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Abstract

Data de-duplication is the task of detecting
multiple records that correspond to the same
real-world entity in a database. In this work,
we view de-duplication as a clustering prob-
lem where the goal is to put records corre-
sponding to the same physical entity in the
same cluster and putting records correspond-
ing to different physical entities into different
clusters.

We introduce a framework which we call
promise correlation clustering. Given a com-
plete graph G with the edges labeled 0 and
1, the goal is to find a clustering that min-
imizes the number of 0 edges within a clus-
ter plus the number of 1 edges across differ-
ent clusters (or correlation loss). The opti-
mal clustering can also be viewed as a com-
plete graph G∗ with edges corresponding to
points in the same cluster being labeled 0
and other edges being labeled 1. Under the
promise that the edge difference between G
and G∗ is “small”, we prove that finding the
optimal clustering (or G∗) is still NP-Hard.
[Ashtiani et al., 2016] introduced the frame-
work of semi-supervised clustering, where the
learning algorithm has access to an oracle,
which answers whether two points belong to
the same or different clusters. We further
prove that even with access to a same-cluster
oracle, the promise version is NP-Hard as
long as the number queries to the oracle is
not too large (o(n) where n is the number of
vertices).

Given these negative results, we consider a re-
stricted version of correlation clustering. As
before, the goal is to find a clustering that
minimizes the correlation loss. However, we
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restrict ourselves to a given class F of cluster-
ings. We offer a semi-supervised algorithmic
approach to solve the restricted variant with
success guarantees.

1 Introduction

Record de-duplication is a central task in data clean-
ing in large data bases. Common practical exam-
ples include the detection of records referring to
the same patient in large health data bases (differ-
ent records might have been generated for same pa-
tient in different clinics or even in the same clinic
at different times), detecting same person records in
census data, detecting customer records, duplicate
records of papers in Google Scholar and so on and
so forth [Elmagarmid et al., 2007], [Chu et al., 2016],
[Ilyas et al., 2015].

Since the same-entity relation is reflexive, symmet-
ric and transitive, the sets of duplicate records can
be viewed as clusters. Consequently, the record de-
duplication task can be viewed as a clustering task.
Such a clustering task has several characteristics that
make it hard to address with common clustering tools;
The number of ground truth clusters is unknown to
the algorithm. Furthermore, one cannot a priory bias
the algorithm towards a larger or a smaller number
of clusters (unlike, say, facility location tasks in which
it makes sense to trade off cluster cohesiveness with
the number of clusters). This implies that attempts
to use standard classification prediction learning tools
to predict which pairs or records should be labelled
‘same-cluster’ and which should be ‘different clusters’
(D) are bound to fail - uniformly drawn samples of
pairs are likely to be all labeled D and the resulting
constant “all D” classifier will have negligible 0 − 1
error over the set of pairs. On top of that all, there is
no a priori geometry to the clusters structure, one can-
not justify common simplifying assumptions like some
stability of the clustering, some convexity of the larger-
than-two sized clusters or significant between-clusters
margins.

The framework of correlation clustering extends
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naturally to the data de-duplication problem
[Bansal et al., 2004]. Given a complete graph G
where each edge is labelled as a 1 or a 0, the goal is
to cluster the vertices of the graph so as to correlate
“as much as possible” to the edges of the graph.
That is, find a clustering so as to minimize the
number of 0 edges within a cluster plus the number
of 1 edges across different clusters (or correlation
loss). An edge label 0 indicates that the two records
have been deemed to be different while 1 indicates
that the records are similar. However, finding the
clustering with minimum correlation loss is known to
be NP-Hard [Bansal et al., 2004].

One characteristic of record de-duplication which
makes it different from other clustering tasks is the
applicability of ‘human supervision’. For example,
given two records from a medical database or two
papers from DBLP or two citizens from a census
data, it is fairly easy for a human to identify whether
these records refer to the same physical entity. The
framework of correlation clustering does not take this
into account. Most prevalent approaches for data de-
duplication are based on designing a similarity mea-
sure (or distance) over the records, such that records
that are highly similar according to that measure are
likely to be duplicate and records that measure as sig-
nificantly dissimilar are likely to represent different en-
tities. In other words, the edge labels are ‘close to’ the
underlying ground truth clustering. This is another
aspect of data de-duplication which the current corre-
lation clustering framework does not take into account.

In this paper we offer a formal modeling of such record
de-duplication tasks. Our framework is the same as
correlation clustering but with the added promise that
the input graph edges E is ‘close to’ the optimal corre-
lation clustering of the given dataset. We analyse the
computational complexity of this problem and show
that even under strong promise, correlation clustering
is NP-Hard. Moreover, the problem remains NP-Hard
(assuming the ETH hypothesis) even when we are al-
lowed to make queries to a human expert (or an oracle)
as long as the number of queries is not too large (less
than the number of points in the dataset).

Given these negative results, we propose a restricted
variant of correlation clustering. Here, instead of find-
ing the best clustering from the class of all possible
clusterings, the learning algorithm has to choose the
best clustering from a given class F of clusterings. We
offer an algorithmic approach (which uses the help of
an oracle) with success guarantees for the restricted
version. The ‘success guarantee’ depends on the com-
plexity of the class F (measured by VC-Dim(F)) as
well as the ‘closeness’ of the metric d to the target
clustering.

1.1 Related Work

The most relevant work is the framework of correla-
tion clustering developed by [Bansal et al., 2004] that
we discussed in the previous section. Other varia-
tions of correlation clustering have been considered.
For example [Demaine et al., 2006], consider a prob-
lem where the edges can be labelled by a real num-
ber instead of just 0 or 1. Edges with large positive
weights encourage those vertices to be in the same clus-
ter while edges with large negative weights encourage
those points to be in different clusters. They showed
that the problem is NP-Hard and gave a O(log n)
approximation to the weighted correlation clustering
problem. [Charikar et al., 2005] made several contri-
butions to the correlation clustering problem. For the
problem of minimizing the correlation clustering loss
(for unweighted complete graphs), they gave an algo-
rithm with factor 4 approximation. They also proved
that the minimization problem is APX-Hard.

More recently, [Ailon et al., 2018] considered the prob-
lem of correlation clustering in the presence of an or-
acle. If the number of clusters k is known, they pro-
posed an algorithm which makes O(k14 log n) queries
to the oracle and finds a (1 + ε)-approximation to the
correlation clustering problem. They showed that the
problem is NP-Hard to approximate with o

(
k

poly log k

)
queries to an oracle. In this work, we obtain similar
results for the promise correlation clustering problem.

Supervision in clustering has been addressed before.
For example, [Kulis et al., 2009, Basu et al., 2004,
Basu et al., 2002] considered link/don’t-link con-
straints. This is a form of non-interactive clus-
tering where the algorithm gets as input a list
of pairs which should be in the same cluster and
a list pairs which should be in different clusters.
[Balcan and Blum, 2008] developed a framework
of interactive clustering where the supervision is
provided in the form of split/merge queries. The
algorithm gives the current clustering to the oracle.
The oracle responds by telling the which clusters to
merge and which clusters to split.

In this work, we use the framework of same-cluster
queries developed by [Ashtiani et al., 2016]. At any
given instant, the clustering algorithm asks the same-
cluster oracle about two points in the dataset. The
oracle replies by answering either ‘yes’ or ‘no’ depend-
ing upon whether the two points lie in the same or
different clusters.

On de-duplication side, most prevalent are approaches
that are based on designing a similarity measure
(or distance) over the records, such that records
that are highly similar according to that measure
are likely to be duplicates and records that mea-
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sure as significantly dissimilar are likely to repre-
sent different entities. For example, to handle du-
plicate records created due typographical mistakes,
many character-based similarity metrics have been
considered. Examples of such metrics include the
edit or levenshtein distance [Levenshtein, 1966], smith-
waterman distance [Smith and Waterman, 1981] and
jaro distance metric [Jaro, 1980]. Token-based simi-
larity metrics try to handle rearrangement of words,
for example [Monge et al., 1996] and [Cohen, 1998].
Other techniques include phonetic-based metrics and
numerical metrics (to handle numeric data). A
nice overview of these methods can be found in
[Elmagarmid et al., 2007].

While the above approaches relied on design-
ing a good similarity metric, some works try
to ‘learn’ the distance function from a labelled
training dataset of pairs of records. Examples
of such works include [Cochinwala et al., 2001] and
[Bilenko et al., 2003]. Clustering for de-duplication
has been mostly addressed in application oriented
works. [Hernández and Stolfo, 1995] assumes that the
duplicate records are transitive. The clustering prob-
lem now reduces to finding the connected components
in a graph.

1.2 Outline

Section 2 introduces the relevant notation and defini-
tions. In Section 3, we introduce our framework of
Promise Correlation Clustering. In Section 3.1, we
prove that PCC is NP-Hard. In Section 3.2 we prove
that PCC is NP-Hard even under the presence of an or-
acle. In Section 4, we introduce our framework of Re-
stricted Correlation Clustering (RCC). In Sections 4.1
and 4.2 we describe procedures for sampling different-
cluster (negative) and same-cluster (positive) pairs. In
Section 5, we describe our semi-supervised algorithm
for solving the RCC problem. We prove an upper
bound on the number of labelled samples required to
guarantee the success of our algorithm. We also upper
bound the number of queries made to the same-cluster
oracle. Section 6 concludes our work. All the missing
proofs can be found in the supplementary section.

2 Preliminaries

Given a finite domain X. A clustering C of the set
X is a partition of the set X into k disjoint subsets,
that is, C = {C1, . . . , Ck}. Denote by m(C) = maxCi.
DefineX [2] = {(x, y) : x 6= y}. In this paper, we view a
clustering as a binary-valued function over the pairs of
instances. That is, C : X [2] → {0, 1} and C(x, y) = 1
if and only if x, y are in the same C cluster.

Given G = (X,E), define dE(x, y) = 0 if there exists
an edge between x, y and dE(x, y) = 1 otherwise.

Definition 1 (Correlation clustering for deduplica-
tion). [Bansal et al., 2004] Given G = (X,E), find a
clustering C which minimizes

LdE (C) = NLdE (C) + PLdE (C), where

NLdE (C) = |{(x, y) : C(x, y) = 1 and dE(x, y) = 0}|,
PLdE (C) = |{(x, y) : C(x, y) = 0 and dE(x, y) = 1}|

(1)

LdE (C) is also referred to as the correlation loss. A
weighted version of the loss function places weights of
w1 and w2 on the two terms and is defined as

Lw1,w2

dE
(C) = w1NLdE (C) + w2PLdE (C) (2)

Definition 2 (Informative metric). Given (X, d), a
clustering C∗ and a parameter λ. We say that the
metric d is (α, β)-informative w.r.t C∗ and λ if

P
(x,y)∼U2

[
d(x, y) > λ | C∗(x, y) = 1

]
≤ α (3)

P
(x,y)∼U2

[
C∗(x, y) = 1 | d(x, y) ≤ λ

]
≥ β (4)

Here U2 is the uniform distribution over X [2].

This definition says that most of the same-cluster (or
positive) pairs are such that the distance between them
is atmost λ. Also, atleast a β fraction of all pairs with
distance ≤ λ belong to the same cluster.

To incorporate supervision into the clustering prob-
lem, we allow an algorithm to make same-cluster
queries to a C∗-oracle defined below.

Definition 3 ( Same-cluster oracle
[Ashtiani et al., 2016]). Given X. A same-cluster
C∗-oracle receives a pair x, y ∈ X as input and
outputs 1 if x, y belong to the same-cluster according
to C∗. Otherwise, it outputs 0.

In the next section, we introduce our framework of
promise correlation clustering and discuss the compu-
tational complexity of the problem both in the absence
and presence of an oracle.

3 Promise Correlation Clustering

Definition 4 (Promise correlation clustering (PCC)).
Given a clustering instance G = (X,E). Let C∗ be
such that

C∗ = arg min
C∈F

LdE (C) (5)

where F is the set of all possible clusterings C such
that m(C) ≤ M . Given that dE is (α, β)-informative.
Find the clustering C∗.
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When the edges E correspond to a clustering C then
β = 1 and α = 0. We show in the subsequent sections
that even when the size of the maximum cluster is
atmost a constant M and given the prior knowledge,
PCC is still NP-Hard. Furthermore, PCC is NP-Hard
even when we are allowed to make o(|X|) queries to a
C∗-oracle.

3.1 PCC is NP-Hard

Theorem 5. Finding the optimal solution to the
Promise Correlation Clustering problem is NP-Hard
for all M ≥ 3 and for α = 0 and β = 1

2 .

To prove the result, we will use a reduction from exact
cover by 3-sets problem which is known to be NP-
Hard.

(X3C) Given a universe of elements U = {x1, . . . , x3q}
and a collections of subsets S = {S1, . . . , Sm}. Each
Si ⊂ U and contains exactly three elements. Does
there exist S′ ⊆ S such that each element of U occurs
exactly once in S′?

This decision problem is known to be NP-Hard. We
will now reduce an instance of X3C to the promise
correlation clustering problem. For each three set Si =
{xi1, xi2, xi3}, we construct a replacement gadget as
described in Fig. 1. The gadget is similar to the one
used in the proof of partition into triangles problem.
However, instead of triangles the graph is ‘made of’
cliques of size M .

Given an instance of X3C, we construct G = (V,E)
using local replacement described in Fig. 1. Let A
be an algorithm which solves the promise problem de-
scribed in Eqn. 5. Then, we can use this algorithm to
decide exact cover by three sets as follows.

If A outputs a clustering C such that all the clusters
have size exactly M and EC makes no negative er-
rors w.r.t E (that is α(EC) = 0) then output YES.
Otherwise, output NO. Next, we will prove that this
procedure decides X3C.

Let there exists an exact cover for the X3C instance.
Let C be the clustering corresponding to the exact
cover. That is, the edges colored blue and black corre-
spond to this clustering and the corresponding vertices
are in the same cluster (Fig. 1). Note that this clus-
tering makes no negative errors. Furthermore, each
point is in a cluster of size exactly M . Thus, the posi-
tive error corresponding to any vertex is the degree of
that vertex minus M − 1. Since, the size of a cluster
is atmost M , this is the minimum possible positive er-
ror for any vertex. Hence, any other clustering strictly
makes more positive errors than C.

It is easy to see from the construction that if A finds

a clustering which has no negative errors and all the
clusters have size M , then this corresponds to exact
cover of the X3C instance and hence we output YES.
If this does not happen then there does not exist any
exact cover for (U, S). This is because if there was an
exact cover then the corresponding clustering would
satisfy our condition. Thus, A decides X3C. Since,
X3C is NP-Hard, no polynomial time algorithm A ex-
ists unless P = NP .

In the construction, for each clause, we have M2t +
(M −3) vertices and a vertex for each of the variables.
Therefore, |V | = m(M2t + (M − 3)) + 3q and |E| =
Mt(

(
M
2

)
+ M − 1) +

(
M
2

)
. Consider a clustering C

which places all the xi’s and ri’s in singleton clusters
and places rest of the points in clusters of size M . For
t ≥ 2,

β =
Mt
(
M
2

)
Mt(

(
M
2

)
+M − 1) +

(
M
2

) =
1

1 + 2
M + 1

Mt

>
1

2

and α = 0

3.2 Hardness of PCC in the presence of an
oracle

In the previous sections, we have shown that the PCC
problem is NP-Hard without queries. It is trivial to see
that by making β|X| queries to the same-cluster oracle
allows us to solve (in polynomial time) the Promise
Correlation Clustering problem for all M and α = 0.
In this section, we prove that the linear dependence on
n = |X| is tight. We prove that if the exponential time
hypothesis (ETH) holds then any algorithm that runs
in polynomial time makes atleast Ω(n) same-cluster
queries.

Theorem 6. Given that the Exponential Time Hy-
pothesis (ETH) holds then any algorithm for the
Promise Correlation Clustering problem that runs in
polynomial time makes Ω(|X|) same-cluster queries for
all M ≥ 3 and for α = 0 and β = 1

2 .

Below, we give a proof sketch but a detailed proof is
in the supplementary material. The exponential time
hypothesis says that any solver for 3-SAT runs in 2o(m)

time (where m is the number of clauses in the 3-SAT
formula). We use a reduction from 3-SAT to 3DM
to X3C to show that the exact cover by 3-sets (X3C)
problem also can’t be solved in 2o(m) time (if ETH
holds). Then, using the reduction from the previous
section implies that PCC also can’t be solved in 2o(n)

time. Thus, any query based algorithm for PCC needs
to make atleast Ω(n) queries where n = |X| is the
number of vertices in the graph.

Definition 7 (3-SAT). .
Input: A boolean formulae φ in 3CNF with n literals
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xi1 xi2 xi3 r1
...

...

...

...

B1

B2

Bt

1

Figure 1: Part of graph G constructed for the subset Si = {xi1, xi2, xi3}. The graph is constructed by local
replacement when for p = 4. If Si is included in the exact cover then the edges colored black and the edges
colored blue represent the corresponding clustering of this part of the graph G. If Si is not included in the exact
cover then the edges colored red and the edges colored black represent the clustering of this part of the graph.

and m clauses. Each clause has exactly three literals.
Output: YES if φ is satisfiable, NO otherwise.

Exponential Time Hypothesis
There does not exist an algorithm which decides 3-SAT
and runs in 2o(m) time.

To prove that (X3C) is NP-Hard, the standard We
will reduce 3-SAT to 3-dimensional matching problem.
3DM is already known to be NP-Hard. However, the
standard reduction of 3-SAT to 3DM constructs a set
with number of matchings in Θ(m2n2). Hence, using
the standard reduction, the exponential time hypoth-
esis would imply there does not exist an algorithm for
3DM which runs in Ω(m

1
4 ). Our reduction is based

on the standard reduction. However, we make some
clever optimizations especially in the way we encode
the clauses. This improves the lower bound to Ω(m).

Using the above result, we immediately get an Ω(2m)
lower bound on the run-time of X3C. Now, using the
same reduction of X3C to PCC as in Section 3.1, gives
the same lower bound of Ω(n) on the running time of
PCC.

For the sake of contradiction, let us assume that there
exists an algorithm which solves PCC in polynomial
time by making o(n) same-cluster queries (n is the
number of vertices). Then by simulating all possible
answers for the oracle, we get a non-query algorithm
which solves PCC in 2o(n). Hence, no such query al-
gorithm exists.

4 Restricted Correlation Clustering

The results in the previous section show that even un-
der strong promise, correlation clustering is still NP-
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Hard. Furthermore, it is hard even when given access
to an oracle. This motivates us to consider a restricted
version of the problem.

Note that in Defn. 4, the optimization problem was
over the set of all possible clusterings F (with a restric-
tion on the maximum cluster size). In this section, we
restrict F to be a finite class of clusterings. That is,
F ′ = {T1, . . . , Tr, C1, . . . , Cs} with the understanding
that each Ti (a hierarchical clustering tree of X) is a
collection of clusterings represented by the prunings of
the tree. Now, we consider two versions of correlation
clustering on this restricted family. The first is to find
a clustering C ∈ F ′ which correlates ‘as much as possi-
ble’ with the given graph G = (X,E). More formally,
given G = (X,E) find Ĉ ∈ F ′ such that

Ĉ = arg min
C∈F ′

LE(C) (6)

Eqn. 6 can be solved by going over the list of cluster-
ings and trees (in a bottom-up fashion) and in poly-
nomial time finding Ĉ which is ‘closest’ to E. In the
second version, the goal is to find a clustering Ĉ ∈ F ′
which correlates as much as possible to an unknown
target clustering C∗ which may or may not be in the
set F ′. However, the algorithm has access to a C∗-
oracle. For the rest of this paper, we will focus on
the second version which we call restricted correlation
clustering.

Definition 8 (Restricted correlation clustering
(RCC)). Given a clustering instance (X, d). Let C∗ be
an unknown target clustering of X and weights w1, w2.
Let dC∗ : X [2] → {0, 1} be defined as dC∗(x, y) = 0 if
x, y are in the same C∗ cluster and 1 otherwise. Find
Ĉ ∈ F ′ such that

Ĉ = arg min
C∈F ′

Lw1,w2

dC∗
(C) (7)

where F ′ = {T1, . . . , Tr, C1, . . . , Cs}. Ti is a hierarchi-
cal clustering tree and Ci is a clustering of X.

To solve the RCC problem, we adopt the following
strategy. We use a procedure (call it P0) to sample
negative (or different cluster) pairs and another pro-
cedure (call it P1) to sample positive (or same-cluster)
pairs. Both the sampling procedures use the help of
the C∗-oracle. We then evaluate each of the cluster-
ings in F ′ on our sample S and choose the clustering
which has minimum loss. We prove that the loss of
the clustering Ĉ obtained using this procedure is close
to the loss of Ĉ∗ (the clustering with minimum loss in
F ′) .

We first discuss how to sample the positive and neg-
ative pairs. Then, we discuss the sample complexity
of our approach. That is, the number of positive and
negative pairs (or |S|) needed to guarantee that the

loss of Ĉ is close to that of Ĉ∗. Before we proceed,
lets introduce the following definitions which will be
useful in the subsequent sections.

Definition 9 (Restricted distributions). Given X and
a target clustering C∗. Define X [2]+ = {(x, y) ∈ X [2] :
C∗(x, y) = 1} and X [2]− = {(x, y) ∈ X [2] : C∗(x, y) =
0}. We define P+ as the uniform distribution over
X [2]+ and P− as the uniform distribution over X [2]−.

The sampling procedure P0 will try to approximate
P− while P1 will approximate P+.

Definition 10 (γ-skewed). Given X and a C∗-oracle.
We say that X is γ-skewed w.r.t C∗ if

P
(x,y)∼U2

[
C∗(x, y) = 1

]
≤ γ

The above definition formalizes the statement that
most of the pairs of points belong to different clusters.

4.1 Sampling negative pairs

Assume our input X is γ-skewed. Thus, if we choose
a pair uniformly at random, then it is ‘highly likely’
to be a negative pair. Alg. 1 describes our sampling
procedure.

Algorithm 1: Procedure P0 for negative pairs

Input: A set X and a C∗-oracle.
Output: One pair (x, y) ∈ X [2] such that

C∗(x, y) = 0

1 while TRUE do
2 Sample (x, y) using U2

3 if C∗(x, y) = 0 then
4 Output (x, y)

5 end

6 end

Lemma 11. Given X and a C∗-oracle. The procedure
P0 samples a pair (x, y) according to the distribution
P−.

Proof. The probability that a negative pair is sampled
during a trial is U2(X [2]−) =: q. Fix a negative pair
(x, y) and let U2(x, y) = p. Hence, the probability that
the pair (x, y) is sampled = p+(1−q)p+(1−q)2p+. . . =

p
∑∞
i=0(1− q)i = p

q = U2(x,y)
U2(X[2]−)

= P−(x, y).

Note that to sample one negative pair, procedure P0

might need to ask more than one same-cluster query.
However, since our input X is γ-skewed, we ‘expect’
the number of ‘extra’ queries to be ‘small’.
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Lemma 12. Given set X and a C∗-oracle. Let X
be γ-skewed and Let q be the number of same-cluster
queries made by P0 to the C∗-oracle. Then, E[q] ≤
1

1−γ .

Proof. Let p denote the probability that a negative
pair is sampled during an iteration. We know that
p ≥ (1− γ). Let q be a random variable denoting the
number of iterations (or trials) before a negative pair
is sampled. Then, q is a geometric random variable.
E[q] = 1

p ≤
1

1−γ .

Lemma 12 shows that for γ < 1
2 , to sample a negative

pair, procedure P0 makes atmost two queries to the
oracle in expectation. Moreover, the number of queries
is tight around the mean. Note that this sampling
strategy is not useful for positive pairs. This is because
the fraction of positive pairs in the dataset is small.
Hence, to sample a single positive pair we would need
to make ‘many’ same-cluster queries.

4.2 Sampling positive pairs

Given a clustering instance (X, d). Assume that the
metric d is (α, β)-informative w.r.t target C∗ and pa-
rameter λ. This means that ‘most’ of the positive pairs
are within distance λ. Our sampling strategy is to con-
struct a set K = {(x, y) ∈ X2 : d(x, y) ≤ λ} and then
sample uniformly from this set. We will prove that this
procedure approximates P+. Note that constructing
the set K requires O(|X|2) time. In a some situations,
the metrics d has some structure which makes it “lo-
cally sensitive hashable”. In such situations, we can
get rid of the quadratic dependence on |X| and ap-
proximate P+ in only |X| pre-processing time. Due to
space constraints we include these details only in the
appendix.

The sampling algorithm is described in Alg. 2. In the
pre-compute stage, for all points x we construct its
set of ‘neighbours’ (Sx). We then choose a point with
probability proportional to the size of its neighbour-set
and then choose the second point uniformly at random
from amongst its neighbours. This guarantees that we
sample uniformly from the set K.

Lemma 13. Given set (X, d), a C∗-oracle and pa-
rameter λ. Let d be (α, β)-informative w.r.t λ and C∗.
Then the sampling procedure P1 induces a distribution
T over X [2] such that for any labelling function h over
X [2] we have that∣∣∣ P
(x,y)∼P+

[
h(x, y) = 0]− P

(x,y)∼T

[
h(x, y) = 0]

∣∣∣ ≤ 2α.

Note that to sample one positive pair, procedure P1

might need to ask more than one same-cluster query.

Algorithm 2: Sampling procedure P1 for positive
pairs (general metrics)

Input: A set X, a C∗-oracle and a parameter λ.
Output: One pair (x, y) ∈ X [2] such that

C∗(x, y) = 1

1 Pre-compute: For all x ∈ X, compute
Sx := {y : d(x, y) ≤ λ}.

2 while TRUE do
3 Sample x ∈ X with probability ∝ |Sx|.
4 Sample y uniformly at random from Sx.
5 if C∗(x, y) = 1 then
6 Output (x, y).

7 end

8 end

However, since the metric d is β-informative, we ‘ex-
pect’ the number of ‘extra’ queries to be ‘small’.

Lemma 14. Given set (X, d), a C∗-oracle and a pa-
rameter λ. Let d be β-informative w.r.t λ and let q be
the number of same-cluster queries made by P1 to the
C∗-oracle. Then, E[q] ≤ 1

β .

Proof. Let p denote the probability that a positive pair
is sampled during an iteration. We know that p ≥ β.
Let q be a random variable denoting the number of
iterations (or trials) before a positive pair is sampled.
Then, q is a geometric random variable. E[q] = 1

p ≤
1
β .

5 Sample and query complexity of
RCC

In the previous section, we developed a sampling pro-
cedure for positive and negative pairs. We showed that
the procedures sample according to distributions T1
and T2 which approximate P− and P+ respectively.
Given a class of clusterings F , we use our distribu-
tions T1 and T2 to estimate the negative and positive
components of the loss for each clustering C ∈ F . We
then choose the clustering Ĉ with the minimum es-
timated loss. Using standard VC-Dimension theory,
it is easy to show that the loss of the clustering Ĉ is
close to the loss of best clustering in F , as long the
VC-Dimension of F is finite.

The loss function Lw1,w2

dC∗
is the sum of the sizes

of two sets. However, in this section it would be
more convenient to work with bounded loss func-
tions. Let γ0 = P

(x,y)∼U2

[
C∗(x, y) = 1

]
and define

µ = w1γ0
w1γ0+w2(1−γ0) . Then we see that minimizing Eqn.

7, is the same as minimizing
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Definition 15 (Normalized correlation loss).

LC∗(C) =µ P
(x,y)∼P+

[
C(x, y) = 0]

+ (1− µ) P
(x,y)∼P−

[
C(x, y) = 1] (8)

For the remainder of the section, we work with this
formulation of the loss function. We describe this pro-
cedure in Alg. 3.

Algorithm 3: Empirical Risk Minimization

Input: (X, d), a set of clusterings F , a C∗-oracle,
parameter λ and sizes m+ and m−.

Output: C ∈ F

1 Sample a sets S+ and S− of sizes m+ and m−
using procedures P1 and P0.

2 For every C ∈ F and define

Ê(C) =
|{(x, y) ∈ S+ : C(x, y) = 0}|

|S+|

Ĝ(C) =
|{(x, y) ∈ S− : C(x, y) = 0}|

|S−|

3 Define L̂(h) = µÊ(h) + (1− µ)Ĝ(h).

4 Output arg minC∈F L̂(lC)

Theorem 16. Given metric space (X, d), a class of
clusterings F and a threshold parameter λ. Given
ε, δ ∈ (0, 1) and a C∗-oracle. Let d be (α, β)-
informative and X be γ-skewed w.r.t λ and C∗. Let A
be the ERM-based approach as described in Alg. 3 and
Ĉ be the output of A. If

m−,m+ ≥ a
VC-Dim(F) + log( 2

δ )

ε2
(9)

where a is a global constant then with probability atleast
1−δ (over the randomness in the sampling procedure),
we have that

LC∗(Ĉ) ≤ min
C∈F

LC∗(C) + 3α+ ε

Next we show that to sample m+ positive and m−
negative pairs, the number of queries made to the C∗

is not too large.

Theorem 17. [Query Complexity] Let the frame-
work be as in Thm. 16. With probability atleast

1−exp
(
− ν2m−

4 )−exp
(
− ν2m+

4

)
over the randomness

in the sampling procedure, the number of same-cluster
queries q made by A is

q ≤ (1 + ν)

(
m−

(1− γ)
+
m+

β

)

5.1 VC-Dimension of some common classes
of clusterings

In the previous section, we proved that the sample
complexity of learning a class of clusterings F depends
upon VC-Dim(F). Recall that F is the class of la-
bellings induced by the clusterings in F . In this sec-
tion, we prove upper bounds on the VC-Dimension for
some common class of clusterings.

Theorem 18. Given a finite set X and a finite class
F = {C1, . . . , Cs} of clusterings of X .

VC-Dim(F) ≤ g(s)

where g(s) is the smallest integer n such that B√n ≥ s
where Bi is the ith bell number [A000108, ].

Note that B√n ∈ o(2n). Thus, the VC-Dim of a list
of clusterings is in o(log s). Next, we discuss another
common class of clusterings, namely hierarchical clus-
tering trees.

Definition 19 (Hierarchical clustering tree). Given
a set X. A hierarchical clustering tree T is a rooted
binary tree with the elements of X as the leaves.

Every pruning of a hierarchical clustering tree is a clus-
tering of the set X. A clustering tree contains expo-
nentially many (in the size of X ) clusterings. Given
F = {T1, . . . , Ts} consists of s different hierarchical
clustering trees, the following theorem bounds the VC-
Dimension of F .

Theorem 20. Given a finite set X and a finite class
F = {T1, . . . , Ts} where each Ti is a hierarchical clus-
tering over X . Then

VC-Dim(F) ≤ g(s)

where g(s) is the smallest integer n such that√
n!

b
√
n/2c! 2b

√
n/2c ≥ s

6 Conclusion

We introduced a promise version of correlation cluster-
ing. We proved that the promise version is NP-Hard.
Furthermore, the problem is NP-Hard even when we
are allowed to make o(|X|) queries to a same-cluster
oracle (where X is the clustering instance). We then
introduced a restricted version of correlation cluster-
ing. We developed a sampling procedure (with the
help of the same-cluster oracle) to sample same-cluster
and different-cluster pairs. We then used this proce-
dure to solve the restricted variant.
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