
Supplement for “Semi-Generative Modelling: Covariate-Shift
Adaptation with Cause and Effect Features” (AISTATS 2019)

In this supplement we provide some additional results, plots, and derivations. Appendix
A contains a derivation of how to make predictions in a linear Gaussian regression setting,
given the model from the main paper and a parameter estimate θ. Appendix B illus-
trates on synthetic regression data how giving too much weight to the unsupervised model,
P (XE |XC), can lead to overfitting in such a setting. Appendix C contains plots for tuning
the hyperparameter λ. Appendix D provides details for using our semi-generative modelling
approach in a Bayesian framework. It also contains additional experiments investigating
the behaviour under model-misspecification, as well as some plots of the resulting posterior
distributions and decision boundaries found by the different estimators. Appendix E pro-
vides pseudo-code implementations of our approach. Finally, we also provide code which
can be used to reproduce our results as a separate supplementary material.

Appendix A. Proofs

Proposition 1 Given the linear Gaussian regression model from the main paper, and a
parameter estimate θ = (a, b, c, d, σY , σE), the most likely outcome for a new observation
(xC , xE) is given by

ŷ =
σ2E(a+ bxC) + d2σ2Y (xE−c

d)

σ2E + d2σ2Y
.

Proof Denoting the pdf of a normally distributed random variable with mean µ and standard
deviation σ by φ(x|µ, σ2) it follows that:

y∗ = arg max
y

P (y |x∗C , x∗E , θ)

= arg max
y

P (y |x∗C , θ)P (x∗E |y, θ)
P (x∗E |x∗C , θ)

= arg max
y

P (y |x∗C , θY)P (x∗E |y, θE)

= arg max
y

φ(y | a+ bx∗C , σ
2
Y)φ(x∗E | c+ dy, σ2E)

= arg max
y

φ(y | a+ bx∗C , σ
2
Y)φ

(
y |
x∗E − c
d

,
σ2E
d2

)
= arg max

y
φ
(
y |
σ2E(a+ bx∗C) + d2σ2Y (

x∗E−c
d)

σ2E + d2σ2Y
,

σ2Eσ
2
Y

σ2E + d2σ2Y

)
=
σ2E(a+ bx∗C) + d2σ2Y (

x∗E−c
d)

σ2E + d2σ2Y

where the penultimate equality follows from a result about the product of two normal pdfs:

φ(x |µ1, σ21)φ(x |µ2, σ22) = φ
(
x | σ

2
2µ1 + σ21µ2
σ21 + σ22

,
σ21σ

2
2

σ21 + σ22

)

1

Appendix B. Demonstration of Overfitting on Synthetic Regression Data

Figure 1 shows some additional experiments on synthetic data for illustration purposes. The
overfitting problem for too flexible models is apparent from the bottom row, which shows
that our estimator θP perfectly fits the unsupervised model XE |XC , but at the cost of
completely mismatching the two mechanisms Y |XC and XE |Y . Recalling our regression
models, Y = a+bXC , XE = c+dY , and so XE = bdXC+const., it is clear that the positive
slope of the unsupervised model, bd > 0, can be explained by either b, d < 0, which is the
true model, or by b, d > 0, which is the model found by θP . With this flexibility, it thus
only seems logical that overfitting of XE |XC occurs eventually when equal weight is given
to labelled and unlabelled observations, i.e., using λ = nS

nS+nT
.

100 101 102 103
n

T

1.4

1.6

1.8

2

2.2

2.4

R
M

S
E

100 101 102 103
n

T

100

101

102

N
L

L

0 1 2 3 4
X

C

-10

-5

0

5

10

15

Y

2 4 6 8
Y

-20

-15

-10

-5

X
E

-2 0 2 4
X

C

-40

-20

0

20

40

X
E

S

WS

P

true
Source
Target

-2 -1 0 1 2 3
X

C

-4

-2

0

2

4

6

Y

-2 -1 0 1 2 3
Y

-10

-5

0

5

X
E

-4 -2 0 2 4
X

C

-20

-10

0

10

X
E

Figure 1: Synthetic regression data results for nS = 4 and λ = nS
nS+nT

. Learning curves of

NLL and RMSE vs nT (top) are test set averages over 103 different datasets resulting from
random choices of a, b, c, d, σY , and σE . Arrows mark nT = 2 with λ = 2

3 , and nT = 128
with λ ≈ 0.03 for which example model fits are shown in the middle and bottom rows.

2

Appendix C. Tuning λ

The results of our experiments for tuning the hyperparameter λ ∈ (0, 1) are shown in Fig. 2.

0 0.5 1

0.25

0.3

0.35

0.4

er
ro

r
ra

te

0 0.5 1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

N
L

L

nS=8, nT=4, r=2/3

nS=8, nT=8, r=1/2

nS=16, nT=32, r=1/3

nS=16, nT=64, r=1/5

(a) Classification

0 0.5 1
0

5

10

15

N
L

L

nS=4, nT=2, r=2/3

nS=4, nT=4, r=1/2

nS=8, nT=16, r=1/3

nS=8, nT=32, r=1/5

0 0.5 1
0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
E

(b) Regression

Figure 2: Tuning the hyperparameter λ - Shown are negative log-likelihood and RMSE/error
rate against λ ∈ (0, 1) for different combinations of nS and nT (see legends); arrows mark
the minima of each curve. All results are test set averages over 104 runs.

3

Appendix D. Bayesian Approach and Experiments

For a Bayesian approach, we place a rather flat (i.e., with large σ) normal prior π on θ, so as
to not include much prior knowledge on how the data is generated. We can then compute
the log-posterior distribution up to additive constants:

logP (θP |SS , ST) = log π(θ) + (nS + nT)`P (θ) + const., (1)

In order to make predictions for new data (xnewC , xnewE), we estimate the required integral
using a Monte Carlo approximation:

P (Y = y |xnewC , xnewE) =

∫
θ
P (Y = y |xnewC , xnewE , θ)P (θ |SS , ST) dθ

≈ 1

K

K∑
k=1

P (Y = y |xnewC , xnewE , θ(k))

where θ(k) are samples from the posterior distribution. We use a Metropolis-Hastings algo-
rithm with a multivariate normal proposal distribution to sample from the corresponding
unnormalised log-posterior distribution (1). In our experiments we use a step size of 0.1
and generate 10 randomly-initialised Markov chains of length 1100, in order to avoid the
sampler getting stuck in local maxima of spiky, multi-modal posteriors. Discarding the
first 100 samples from each chain as burn-in, this leaves 10,000 samples for prediction. (Of
course, more elaborate sampling schemes are possible.)

Additionally to the synthetic classification data described in the main paper, we also in-
vestigate the setting of model-misspecification. For this, we fit exactly the same model as
before (i.e., a linear decision boundary) while changing one of the normal distributions into
a mixture of Gaussians (MoG). Specifically, we set µ0 = 0 and µ1 = 3 to ensure strong
non-linearity and then draw the class-1 effects according to

XE | (Y = 1) ∼ 1

2
N (−µ1, 1) +

1

2
N (µ1, 1).

Fig. 3 shows the corresponding learning curves for θS , θWS , and θLR.

Fig. 4 shows two examples of posterior distributions over θS , θWS , and θP given labelled and
unlabelled training data. For a correct model and given 8 labelled and 1024 unlabelled data
(Fig. 4a), the posterior over θP , unlike those over θS and θWS , is approximately centred
around the true parameter values. Moreover, it is more spiked as indicated by the scaling
of axes. Under model-misspecification as shown in Fig. 4b, on the other hand, the posterior
over θP appears to be bimodal with respect to µ0 and µ1, whereas posteriors over θS and
θWS seem to remain unimodal.

The decision surfaces, P (Y = 1 |XC , XE), resulting from the different posteriors in Fig. 4b
are shown in Fig. 5. It also contains the ground truth as used for generating synthetic model
misspecification data . As can be seen, the true decision boundary, P (Y = 1|XC , XE) = 0.5,
is formed by two straight lines separating the“Y = 0-cluster” from the Gaussian mixture for

4

100 101 102 103 104

n
T

2

2.2

2.4

2.6

N
L

L

P

S

WS

100 101 102 103 104

n
T

0.22

0.24

0.26

0.28

0.3

0.32

er
ro

r
ra

te

(a) nS = 8

100 101 102 103 104

n
T

1.98

2

2.02

2.04

2.06

2.08

N
L

L

100 101 102 103 104

n
T

0.22

0.225

0.23

0.235

0.24

0.245

0.25

er
ro

r
ra

te

(b) nS = 64

100 101 102 103 104

n
T

4.6

4.8

5

5.2

5.4

N
L

L

P

S

WS

100 101 102 103 104

n
T

0.29

0.3

0.31

0.32

0.33

0.34

0.35

er
ro

r
ra

te

(c) nS = 8 (misspecified)

100 101 102 103 104

n
T

4

4.5

5

N
L

L

100 101 102 103 104

n
T

0.3

0.32

0.34

0.36

er
ro

r
ra

te

(d) nS = 64 (misspecified)

Figure 3: Synthetic classification results using a Bayesian approach for correctly-specified
(top row) and misspecified (bottom row) models. Learning curves show test-set averages
over 103 simulations.

(a) correct model (nS = 8, nT = 1024) (b) misspecified model (nS = 8, nT = 256)

Figure 4: Metropolis-Hastings sampling-based approximations to the posterior distribu-
tions over classification parameters for two example cases of correctly- (a) and incorrectly-
specified (b) models; vertical red lines indicate the corresponding true values of the model
parameters m, µ0, and µ1.

5

X
C

X
E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) ground truth

X
C

X
E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) using θS

X
C

X
E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) using θP

Figure 5: Visualization of the probabilistic conditional P (Y = 1|XC , XE) under model-
misspecification, and its Bayesian approximations with nS = 8, nT = 256, corresponding to
the posteriors shown in Fig. 4b. In all three plots, XC and XE range from -10 to 10.

Y = 1. The decision boundary found using θS corresponds to one of these linear segments,
whereas that found using θP is more differentiated. It appears to be the average of both
linear segments taken individually, resulting in class probabilities close to 0.5 over a wide
range of (XC , XE). This observation is consistent with the bimodal posterior over µ0 and µ1
found for θP in Fig. 4b, with each mode corresponding to one of the two linear boundaries.

Appendix E. Algorithms

In this Appendix, we provide pseudo-code for training a semi-generative model using a
maximum likelihood or a Bayesian approach, and show how to use such a model to make
predictions for new data.

Algorithm 1 describes how to train a semi-generative model for a multi-class classification
task under unsupervised covariate shift adaptation using maximum likelihood estimation.

Algorithm 1 Semi-generative maximum likelihood estimation for classification

Input: labelled source data {(xiC , yi, xiE)}nS
i=1, unlabelled target data {(xjC , x

j
E)}nS+nT

j=nS+1,
mechanisms P (Y |XC , θY) and P (XE |Y, θE), hyperparameter λ ∈ (0, 1), initial guess θ0,
learning rate α

Output: pooled-data, semi-generative MLE θ̂ = (θ̂Y , θ̂E)
1: `S(θ)←

∑nS
i=1 logP (yi|xiC , θY) + logP (xiE |yi, θE)

2: `T (θ)←
∑nS+nT

j=nS+1 log
(∑k

y=1 P (y|xjC , θY)P (xjE |y, θE)
)

3: `P (θ)← λ
nS
`S(θ) + 1−λ

nT
`T (θ)

4: t← 0
5: while not converged do
6: θt+1 ← θt + α∇θ`P (θt)
7: t← t+ 1
8: end while
9: θ̂ ← θt

6

Algorithm 2 details how to predict class probabilities from a semi-generative model and
parameter estimate θ̂ = (θ̂Y , θ̂E).

Algorithm 2 Label prediction for classification

Input: new observation from target domain (xnewC , xnewE), meachanisms P (Y |XC , θY) and

P (XE |Y, θE), parameter estimate θ̂ = (θ̂Y , θ̂E)
Output: label probabilities p1, ..., pk
1: Z =

∑k
y=1 P (y|xnewC , θ̂Y)P (xnewE |y, θ̂E)

2: for y = 1, ..., k do
3: py = P (y|xnewC , θ̂Y)P (xnewE |y, θ̂E)/Z
4: end for

Algorithm 3 describes how to perform Bayesian inference with a semi-generative model.
It uses the Metropolis-Hastings algorithm as an example for sampling from the posterior
distribution. However, more elaborate sampling approach are, of course, possible.

Algorithm 3 Semi-generative Bayes for classification (Metropolis-Hastings sampling)

Input: labelled source data {(xiC , yi, xiE)}nS
i=1, unlabelled target data {(xjC , x

j
E)}nS+nT

j=nS+1,
mechanisms P (Y |XC , θY) and P (XE |Y, θE), prior π(θ), hyperparameter λ ∈ (0, 1),
proposal distribution N (θt+1|θt, σ2)

Output: samples from posterior distribution θ(k)

1: `S(θ)←
∑nS

i=1 logP (yi|xiC , θY) + logP (xiE |yi, θE)

2: `T (θ)←
∑nS+nT

j=nS+1 log
(∑k

y=1 P (y|xjC , θY)P (xjE |y, θE)
)

3: `(θ)← log π(θ) + (nS + nT)
(
λ
nS
`S(θ) + 1−λ

nT
`T (θ)

)
4: t← 0
5: θ(0) ← 0
6: while Markov chain not mixed do
7: θcand ← N (θcand | θ(t), σ2)
8: u← U(0, 1)
9: if exp(`(θcand)− `(θ(t))) > u then

10: θ(t+1) ← θcand
11: else
12: θ(t+1) ← θ(t)

13: end if
14: t← t+ 1
15: end while

7

	Proofs
	Demonstration of Overfitting on Synthetic Regression Data
	Tuning
	Bayesian Approach and Experiments
	Algorithms

