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In this supplementary file, we provide the proofs of all the results provided in the main file. To keep the numbering
of the theorems, lemmas, etc. consistent with the main paper, here, we also repeat the results in the paper that do
not need a proof.

Theorem 1 Consider two spherical Gaussian distributions N'(my,0%1,) and N'(mz,031,) in RP. Consider project-
ing these two Gaussian distributions on R, using A = (A1,..., Ap), where Ay, ..., A, are i.i.d. N(0,1). Given~y >0,
let

a Jlmy —my|

(o1 +02)/p

Then, the probability that the separation of the projected Gaussians is larger than vy is larger than

c
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where T > 0 is a free parameter.

Proof 1 Since the unitary vector A/||A|| is uniformly distributed over the unit sphere, we have

m; —my A (o1 + 02) r A (o1 + 02)
P (¢ o> ) =P (j@0,...07 0] > )
[[my —mg| " [[A[] 7 [lmy — my|| [A[7T [lmy — my||
A (o1 +02)
=P > . (2)
(IIAH [Jmy — mzll)
Therefore, we are interested in deriving a lower bound on
[A1] _ (o1 +02)
P( > . 3
AT T~ mal) )
Note that, due to symmetry, we have
A? A3 A2
E[+=] =E[i—2;] =... = E[—2], (4)
|A[]? A2 [A[?
Moreover,
P 2 P 2
A? D A2
(sl =B [ =5 =1 (5)
Z AP Nk
Therefore, combining (4) and (5), we have
[l =1
[A[>" p

On the other hand, replacing v (o1 + 02)?/||m; — my||? by a/p in (3), where

s V(o1 +02)%p

Q
[m; —myl2”
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we have

A V(o1 +02)%\ 2 @ oy
P(”A”2 > ||m1_m2H2) —p (43> p;m)

P ((1_ %)Ai > ;‘iz_p;Af). (6)

But since A1,..., A, i N(0,1), >°F_, A? has a chi-square distribution of order p. Then, for any T > 0, by Lemma
2 in [2],

1 & .
P(oog D AT>14r) <o (mlstien), (7)

=2

Given T > 0, define event £ as
1 &L
=2

By the law of total probability,

P((l—— )A2 > ZA2)

p P
a a o) a .
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p
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p’ ! p p=
B ! alp—1) 1 &

=P<(1—)A2>O‘(1_p)(1+7))P(pilgA?<1+T)’

where inequality (2) results from the fact that if a random variable Y is smaller than ¢, w.p. 1, then P(X >Y) >
P(X > c). The last equality follows from the independence of A1 and (A, ..., A}).

Lemma 1 Consider points in R drawn from a mizture of two Gaussian distributions wN (my,o1)+(1—w)N (mg,o2)
. Assume that the two components of the mizture are c-separated. Then, the error probability of the optimal Bayesian
classifier is smaller than Q (%) In the special case where 01 = 02 = o, the error probability of the optimal Bayesian
classifier is smaller than Q(c).

Proof 2 Without loss of generality assume that mi1 < mo. Consider the a sub-optimal classifier that assigns all
points to the left of % to Class 1 and everything else to class 2. Then the error probability of the optimal
Bayesian classifier is upper bounded by the error achieved by the described classifier, which is equal to

meo — My ma —my
wQ(————— 1—w _— ). 8
Q)+ (- wpe( M ¥
But, by assumption, maf;;”; > c. Therefore,
min(m2 - m17 ma — m1) > E'
20’1 2(72 2

Therefore, since Q is a decreasing function of its argument,

Mo — My Mz — My

wQ( )+ (1= w)Q ) SwQ(5) + (1 - w)Q(3) = Q(3)-

20’1 202

In the case of 01 = 09 = 0, (8) simplifies to Q(™%_"*) which is smaller than Q(c), because (mz —my)/20 > c.



Lemma 2 Consider the same setup as Theorem 1. Then,
(A, m; —my)|?

(or +o)?[AZ] = ©)

Proof 3 Let A = (Ay,...,A,) be generated i.i.d. according to N'(0,1). Then the separation of the two projected

Gaussians under A is equal to
(A, my) — (A, my)|

(01 +02)[[A]l

’y:

Therefore,

o [(A,m; —my)|?

(o1 +02)? A2

< A m; —my >‘2
[A]" lmy —maf /|

[lmy — my|?

(0'1 + 0'2)2
Since ﬁ is uniformly distributed under the unit sphere in RP, in evaluating E~?2, without loss of generality we can
assume that ﬁ = (1,0,...,0)T. Therefore,
pjy?] = Ima—mal® o ’< A By >’2
(014 02)? [A]" [[m; — mo||
_ Jmy —mo]? { A }
(01 +02)*  LIIA[?
But, as we showed in the proof of Theorem 1,
E[ A2 } 1
[AlZ] p
Therefore, in summary,
2
El2] = [m; — my| — 2
[’7 ] (0'1 —|—02)2p

Corollary 1 Consider the same setup as in Theorem 1. Then,

. 1
Am A0 < 350y

Proof 4 Note that d(v) is equal to one over the probability that the separation of two projected Gaussians is larger
than . Therefore, by Theorem 1, we have

-1

v | A= Z) (1+7) , (10)

< _ o= B3t (r—log(1+7))
d) < |2(1-e e o)

where T > 0 is a free parameter. On the other hand, for any 7 > 0,

(-3

lim —— 2~ = lim (1 —e "z ("7los(47)y = .
p—0 (1 — %) p—ro0
pc
Therefore,
1
lim d(v) <

p—ro0 T 2Q(2VI+T)
Since T is a free parameter, letting T — 0 yields the desired result.

1—n

Corollary 2 Consider the same setup as in Theorem 1. If v is such that v < c(Inlnp) =", where n > 0 is a free
parameter, then d(v) = o(lnp).



Proof 5 As argued in the proof of Corollary 1, d(v) satisfies (10). Hence, choosing p large enough such that
e~ Bz (T—log(147)) < %, it follows that

1
d(v) <
(") 0 (1_%)72( )
)
On the other hand, for all x > 0, we have
x
md@ < Q(w), (11)

where ¢(x) denotes the pdf of a standard normal distribution. Therefore,

V2r(l+ z2) 2
d(y)gweT’

2 1—

1
where x = L (1+4 7). The desired result follows by noting that 77? = o(1), and by assumption, v < c(Inlnp) =",

where n > 0.

1—n

Corollary 3 Consider the same setup as in Theorem 1. If v is such that v < ¢(Inp) 7, where n > 0 is a free
parameter, then d(v) = o(p).

Theorem 2 Consider my,...,my € R? and o1, ...,0p, € RT. Assume that A = (Ay,...,A,) are generated i.i.d. ac-
cording to N'(0,1). Given Ymin >0, and 3,5 € {1,...,k} let
[[m; — my||

Cli i) = ————.
(4,5) \/ﬁ(ai +Uj)

Let cpin = min; ; ¢(; . Define event B as having separation larger than ywin by all pairs of projected Gaussians.
Thats is,

A . o
B {‘<mz mj,w>' > Yin (0 +05) :V(,5) € {1,..., k}?i #]} (12)
Then,
o K2 Ymin —0.002p
P(B)S? 1-2Q P (1—e ) (13)
Proof 6 (Proof of Lemma 2) Define
a9 Ymin 1- % 1 1 — 251 (r—log(1+T))
Ly = _ o= (- Y.
(b(l,]) Q Cli) 1 ‘;YrQHin ( + T) ( € )
‘@b

By the union bound,

P(B) < Zk: Zk: P ({sz —my, ®>’ < Ymin (07 +Uj)}>

1=1 j=1i+1
(a) k k
<2 (1=
i=1 j=i+1
k2
<= (1 - ma,X{ab(i,])}) : (14)
2 (4,9)

where (a) follows from Theorem 1 and the fact that fori,j € {1,...,k}

71211in (Ji + O—j)Qp — 71’2nin
[[m; — rnj”2 C%m‘)




Fort=0.1, (r—log(1+47))/2 > 0.002. Therefore, setting ™ = 0.1 in (2) and noting that Q function is a monotonically
decreasing function of its argument, it follows that

. L1(1—1)
FyHllIl —0.
¢(2,j) Z 2Q o 72_p (1 —e 0 002]3)
@Al (1 — 70?1’1]')1))
> QQ Ymin (15)
Cmin
where the last inequality holds because
1
(1- 5) 1
Yomin Y T 1 _ min
W) -

Therefore, taking the mazimum of the both sides of (15), it follows that

1'12 (1 _ 6_0'0021)).

Ymin
max ¢ iy > 2 —_— | ——
1ax (i) = 20 T

Cmin
CminP

Corollary 4 Consider the same setup as Theorem 2. Let d(ymin) denote the expected number of projections required
to obtain separation Ymin between each pair of projected Gaussians. Then, if

27 Cmin
min S 1-—- )
K (=115

for some a € (0,1), then limsup,_, ., d(Ymin) <

Proof 7 Consider event B defined in (12), which denotes the desired event where each pair of projected Gaussians
satisfy the desired separation. But,

d(’)/mirmp) = %7 (16)

where P(B¢) is upper-bounded by Lemma 2. Taking the limit as p grows to infinity, it follows that

1
o . <
hmpbup Omin P) < 1- & (1 —-2Q (vminm ))

Cmin

On the other hand, for x > 0,

1 o 2
1-2Q(x) = Nors e” 7 du < \/;x (18)
Combining (18) and (17), it follows that
1 1 1

lim sup d(meinyp> < < = )
. min . «
P 1- k2 (/gL) 1— k2 /L (1 —a), /22 L

where the last inequality follows from our assumption about Ymin-

Theorem 3 Consider m;,my € RP and semi-positive definite matrices X1 and Xo. Assume that the entries of
A = (A1,...,A,) are generated i.i.d. according to N(0,1). Let Max denote the mazimum eigenvalue of 31 + Xs.
Also, given v > 0, let

29 AmaxP
[my —my|[2’

lI>

B



Then, for any T > 0, the probability that the 1-dimensional projected Gaussians using a uniformly random direction

are y-separated, i.e., P (|(m1 —my, A)| > y(/ATS A + /ATS, A )), can be lower-bounded by

(-3

-5

Proof 8 Note that since ATS1A >0 and ATS,A >0, we always have

P (43>8 (1+7)) (1 — o™ 7 (hos4m)),

VATS, A + VATS,A < \[2A7(S, + 52)A.

Therefore,

P (|<m1 —my, A)| > y(VATSA + VAT, A ))

> P (|(my — m, A) > /24T (5 + 52)A)

> P (|(m1 — ma, A)] > 77/ 2o AL,

(19)

(20)

where the last line follows because, for every A, AT(Z; + $9)A < A\pax||A|%2. Therefore, comparing (20) with (2)

reveals that the desired result follows similar to Theorem 1, by replacing o1 + 02 with /2 \pax -

Theorem 4 Consider m;,my € RP and semi-positive definite matrices X1 and Xo. Assume that the entries of
A = (Ay,...,A)) are generated i.i.d. according to N'(0,1). Let r and Amax denote the rank and the mazimum

eigenvalue of X1 + Xo, respectively. Also, given v >0, 71 € (0,1) and 72 > 0, let

2(1 + 72) Y Amax”
(1 —71)[lm; — my|?”

e

Then, for any T > 0, the probability that the 1-dimensional projected Gaussians using a uniformly random direction

are y-separated, i.e., P (|<m1 —mgy, A)| > y(\/ATS A + /ATS,A )), can be lower-bounded by

(-3
a2

_ er(ntlog(l—m1)) _ =5 (r2—log(1+72))

2Q [ |5 (1+7) | (1—e " (loan))

Proof 9 Note that since AT, A >0 and ATYS,A > 0, we always have

VATS, A + VATS,A < \2A7(S, + 5p)A.

Therefore,

p (|<m1 —my, A)| > 7(VATSA + VAT, A ))

> P (|(my —mj, A)| > 71/2A7 (%) + ,)A) (21)
Since X1 + Yo is always a semi-positive definite matriz, it can be decomposed as
¥+ %, = PTDP,
where P € RP*P is an orthogonal matriz (PTP = 1,,), and D € RP*? is a diagonal matriz whose diagonal entries

are non-negative. Let
D = diag(y,...,p),

where ; > 0, for all i. Using this decomposition, AT (X1 + X2)A can be written as

AT(Z) + 55)A = (PA)'DPA.



Let B2 PA. Since P is an orthogonal matriz, B is still distributed as A, i.e., B1,..., B, are i.i.d. N(0,1). By this
change of variable, the probability mentioned in (21) can be written as

P(|<m1 —my, A)| > (VAT A + VAT, A ))
> P (|<m1 —my, P7'BY| > 7\/2BTDB)
=P (I(P(my - m2), B)| > V297 DIB])). (22)

Note that sine by assumption rank(X, 4+ Xo) = r, X1 + Xo has only r non-zero eigenvalues. Define C € RP such that,
fori=1,...p,
Ci = Bily,z0-

That is, for every \; # 0, C; is equal to B;. For every \; = 0, C; = 0. Using this definition, D:B = DzC. Note
that

IDC|| < v/ Amax|IC- (23)
Combining (22) and (23), it follows that
p <|<m1 —my, A)| > 7(VATT,A + VATS,A )) >p (|<P(m1 ~m,),B) | > \/272/\max||CH)
C
|| > /2y o ICll ”). (24)

1Bl

=P ({1 — o),

Given 11 > 0 and 72 > 0, define events & and & as
& £{IB|? = p(1—m)},

and
EE2{ICIP<r(1+m)},

respectively. Note that, conditioned on &1 N &,

Icl _ [ra+m)

Bl ~ { p(1—m)
Therefore,
P |<P(m1 2'72)\111 X P(ml mux gl m((:2
( ) < VE ) = |B|\ < VO o 02)
+P (\(P(ml < V3Pl (£, &)°)
HBH IBJ’
272/\max(1 + TQ)T
<P [ [(P(mi —my), )| <
( ||BH (I—=m)p
+ P(&Y) + P(E5). (25)
But, from Lemma 2 in [2],
P(€f) < eBrHBt=m), (20
and
P(SQC) < e—g(TQ—log(l-&-Tz)).
Also, note that since P is an orthogonal matriz, ||P(m; — my)|| = ||m; — my||. Therefore, the desired result follows
by comparing P(|(P(m; — my), II:%HH < W) with (2) and using the result of Theorem 1.

Corollary 5 Consider two c- sepamted Gaussian distributions in RP with means mi, mo € R? and covariance ma-

trices 21 and Xo. Let ﬂ = ”21)‘%, where Amax denotes the mazimal eigenvalue of the matriz X1 + Xo. Then as
1

limy, o0 d(7y) < TR
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Corollary 6 Consider the same setup as in Corollary 5. If v is such that /B = (Inlnp) = , where n > 0 is a free
parameter, then d(v) = o(lnp).

Theorem 5 (Theorem 3.10 in [1]) Consider a mizture of two Gaussian distribution wN (u1,01) + (1 —
w)N (p12,02). Let 0? = w(l — w)(u1 — p2)? + woi + (1 — w)o3 denote the variance of this distribution. Then,
given n = O(E%log%) samples, Algorithm 3.3, with probability 1 — 0, returns estimates of the parameters as
(fi1, fi2, 01,61, W), which under the right permutation of the indices, satisfy the following guarantees, for i = 1,2,

6
2 ~ A ~
o Ifn= (m)  then i — fui] < el — pal, |0F — 67| < elur — p2]?, and [w — b < e

2 6 NT
o Ifn> (%) , then |02 — 62| < €|lo? — 03| + |p1 — p2]?, and |w — 0| < e+ i —pia]~
lof—o3l v v lof—o3l
e For any n > 1, the algorithm performs as well as assuming the mizture is a single Gaussian, and |p; — [1;] <
|1 — 2| + €0, and |0F — 67| < |1 — p2f? + |of — 03] + e0®.

Corollary 7 Let (Xi,...,X,) denote n i.i.d. samples of a mizture of two c-separated Gaussians wN (u1,01)+ (1 —
w)N (112, 02), where p1 < po and o1 = oo. Further assume that the separation ¢ = |uy — ual/ (01 +02) in 1-dimension
is larger than vymin. Let (fi1, fi2,01,62,10) denote the estimates of (u1, p2, 01,02, w) returned by Algorithm 3.8 of [1].
Then, if n = O(%log}) and n > m, then | — ;] < €lpr — pal, |02 — 62| < €lur — p2l?, and |w — 0| < e.
Theorem 6 Consider (X1,...,X,) that are generated i.i.d. according to a mixture of two y-separation Gaussians
wN (p1,01) + (1 — w)N (uz, 02), where 01 = 02, W € [Wnin, 0.5], p1 < p2 and ¥ € [Ymin, Ymax). Let (fi1, iz, 61,62, W)
denote the estimate of the unknown parameters (ui1, fi2,01,02,w). Let eqpy and é denote the minimum achievable
classification error and the achieved clustering error based on the estimated parameters, respectively. Then, if |pu; —
fii] < elpr — pal, |07 — 67| < €lpr — p2l?, |w —w| <€, and

1- Wmin

1
(1671211;1)( + 8Ymax In + 2Ymax€)e < bR

min

we have

min

1 1-—- min 81'2nax 1- min : 1
+(;+2’y>1n v +77 +2’7(4’y+21nw)>6+Q(+61)+52,

é—eont| < |2
| Pt‘ - < " + Wmin Wmin 4'}/6

where €; = o(1/€) and €3 = o(e).

Proof 10 As shown in the proof of Lemma 3, the optimal Bayesian classifier breaks the real line at top = % —

0_2

[y In 2=, and achieves a classification error equal to

Copt = w0 (topt _Ml) n (1 —w)Q <M2 (—Ttopt>

g1 2
=wQ +iln ad +(1-w)Q —ilnL
N K 2y 1-w K 2y Tl-w/’

On the other hand, without having access to the exact parameters, a clustering algorithm that operates based on the
—(t—p1)2 (t—1a)2
w (2;%1) 1—w (2[:%2)

e = e
271'&% w/27r?7§

estimated values (fi1, fiz, 61,61, W) finds t1 and fg, which are the solutions of , and

puts the decision boundary points at these two points. For i = 1,2, let

t 2t — .

1 1
~ A
$,8) = | =, = |-
(51 &) (%‘2 f%‘)

Note that 01 = o2 by assumptions. Therefore s; = so. Let

and

A
§ = 81 = S2,



Su = /:L2 - ﬂl-
(27)

Using the mentioned change of variable, (t,,t2) are the solutions of the following second order equation
W
= O’

and

(81 — 82)a” + 26,802 — 628 +2In 22 — 21n
S1

Assume that 11 denotes the point that approzimates top;, — p1. A clustering algorithm that decides based on these
i,
A2 )

estimated boundary points estimates its achieved error as éop, where, if 61 < g,
t L . 6, —1 o
el £) oot ol

g1 02 o

éopt =w (Q <0_1

and if 61 > 69,
R A th t9 R
e(o(2) -o(8) 0o
g1 g1 g2
Since for all x and 2', |Q(x) — Q(2')| < |z — |, if 61 < G2,
1 topt — 5, —1 t £
(Copt — fopa] < Jw— 0] + |2 — fope —H ]y 1Ou = f1 2 = Fope Q(f’),
01 o1 02 02 01
and if 61 > G2,
f topt — 5, —1 t -
Jeapt = opt| < Jw— | + |- — L) 4o B2 o Q( = )
o1 o1 02 02 02
Note that, by the triangle inequality,
tr tops — t1 — topt + 1 1
f1_ topt M1 It opt 1] + Jtopt — ] | — — — |- (28)
01 01 g1 01 01
Similarly,
6, —1 —t 6, — 1t — t 11
[,LA 1_/1'2 opt S|u 1 A/J/2+ opt‘+|topt_’u2| S (29)
02 02 02 02 02
But, by assumption, |0 — 62| < e§f. Therefore, 6; < o;4/1 +65ﬁ/ai = oi\/1+472%¢ < 0;(1 + 2v%€). Similarly,
G; > 0i\/1 — 4y2e > 04(1 — 4v%¢). Hence, |o; — 65| < 4c%e and
1oa
i o] — (1 —4v2%€¢)0;
(72 .
Also, note that since top, = ‘“;”2 ey n %, fori=1,2,
|t0pt_,ui| S’Y—i—ilnl_wmin.
01 27 Wmin
In summary, if 61 < 3,
3 1- min 1 - ~2
1+4vy° +2yln e+ —|t1 —topt T p1| +Q [ —= | +o(e), (30)
Wmin o1 g1
(31)

‘eopt - éopt| S (

min

1 - to —
>€+|t1_topt+,u1|+Q< 2A H) +0(€)
g1 02

and if 61 > 62,
min

1_
leopt — €opt] < (1 + 473 4+ 2v1In



In the rest of the proof, we mainly focus on bounding |t; — tops + p1|. Since t1 and ta are the solutions of (27), they
can be computed as
b8 £ VA

t,to =
1,12 (51— 42)

)

where

N N ~ FOIN §2 ’LZ)
A= (0,82)% — (51 — 52) (5232+21n§1 —2In 1 —d)) .

Define v as
v £ fig — g — (g2 — p1). (32)

Note that since by assumption |fi; — p1;] < €6, where

Op 2 u2 — pml,
we have
|u| < 26,
Define 7 and 1o as
Ti =58 —5
Note that
52e 52e 42 se 4% se
| < £ < p = < < 82 33
7l < &12012 - of(of - eéﬁ) 1—4ey? — 1—4ey2 . — vse (33)
where the last inequality holds as long as 472, € < %
Define € as
gs 22751 (53§2+21nf221n “ﬂ). (34)
(0,,82)2 51 1—w

i = Oube (1-vVite), (35)

and

£ = oud2 (1+Vite). (36)

S9 — 81
Define function f as f(x) = /1 + x. Then, using the Taylor expansion of function f around zero,

Fe) =1+ %e +f "2(’")52, (37)

where |r| < |e|. Note that

51 1—w

A "
775H+5 (lngllnl_w). (38)

0,8 1 (. 5 b
ui2 e=> <5§§2+21nf221n = >

Therefore, we have

i —@ 1 w % f”(’/’) 8;L§2 2
t1—2—|—5A<lnl A—lnA)— 5 e”. (39)

—w S1



and

S 20,5
f= 12 4.
§2 — 81
As a reminder top, = 112 — (m—luz)s In 1. Therefore, from (39), we have

- ) 1 n) 8\ S [ bube
i —to =|£ 4 1 —m2) - 2 _t,
[F1 = tope + a1 '2 "5 (n1ua n§1> 2 \G—s )T et

52
f”(r)( bub2 ) 2
— | = — e,
2 So — 81

lnw— 1 w

1 59
= ” n -
I R T R R

— In -
0,82  S1

- +

We next bound the error terms in (41). Note that, by the triangle inequality,

1 W 1 w 1 W w w 1 w
~——In — — n =|x——|In — —1In + In — In
0u82 1—w s(pe — ) 1—w 0,82 1—w 1—w 1—w s(ue — ) 1—w
1 f 1 1
< — In wA —In w ‘—i— In w ’ ~ —
10,0132 1—w 1—w 1—w 0,82 s(pe — p1)

Since |pi — jui| < €6y, |0, = |fix — fiz] > 6, (1 — 2€¢). Therefore, we have

1 - 1
\$H| ~ 0,1 —2¢)°

i + ﬁ Therefore, since by assumption, |w — | < ¢, we have

1 1 < ! + ! < 2
n — In .
1-— 'LZ} 1—w| ™ Wmin 1-— Wmin €= Wmin

Note that since w € (Wmin,0.5), and since -~ is an increasing function of w in this interval, we have

Let g(w) = In 1= Then, g'(w) =

w

S
S

1 — Wk
| In v |§ln&.
1-— Wmin
Note that .
lngfl s+ 1 1+711/s
$1 s+ 1+7/s
Hence,
. dev?
14|z 1+ =5 1 82
’1 2 <hns g' < n e —In- — <1 Tmax® <162, e,
51 - | s | 1-— T-Zey? . - 86’7max - 8€’Vmax

where the last line holds if 872, < 3. Combining (42), (43), (44), (45) and (46) with (41), it follows that

b1 — topt + pi1| <ue+ 2¢ I L L= Wmin | 1 1
— lo ~0,€ - — —
1 pt T M1 Iz (1 —2€)(1 — 8y2s€)wmindys S Wmin | d,, (2 — py)
PRI S 16v3nax62 ) [ oude ) e
" Wmin 52 S (1 - 26)(1 - 8’}/ 56)6HS 2 So — 81

2e 2¢ 1 — Wmin

< 1
Souet (1= 20)(1 — 89250 wmmdns <(1 “20(1- 8208, 65") S

162 [ 1700 (B )
(1—2€)(1 — 8y2s€)d,s 2 S2— &1
2 2 1 — Wmin 16 2 " 5 §
Wmin0y s 08 Win Ous 2 8y — 81




Finally, we need to bound €, defined in (34). By the triangle inequality and (43), it follows that.
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where (a) follows from (33), (44), (45) and (46), and (b) holds because 57,5 = 4~. Also, note that, from (33),

1- min
le| <8 (m 4 Ip ——Lmin O(e)) c.

Wmin

Therefore, if (1672, + 8Vmax In 17“’7’)) + 2Vmax€)e < 3,

3 -
_27

and |f"(r)] = 1(1 +7)72 < i < 1. Combining (48) with (47), it follows that

- 2 2 1 — Wpin 1672,
’tl_topt+ﬂl‘§<6u++(6 +(5>h’l + 8 )€

wmina,us Wmin 5,u3

g
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- ( bt mmdns Winin . ( ) Wnin 8,8 >€

2
1S ) 18,5](1 + €) (16726) (1+1n Lt 4 () -+
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2 min 16 max
<+ —— _— O
wnnnd,u Wmin 5#5

2
L ()]18,5) (47+ 21n“’m“‘) ) ¢+ o).

min

Dividing both sides of (50) by o1, and noting that 6,,/(201) =~ and |f"(r)| < 1, we derive

t—t s 2
‘ 1 opt +:u1’ < <27+ + <1+27> 1111 Wmin + 87max
Y

o1 Wmin Wmin Y
1 — Wi\
+2v (47 +2In mm) > €+ o(e).
Wmin
Finally, as a reminder, from (40), to = 8226’%821 —t1. From (33), |32 — 31| < 16y%se. Hence, if 61 < 6,

By 1 [ 26,5, - 1 1
— % = ~ ~ +t1 Z —+4ol|—-).
01 01 \ 81 — S92 4ve €

fy—0, 1 [ 20,50 . . 1 1
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02 02 \ S2— 481 4rye €

Combining (51) and the above equations with (30) and (31) yields the desired result.

Similarly, if 62 < 61,



Lemma 3 Consider i.i.d. points generated as wN (p1,0) + (1 —w)N (2, o). Without loss of generality, assume that
1 < pg and w < 0.5. Let v = (2 — 1)/ (20). Also, let eqp, denote the error probability of an optimal Bayesian
classifier. Then, if w < 0.1,

1
eopt Z ’LUQ (_"}/ + ’7) . (52)
For w € (0.1,0.5],
eopt Z wQ (’Y) . (53)
Proof 11 The optimal Bayesian classifier, which has access to the parameters (u1, po, o, w), divides the real line at

topt:“l‘g‘”?_ G N (54)

and achieves a classification error equal to

€opt = WP(MI + UIZ > topt) + (1 - ’U)) P(MQ + U2Z < topt

_wQ<M2_'a1— g In v ) <M2 g In v )
—p2) l-w
w

% n-pm) 1-w
—wQ( +1n1ww)+(1—w)c2(7—271n1 ) (55)

where Z ~ N(0,1). Note that since by assumption w < 1 —w, In *= < 0. Therefore,

1 w 1 w
1 < S,
Q(” 2~yn1—w)—Q<”2w“1—w)

Keeping the larger Q term, it follows from (55) that

11—
Copt > WQ (- In—2 4 7) . (56)
~y w

For w < 0.1, 0.5ln=% > 0.5In ! 011 > 1. Therefore, since Q(-) is a monotonically decreasing function of its
argument, (52) follows The result for w € (0.1,0.5) stated in (52) follows by noting that — ln w4y <y

Lemma 4 Let (X1,...,X,) denote n i.i.d. samples of a mizture of two y-separated Gaussians wN (p1,01) + (1 —
w)N (12, 02), where o1 = 02, v = (p2 —p1) /(01 +02) < 1/2 and py < pa. Let ({1, fie, 61, 62,%) denote the estimates
of (p1, p2, 0,0, w) returned by Algorithm 3.3 of [1]. Then, if n = O(Z% log 5) with probability larger than 1 — 0,

i —fo| o 3v+e

G14+62 ~ 1-2/72+¢

Proof 12 By Theorem 5, for n = O(€*log %), with probability 1 — 6, there exists a permutations of indices, such that
lpi — fui] < |1 — p2| + €0 and |02 — 62| < |u1 — p2|? + |0? — 03| + €02 = |u1 — p2|? + eo?. Therefore, by the triangle

inequality,

2

i = fra| < s = ful + [ — pa| < 3lpn — pal + eo.
i=1



2

Hence, since 0% = w(l —w)(u1 — p2)? + of,

| — fio] 3|1 — po| + €0
01+02 = 207 — 2¢/|u1 — p2|? + eo?
_ 3l — el + e/w(l — w) (s — p)? + 0F
201 — 2/ |1 — p2f? + ew(l — w)(py — p2)? + e0f
37 + ey/w(l — w)y2 4 0.25
1— /42 +dew(l —w)y2 + ¢
® 3y +0.5ey/72 + 1
Tl VAP e(149?)
(2 3v+e ’
T 1-2y"2+¢

A
S

(57)

where (a) follows by dividing the nominator and denominator by 201 and (b) holds because w(l —w) < 0.25. Finally
(¢) holds, since by assumption > < 1.
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