such that vy >¢, mg. Let p; be a policy such that pr >w, V. The initial
function ¥g is assumed to be a constant function whose value is 0. E} defined with 5 above is used. We let v,
denote a function (¢y) obtained by applying Lemma 8 to Wy.

By the decomposition of Q* — Q”% to Q* — ¢ and — (QP¥ — q), where ¢ is some function, it is clear that we need
an upper bound of Q* — ¢ and a lower bound of Q¥ — ¢ to show a point-wise upper bound of Q* — Q”%, from
which [,-norm performance bounds can be derived. The following two lemmas give us those upper and lower
bounds.

Lemma 10. Suppose series of functions Vi, ¥y and policies py explained in the beginning of this subsection.
The following upper bound for Q* — W11 holds for any non-negative integer K :

K

K
* ’YVmax k K—k YWEK

> (WP B+ N ka4 TR og A 23

(7 ) K—k At k:07 BArr g\ | ( )

N 1
Q" — Y41 < 7
K+1 =5

Proof of Lemma 10. We prove the claim by induction.
Note that Ax +af =1+ a+ -+ af = Ag,1. Therefore, from (22) and Lemma 9,

AK Cvk > EK ( AK Ozk ) EK 'ylog|A|
=1+ PV + - > 7+ P 0 - - :
Vi1 7 (AK+1 Yk Ag i1 Yo Ag i1 7 Ag i1 Yk Ag i1 v A1 PAk+
Accordingly, for K =0,
EO EO ’vaaz EO
* — ~P*O* — ~PY0 _ 2V <« A P*O* — AP _ 0 < =0
Q" — 1 =yP*Q" —yP™ g a, =7 Q" — P o 4,54, A,
where the last inequality is due to Q* < V,,4,. Therefore, the claim holds for K = 0.
Suppose that the claim holds up to K — 1 (K > 0). Then, for any positive integer K,
. YAK o yak oL Ex | vlogl|A]
— <—P — + P — — +
Q" —YKr11 At (Q" —¥K) A (Q — o) Ars | BArn
A K E log | A
S’Y KP*(Q*fwK)‘F’Ya Vmaz* K ’Yog| |a
Ag i1 Ak 41 A1 BAk+
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where the inequalities are obtained similarly to the case in which K = 0. By the assumption of the induction,

- S P - + 7Vmax -
K K+1 K K+1 K+1 K+1
K-1
- : Z (VP*)kHE K—k— 1+7Vmaw Z kol K—k= 1+ 10 |A|
Ax+1 2 Ax+1 ﬂA
Loet o Bx | yloglAl
Agpr ™ Agpr o BAgs
K
1 k '7 max k K k ’7 K
< - P Eyg_p+—— 10 Al.
Yy kzzo(v ) Exc i Z g | Al
Therefore, the claim holds. O

Lemma 11. Suppose series of functions Vi, ¥ and policies py explained in the beginning of this subsection.
The following lower bound for QPX — i1 holds for any non-negative integer K :

K V, K 2w
Qrx — 7 Vmaz 3 AFak ko T 99K 1og | Al (24)
1 Ax1 = BAK 11
where
0 _: I fork=0
K,K—k - (I_,YPPK)—lppKPPK—l ...PPK—k+2PPK—k+1(I_fyPPK—k) fOT’ 1<k<K .

Proof of Lemma 11. We first note that for any non-negative integer K,

A K A K
VK<AK ¢K+A(j<+1¢0>§pl<( K i+ < ¢0>~ (25)

K+1 Agt1 Agi1
Indeed, from Lemma 8,
Kk (Ax¥k +a®y) = vk (Vg + avig_1 (Axk—10k—1+ o™ ¢y))
< prVi +avk 1 (Axk—10k-1+ " 1¢)

=pr (Vi +avi_1 (Axk—10Kx-1+ "))
= px (Axtx + o 4) .

As both v and pi are linear operators, the inequality (25) is obtained by dividing both sides by Ax 1.

For any non-negative integer K,

(I —yPPx)(Q°F — YK 41)
A K A K
Z’YPPK<T“K(AK1/JK+AC; 11/10>+ EK)—VP"K(AKdJK-F a %)- Ex

K+1 Ar 41 K+1 Agq1 Agq1

+ +
2 PPK TVK + + _ PPK + _
7 ( (AK+1 Yk Ar i1 Yo K41 7 Ax 1 VK Ag 1 Yo Ax 41

A
AK aK ) ( AK OéK )) 1
=y PP (TVx + — (e ) | - I —yPPx) By,
o ( (AK+1 Vi At o AK+11/JK AKH% Ar (I -~ ) Ex
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where the inequality (25) is used. Accordingly, from Lemma 9,

(I —yPPX) (QPF — K 41)

> po (1o (A w)—(AKw +“Kw>)— (PP E
=7 A1 K AK+ 0 A1 K Aggr 0 Ag 1 7 K
et o) - (G e fow)
Z PPK TPK—l + _ +
7 ( (AKJrl 2 Ag i1 Yo A1 VK Ari1 Yo
1 7 log | A]
_ I — ~PPKE, — L 9814
AK+1( 7 ) Ex BAK 11
Ag aX > 72 log | Al
= ~PPK ([ — ~PPK-1 PK—1 __ _ _ I —~APPK\E, — L 21771
o (1= posn) (@ By By - L (1P - LRE
By noting that Ax + o = Ag 1,
AK OéK )
PPK ([ — vPPK—1 PK—1 __ —
Y ( Y ) (Q At K At 0
— ,YAK PK PK—1 PK—1 v K PK PK—1 PK—1
= +— PP (I —yPP*)(Q — k) + PPx (I —yPPx-1)(Q — o)
K+1 K+1
A 1-— K
> 2K pex (I — yPPE=1) (QPX—1 — 1hyc) — 71 — ) Vi,
AK+1 AK+1

where the inequality follows from (I — yPPx-1) QP51 =1 > —r0. = —(1 — ¥)Vinae. Therefore,

(I —yPPX)(QPF — Y1) = TP YK 11 — Yria

YAk V(1 —y)aX 1 7*log |A|
> =" PPK ([ _ nPPK-1 PK—1 __ _ 7Vmax _ I —~PPKYE, — L 21”1
2 At BT ) = At P B e
By continuing the same argument, we obtain
pa -
(I —yPPX) (QPX —Ygy1) > PPk ... pP1 (I*’VPPO)(QPO*%)* Vimaz Z K=k k
Ariq AK+1
K—1
1 & Y2wi log | A|
— I — yPPK wEg p— ————.
Ak 1 1;0 =7 ) QB BAK 1
Since
(L —yPP) (Q — 1) =Ty —
> PP (r + yPY 4o + Eo — o) —
> _7(1 - ’Y)Vmam - (I - 'YPPO) EO
we finally obtain
(I —yPP*) (Q°F — YK41)
K K-
> _LPPK . PP1 (I Ppo En — I PPK) Q E
= : v 0 Z v KK-kLiK—k
K+1 +1 5T
_ R '7)V _ Vinax Z K=k _ Y’wi log | Al
Ag 1 e AK+1 BAK 1
2w log | A
— I PpK E _ mal K—k k Y Wik log .
AK+1 Zry 7 ) Qr -k Bx— AK+1 Z BAK 1

Recall that (I —yPPK )_1 is monotone and linear. Therefore, by applying it to both sides of the inequality, it
is confirmed that the claim holds. O
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By combining Lemma 10 and 11, the following proposition is obtained. (Note that the first summation in (26)
is from k£ =1 to K because Qi x = (P*)° =TI for k=0.)

Proposition 12. Suppose series of functions Wy, 1y and policies py, explained in the beginning of this subsection.
The following point-wise upper bound for Q* — QPX holds for any non-negative integer K :

K
1 2~V
* _ PK Zk _ (p*\k 'Ymm:}:kKk
Q Q < AK+1 k:1’}/ (QK,K—kEK—k (P ) E ) BA 10 ‘.A| (26)

A
K+1 1=

0 ) ) .
and Y, _, Qr means a constant function whose value is 0 for any sequence of functions Q.

Now, we prove Theorem 1. We only prove lo-norm performance bound. A proof of [,-norm performance bound
is similar to that of (17) given in Appendix C.4. However, we omit it because it is notationally very cluttered.

From Proposition 12 and |Q*(s,a) — QP¥ (s,a)| = Q*(s,a) — QP¥ (s,a),

Q" — Q™ ||
=Hslfz x(Q* — Q™) (s,a)

(Q — Y1 — (Q™ — YK 1)) (s, a)

’7 *\ Kk 27Vmaz k K— k TWWEK
< _ — .
< Hslixg_ At (QK,kazEka (P*) Eka:) (s,a) AK+1 E 514 log\AI

Because ||Qxk x-+Qll,, < w(1+7) Q| for any Q € Q,

K
2 Eka 27Vmaz k K k IYWWK
Q- Q| < log |A
| loe 1_71@—1 A 11| o AK-H kZO BAK+1 4]
K—
E 2 Vinaw
_ Z K—k—1 Y Z koK~ k YWWE log|A|.
Y CAra o AK+1 = 514

C.2 Proof of Theorem 2
GGG G G

Figure 2: A deterministic environment used to prove the asymptotic tightness of (14) in Theorem 1. This
environment is taken from Bertsckas and Tsitsiklis (1996) and Scherrer and Lesner (2012) in which existing
performance bounds for VI and policy iteration are proven to be tight There are two actions: s (stay) and m

(move). Except for state 0, staying costs an agent —r(l,s) = 2Zk 0, where £ € (0,00) is a fixed positive
real value, and [ is an index of a state. At state 0, no cost is incurred. Therefore, an optimal action is m (move)
at all states.

We are going to prove Theorem 2. For ease of reading, we state settings in the theorem again.

Recall that 5 is assumed to be co. Therefore, ¥y, € Q is recursively defined by
Upr1 =TV + « (\Ifk — m\I/k) + €k

where Wy € Q. Note that py is a greedy policy with respect to Wy. The initial function ¥q is assumed to be a
constant function whose value is 0. Ej, defined with g5 above is used. We let 1, denote a function (¢ ) obtained
by applying Lemma 8 to Wy.

Since the proof is lengthy, we first provide a sketch of the proof. Then, we provide a full proof.
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C.2.1 Proof Sketch

Consider a deterministic environment depicted in Figure 2. Expected immediate reward of staying at state [ is
given as r(l,s) = —2 22;10 7*e, where € € (0,00) is a prescribed positive real value. We assume that

e For any state [ and action a, Uy(l,a) = 0.

e For any state [ and action a, Ex(l,a) = 0 except state [ = k+ 1 and [ = k + 2 where

1— k
Ek(k+1,8) :Ak+1€, Ek(k+1,m) :_AkJrl{‘:_Oék'V 1 1 g,
-7
1 _,yk—i-l
Ep(k+2,s) =0, Ep(k42,m) = Apy1e + ak+171 €.
-

Under these assumptions, we prove that for any positive integer K > 1, (i) ¥x(K,s) = g (K, m) and (ii)
V(K + L,s) < Y (K + L,m), where L € {1,2,...}. Thus, from Lemma 8, one of greedy policies with respect
to Wi chooses action s (stay) at state K resulting in cumulative rewards of —2%,7 ~* Zf:_ol vre. We set pg
to that greedy policy. As a result,

Q" = @ e = Q" (K, 5) — Qo (K 5) = L=,
(I=7)
since Q* (K, s) = —2 Z}f:_ol ~*¢ is cumulative rewards when s is taken once at state K and m is repeatedly taken
afterwards.

On the other hand, it is obvious that either
1Exklloo = |Ek(k +1,m)| or [|Exllcc = |Ex(k +2,m)]
holds. In any case, we have
|Eklloe = Akt1e + O(a¥).

Thus, the right hand side of (14) becomes

27e K—k-1 Akt
r.h.s. = ——— +0o(1
T kz:: VT e e
K—1
2ve K—k—1 ( kAK—k+1>
= — l1—a"———— | 4+ o(1
1—7v kZ:O 7 Agi1 M
K-1
27(1 - ’YK) 2e k K-k
= € — « A +o(1).
(1—=7)? (1=7)Ak 4 kZ:O ! w1 +o(l)

The second term converges to 0. Indeed, when 0 < a < 1,

1 K-—1 K-—1 N b O(K —’}/K
0< 'ykaK_kAk < af <7> = —
Ar 11 kz:;) + ICE:;J a

a—7

(When a = 7, the last term is Ko, which converges to 0.) On the other hand, when o = 1,

1 K-1 1 K-1 1 7’YK ,.YK
0< Yo F A ==Y Ak+1)= — ,
Art+1 kZ::O YUK kz:;) (I=7)2K 1-v
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where the second equality is obtained as follows: let Sk denote 25;01 7¥(k +1). Because

K-1 K-1
Sk =Sk =Y _ Ak+1) = > Ay (k+1)

k=0 k=0
K-1 K

=Y k1) =D Ak
k=0 k=1
K-1

= > -1k,
k=0

1— K K[
v 7 . As a result,

it follows that Sk = —
(1=7)2 1-7v

. - R * PK
Klgnoor.h.s. = s = Klgnoo lQ Q" |l

C.2.2 Full Proof

By induction, we prove that for any positive integer K > 1

1f'yK
IZ}K(KaS):wK(Kam):* 11—~ ’ (27)
— AK+1 1- 7K€ (28)

K+1 =
77[}K( + 7m) AK 1_7 )

Y (K + L,s) < i (K + L,m),

where L € {1,2,...}.
Recall that the update rule of ¢y is

A4 1
= P _ —FE_
Y =71+ AL mapy 1+Ak k=1,

as we assume that ¢ = U9 =0. For K =1, as g = ¥y =0,

1— 1

— 1_775:r(1,m)+E0(1,m):wl(l,m)
_ _ _ A l—o!

1/)1(2,m)—r(2,m)+EO(2,m)—€+a€—A—l 1—75

¥1(1,8) =r(1,8) + Ep(1,s) =

Pvi(1+L,s)=r(1+L,s)+ Eg(1+ L,s) <0<r(1+Lm)+ Ey(1+L,m)=1v1(1+L,m).

Therefore, (27), (28) and (29) hold for K = 1.
Suppose that (27), (28) and (29) hold up to K — 1 (K > 1). First, note that

(I m) = 7 a2 (K —1,8), v (K — L)} + B (K, m)
K K

AK—11_7K71 O[Kfl 1_,YK71
=Y & —¢&— Y
AK ].—’y AK ].—’y
1 1_,YK—1
= —e— — (Anp_ K-1 - r
€ AK( K-1t+« )7 177 &,
1 —AK

- )

1—x
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where we used max{vx_1(K —1,5),%x 1(K—1,m)} = ¢¥g 1 (K—1,8) =g _1(K—1,m) and Ax_1+af"! =
Ay . Next, note that

Ap_
UK. 5) = (K. 8) + 2 b max{ae (K, 8), b (Kom) + =B (K.

where we used Y _1(K,s) < Yx_1(K,m) to obtain max{¢x_1(K,s), Yx_1(K,m)} = Yx_1(K, m). Therefore,
(27) holds. Furthermore,

Ap_ 1
Y (K +1,m) =7 ;; 1max{wK_l(K,s),wK_l(K,m)}+EEK_l(K—Fl,m)
1_,VK—1 OéKl—’yK
—’Yﬁf“rf"'ﬂ 1775
K 1— K
= (145 T e
AK 1—’}/
:AK+11—7K
AK 1—’)/ ’

where we again used Yx_1(K,s) < ¥x_1(K,m) to obtain max{yx_1(K, s), yx_1(K,m)} = Yx_1(K,m). Thus,
(28) holds. Finally, noting that ¢¥x_1(K + L —1,s) < ¢pg_1(K + L —1,m),

Ax_ 1
wK(K+Lam) =7 ;1( - maX{¢K—1(K+L7 135)3¢K—1(K+L7 1am)} + TEK—l(K+Lvm)
K
Ax_ 1
=y (K + L—1,m) + —Ex_1 (K + L,m)
AK K
QAK,Q 1
=7 Y 2(K+L—2m)+ —— (Exg1(K+L,m)+vEx 2(K +L—1,m))
AK AK
1

= T (El(,l(K + L,m) +’YEK,2(K + L — l,m) + - +’YK_1E0(L + Lm)) .
K

Because L > 1, Ex—1_;(K + L —i,m) > 0, and thus, ¥k (L, m) > 0. On the other hand,

1

FEx_1(K+L
AKK1( +L,s)

Ag_
(K +L,s)=r(K+1L,s)+ VALKI max{tx_1(K + L, s), ¥x_1(K + L,m)} +
Ag_
=r(K+L,s) + 722 1(K + L,m)
Ax
1
:r(K+L,s)+E(VEK_Q(KJFL,m)+---+7K*1EO(L+2,m)).

Because L > 1, Ex_o_;(K + L —i,m) =0, and thus, ¥k (K + L,m) = r(K + L,s) < 0. Therefore, (29) holds.
Given those results,

lim r.h.s. = ﬂ
K—o0 (1—7)2

— 1 * _ (O)PK
Jim |Q" — @
can be shown by following the proof sketch we have provided in Appendix C.2.

C.3 Proof of Proposition 3

We aim at proving Proposition 3. For the ease of reading, we state settings in the proposition again.
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We suppose a series of functions ¥y, € Q defined by
Ui : =TV, + (VU —mg¥y) + €,

where Wy € Q. The initial function Wy is assumed to be a constant function whose value is 0. Furthermore,
lletlloo < € is assumed. Ej defined with gj, above is used. We let ¢, denote a function (¢y) obtained by applying
Lemma 8 to ¥,. A policy is given as

Tt1(als) oc exp (BWk+1(s,a)) o< exp (BAp1¥+1(s, a)).

As explained in Asadi and Littman (2017), there exists a policy ug such that mgUy = pe¥s. From Lemma 8,
it follows that

mg (Axthr + o"o) = p (At + 1) .

Let us start the proof. Since

i (als)

log —————
S i —1(als)

= {AkvVK(s,a) — Ak 1¥Kr—1(s,a) — [mg (AxYK) — mg (Ax—1VK-1)]},

we have (note that the mellowmax is a non-expansion)

~1(a

By definition, Agx = Ax 1 THE-1 g _1+aXr+Ex_; = Agr+vPmg (Ax_1¢¥kx_1)+Ek_1 as we assumed
Yo(s,a) = Ug(s,a) = 0. Therefore,

ZT"K al) log ( i |)) H <28 |AxYr — Ax1¥K 1o

[Ax¥K — Ax—1¥x-1ll = || + yPmg (Ag 19k 1) — YPms (Ax—2¥k—2) +ex—1 — (1 — Q) Ex |
< aE e + Y Ak —1¥K -1 — Ax_2K || + 2¢.

By induction, it is easy to see that

Atk — Ax—1¥r—1llo < Y51 A1 + 2(1 v+ (T Ty o+ Y T s

1A%
1 €+rmawzakKk1

As a result,

wr—1(al

GWK(a.)IOgﬂ-Km"))H §4ﬂ< = E+Tmaa:20ék K—k— 1)

C.4 Proof of Theorem 4

In this appendix, we prove Theorem 4. A basic strategy we take is almost same as the one we used in the proof
of Theorem 1. For the ease of reading, we state settings in the theorem again.

We suppose a series of functions ¥y € Q defined by
Wy 1= T/@‘I/k + a (\I’k - mﬁ\llk) + €k,

where Uy € Q. The initial function ¥q is assumed to be a constant function whose value is 0. Fj defined with
e above is used. We let ¢, denote a function (¢x) obtained by applying Lemma 8 to ¥. A policy is given as

Trt1(als) o< exp (B¥r11(s,a)) -

As explained in Asadi and Littman (2017), there exists a policy ug such that mgUy = pe¥s. From Lemma 8,
it follows that

8 (Axthr + ¥1ho) = pr (Axtor, + oFey) .
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Dividing both sides by A1,

Ak ak - Ak ak
MBA, ., <Ak+1¢k + Ak+1w0) = P (AkHi/Jk + Ak+1w0 .

We extensively use this equation.

First, we show an upper bound of difference between Q-value functions of two policies.

Lemma 13. For any pair of policies T and i, the mazimum difference between their Q-value functions is bounded
by V2w Vimaz0'/?, where § = max, Dy, (7(-|s)|p(+]s)).

Proof. We have

QT = Q' =vP"Q" —yP'Q" = yP (mQ™ — pQ") +vP" (Q™ — Q")
=~ (I —yP") ' P(7Q" — uQ").

Therefore,

197 = @l < w[7QT — pQ"|y < ywmax > |(w(als) — pals)) Q" (s, a)l
acA

< J—
< YwVimaz max ;4 |m(als) — p(als)],

where the last inequality follows from Holder’s inequality and [|Q™|lcc < Vinaz. By Pinsker’s inequality,
max; Y, |7(als) — p(als)| < v/26'/2. In the consequence, [|Q™ — Q" = V27w Vinaz6/2. O

The following lemma gives us a different upper bound for Q™% — ¥ 1.

Lemma 14. Suppose series of functions Vi, vy and policies my, explained in the beginning of this subsection.

Let by, be an upper bound of maxs Dy r (mx(:|8)|mr—1(:|s)). The following lower bound for Q™ — k11 holds for
any non-negative integer K:

K K K—-1
. 1 V _ Ag_k /2
Q™ — YKy 2 7 E Y P k- k1 Ex i, — Aﬂ YK =* - V220 Viman E VkA 5%,;@ (30)
K+1 i K+1 =, pars K41

0 . . .
where Y, | Qi means a constant function whose value is 0 for any sequence of functions Qy, and

I fork=0

Pr i =
K,K—k+1 {PTI’KPﬂ'Kl . .P‘”K*k#»QPTrK*kJrl fO'f‘ 1 S k é K

Proof. For any non-negative integer K > 0,

A o E
Q™ —hcyy = YPTEQTE — PR [ g Yo K
Ag 1

Ax 41 Ak
AK EK P)/Vma:b K AK
> PTFK TK—-1 __ . . o + PTrK TK __ TK—1
> W’AKH (Q Vi) Arrr Aro VTKH (Q Q )
> v K pre (QﬂK71 - 7/1K) - K 7V OéK — ﬁvzwvmaz K 5}(/2
Arq1 A1 Arq Ag 11

(The first and last term disappear if K = 0.) It is clear that the claim holds for K = 0. It is not difficult to
prove the claim by induction with the aid of the above inequality. O

By combining Lemma 10 and 14, the following proposition is obtained. (Note that the summation in (31) is
from k =1 to K because Pg g1 = (P*)° =1 for k= 0.)
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Proposition 15. Suppose series of functions Wy, 1, and policies wy, explained in the beginning of this subsection.

Let 6y, denote an upper bound of maxs Dicr, (g (+|8)|mk—1(:|8)). The following point-wise upper bound for Q* —QT¥
holds for any non-negative integer K :

K
1
QT < " (Pr,x—r1Ex—1, — (P*)" B
Q QfAK+1Z'7(K,Kk+1Kk()Kk)

2’7Vmax k ok kAK kc1/2
10 Al + V2720 Viman 612, 31
AK+1 kZO 514 g Al 27 Z Agyq K (81)

where Py, are defined in Lemma 14, and 22:1 Q1 means a constant function whose value is 0 for any sequence
of functions Qy,.

Now we prove Theorem 4. We first prove [,-norm performance bound. From Proposition 15 and by noting that

|Q*(sva) - Qrx (s7a)| = Q*(s,a) - Q" (sva)»

Q" — Q™|
= max (Q" — Q") (s, a)

= max x(Q" = Yr 1 — (Q™ — Y1) (s,a)
k
< s,;zziAZ

2'}/Vmar
AK+1

N

Py s e — (P B
AK+1( x,Kk—k+1Ex— — (P*)" Ex k) (s,a)

K—1
A
k oKk 4 1 V. Z EAK k51/2 )
kEO ﬁA Og|.A|+\['Y WVmax k207 AK+1 K—k

Because || P x—i+1Qll. < Q. for any Q € Q,

Eg_i
A 11| o

K
19 =@l <21 3"

2’7Vmaz

A
Ej KoK=k 4 1o Al + V2v2wVian RIKk 512
A ﬂA g A+ v2y §

Kk
AK+1

Loosening it by replacing Ax _x/Ak 11 with 1, we conclude the proof for the I, -norm performance bound.

Next, we prove [,-norm performance bound.

@ - Q™| =Q - Q™

K k
< AV (PK,kaJrlEka - (P*)k Eka)
— Axp
L 21 Vinaa = .4 /
max k K k kAK—k ¢1/2
10 A “1‘\/7 wvma.L 6 —
e kzo ﬁA g Al +v2y kzzov ey, Kk

M=

< il (PK,kaJrl |Ex_i| + (P*)F |EK7k|)
= Ag41

2’}/[/ ! Ag_ /
max 2 : k K— k 2 : kAK—k ¢1/2
10 A + \/> WLmaw Y 6[(7 )
AK+1 ﬂA gl A ot Ar 1 k

where |Q],Q € Q is a function such that |Q|(s,a) = |Q(s, a)| for any state-action pair (s,a) € S x A. Because
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f(z) = 2P is monotonically increasing in x for any p € [0, c0),

k
Q* — Q™ P < A’Y (PK,K7k+1 |Ex_i| + (P*)* |EK7k|)
o AR+
Q’YV =oa k <1/ 3
max k K k kK — 1/2
10 A + \/> wvma:r 6 9
AK+1 kzo ﬂA g | Al 2y Z Agi1 K-k

where QP, Q € Q is a function such that Q7 (s,a) = Q(s, a)? for any state-action pair (s,a) € S x A. Now, let us
introduce variables A1 ;, A2, A3, A4 and A5 ;. We temporarily do not specify values as they are just introduced
to be used with Jensen’s inequality as follows:

AV [E <7k)\1 K—k Er i Y Ao ki k| Ex—k
* _ DTk |P < 5 P B + P* )
@ -0 s (o) LZ TR Py e [ | LRIE (| T
P
n A3 27Vimaa S Yk k N Ay ywie log |A] N Z VR Xs k-1 V27 w82y Ak -k Vinaz
A A3 A Bl = A A5, Kk ’
where A is a normalization coefficient defined by
K-1
A= ZV (A —k + A2 K- k)+>\3+/\4+2’}//\51(k
k=1 k=0

By using Jensens’ inequality twice (firstly considering coefficients and secondly considering P; ; as well as P*),

Q@ -Qp
AP—1 K k k .
< YG Z (ILPK,K—k+1 |Ex—k” + pf_yl (P*)*|Ex_|?
K+1 p—1 )‘17K—k )‘27ka
P p P
AP*l (2’7Vmam ZIIC{:O ’YkaKik) (WTK 1Og |~A|> K1 & (\/ﬁ’}/ZW(S}(/EkAK,kaam)
= + - + v =
D 1 1 1
AK+1 >\§ AZ k=0 >‘157,K—k

Now, it is seen that we need l,-norm bounds of }7_ g, 4 pP™< PT8-1 ... PTK-k+2 PTK—k+1 (s a) |Ex _|" (s, a)
and Z&aESXA pP* e P*(S’ a) |EK—k‘p (Sa a‘)

Let us focus on 37 s, 4 pP* - P*(s,a) |[Ex_1[" (s,a).

P*...P*(S, A
> pP*--P*(s,a) |[Ex[" (s,0) = E(s.a)m0 P PSS A) g (s, 4)
v(S, A)
s, aESX.A
* - * 2p 1/2
<o s T VB e | Exc il (5, 4)]
= C(pa v; ’/T*a v ,’7T*) ||EK7kH]Z,2p )

where Cauchy-Schwarz inequality is used. A bound for Y, s, 4 pP™< -+ PT™8-k+1(s,a) |[Ex |" (s,a) can be
similarly obtained. Therefore,

E(S’,A)Np |Q* - QﬂK |p (57 A)

Ap—l K k Kk ,*_/kﬁ .
= D p—1 c(p7y;7TK7”'77TK7k+1)+ p—1 C(P7V§7T yeeey 0 ) ||EK7kHl,2p
AK+1 i \ ALKk A2 Kk 7
p p p
A;D—l (2’7Vmaz ZkK:O FykaK_k) (WTK log |A|) K-1 & (\/>FY W(S AkaVma:z:)
+p 1 + 1 + v 1
AK—H Ag )‘Z k=0 )‘15),K—k
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By setting
Ak =clp v,k k)P | Bkl
k
* *\1/
Ao -k = c(pvim™, . )P Bkl 0
AS - 2'7Vma:c ka K= k
k=0
TWK
AN = log | A
5 g A,
>\5,K—k = \[272W5}(/EkAK—kaaxa
we obtain
Apil K K-—1 Ap
E(5,.4)~p Q7 = QT%|" (S, A) < VUi A O S S e P e e AR T " =
K41 \g=1 k=0 K+l
Accordingly,
A
* TK < o
19" =@, < 5o
k+1
1/p * *\1/
Z ka,V 7TKa'~-77TK—k) +C(p,1/,2;7'('7...,7|') P”E ||
K—k—1 v,2p
AK+1 = 2
K-1
2’7Vmax Z k K k 7(1 _’YK) 10g|.A| + \/§’Y2Vmam Z fyk;Aka 61/2 )
Bl =) AKk+1 L—y &= Agy B7F

A
K+1 =5

Loosening it by replacing Ax_x/Ax41 with 1 and taking sup, . ., we conclude the proof.



