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Abstract

Clustering mixtures of Gaussian distributions
is a fundamental and challenging problem.
State-of-the-art theoretical work on learning
Gaussian mixture models has mostly focused
on estimating the mixture parameters, where
clustering is given as a byproduct. These
methods have focused mostly on improv-
ing separation bounds for different mixture
classes, and doing so in polynomial time and
sample complexity. Less emphasis has been
given to aligning these algorithms to the chal-
lenges of big data. In this paper, we focus on
clustering n samples from an arbitrary mix-
ture of c-separated Gaussians in Rp in time
that is linear in p and n, and sample com-
plexity that is independent of p. Our analysis
suggests that for sufficiently separated Gaus-
sians after o(log p) random projections a good
direction is found that yields a small clus-
tering error. Specifically, for a user-specified
error e, the expected number of such projec-
tions is small and bounded by o(ln p) when
γ ≤ c

√
ln ln p and γ = Q−1(e) is the separa-

tion of the Gaussians with Q as the tail dis-
tribution function of the normal distribution.
Consequently, the expected overall running
time of the algorithm is linear in n and quasi-
linear in p at o(ln p)O(np), and the sample
complexity is independent of p. Unlike the
methods that are based on k-means, our anal-
ysis is applicable to any mixture class (spher-
ical or non-spherical). Finally, an extension
to k > 2 components is also provided.
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1 Introduction

Clustering Gaussian mixture models (GMMs) is a fun-
damental problem in machine learning that has been
the subject of extensive research by statisticians and
computer scientists. The goal is to minimize the cluster-
ing error probability, which is defined as the probability
that the label of the Gaussian that has generated a
point disagrees with its assigned label, up to a fixed
permutation of the labels.

However, despite all the research in this area, in
practice, the well-known and relatively old expec-
tation maximization (EM) and k-means algorithms
[Dempster et al.(1977), Lloyd(1982)] and their vari-
ants, while lacking required convergence guarantees,
remain the most popular clustering methods. One
reason is that modern data samples are typically high-
dimensional and while the computational complexities
of other proposed theoretical methods are polynomial
in the ambient dimension and number of samples, they
are still prohibitively large for practical purposes. For
instance, there has been an extensive body of research
on learning (estimating) the parameters of a GMM
based on its samples with a running time polynomial
in ambient dimension and number of samples (refer to
[Huggins(2011)] for an overview of early methods in
this line of work). Of course, once the parameters are
learned with sufficient accuracy, then as a byproduct,
one can cluster the points by assigning each point to
the Gaussian cloud with highest posterior probability.
Another practical challenge for methods developed in
this area is that accurately learning the parameters
in a high-dimensional Gaussian entails having a sam-
ple complexity which is again too large for practical
purposes.

Given the mentioned challenges in clustering high-
dimensional Gaussian distributions in Rp with a num-
ber of samples that is small compared to p, it is desir-
able to have computationally-efficient algorithms with
a sample complexity not growing with the ambient
dimension. Clearly, developing such methods is in-
feasible using techniques that are based on learning
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the parameters of the Gaussians in Rp. As a trivial
example, learning the covariance matrix of an arbi-
trary Gaussian distribution in Rp requires at least p
samples. Therefore, in this paper, we focus on develop-
ing efficient algorithms for model-based clustering of
GMMs that do not require learning the parameters of
the high-dimensional Gaussians.

Dimensionality reduction is a well-known and pow-
erful tool that is employed to solve various ma-
chine learning problems including clustering and
also GMM parameter estimation. Classical dimen-
sion reduction techniques aim at preserving cer-
tain metrics (e.g. Principal Component analysis
[Pearson(1901)], LLE [Roweis and Saul(2000)], and
more, see review in [Van Der Maaten et al.(2009)]).
In the context of Gaussian parameters estimation,
projection to lower subspaces has been key (see re-
view in [Huggins(2011)]): Spectral projection meth-
ods [Kannan et al.(2005), Vempala and Wang(2004),
Belkin and Sinha(2010)] involve quadratic complexity
in n or p, while random-projection-based techniques
have been proposed early by [Dasgupta(1999)] for
the class of shared covariance mixture, it had run-
ning time that is O(dn2 + ndp), where d = O(log k

εδ )
is the number of projections. More recent meth-
ods cope with arbitrary separation, for example,
[Belkin and Sinha(2015)] use deterministic projections
with

(
p

2k2

)
time complexity. As mentioned above these

methods have polynomial sample-complexity as they
aim at parameter estimation (see a brief comparison in
table 1). In our context of clustering, we note the
projection-based methods of [Boutsidis et al.(2010)]
for solving k-means with convergence guarantees
and running time O(npdε−2k(log k)−1e), and EM-
based method of [Fern and Brodley(2003)]. How-
ever, [Boutsidis et al.(2010)] does not generalize to
non-spherical clusters without degradation, and in
[Fern and Brodley(2003)] running time as well as per-
formance analysis are yet an open question. In this
paper, we analyze and explore using dimensionality
reduction to efficiently cluster points of an arbitrary
mixture without attempting to learn the parameters
of the GMM in the ambient dimension p.

We focus our analysis on a mixture of two c-separated
Gaussian distributions, and study the distribution of
their separation under a random projection. Consider
two c-separated Gaussian distributions, N (m1,Σ1) and
N (m2,Σ2) in Rp, where

c = ‖m1 −m2‖
√
p
(√

λmax(Σ1) +
√
λmax(Σ2)

) , (1)

and λmax(Σi) denotes the the maximum eigenvalue of
Σi, i = 1, 2. Our theoretical analysis sheds light on
the separability of Gaussian clouds under a random

1-dimensional projection and suggests that if the two
clouds are sufficiently-separated (e.g. c ≥ 0.5), then
after a handful of projections, a “proper” direction with
small clustering error can be found. To illustrate the
implication of these new results consider the projection-
based method proposed in [Dasgupta(1999)], for learn-
ing the parameters of GMMs. The method is based on
random projections, and for two c-separated clouds, it
is shown that if the two Gaussians are projected into
a random d-dimensional space, such that d ≥ C1

ε2 ln 2
δ ,

then with probability exceeding 1 − δ, the projected
d-dimensional Gaussians are c

√
1− ε-separated. Here

C1 is a universal parameter. Using our proposed dual
approach, instead of seeking a d-dimensional projection,
we perform multiple 1-dimensional projections, until
two γ-separated Gaussians are found. While our anal-
ysis hold for all values of p, asymptotically, they imply
that as p → ∞, the expected number of projections
required to achieve γ-separation is upper-bounded by

1
2Q( γc ) , where

Q(x) = 1√
2π

∫ ∞
x

e−u
2

2 du. (2)

This shows that, unlike [Dasgupta(1999)], where the
achieved separation (c

√
1− ε) is always smaller than

c, in this case, it is possible to achieve γ-separation
in 1-dimensional space, even if γ > c. Moreover, the
computational cost, i.e., the required number of projec-
tions, is small, if γ is comparable with c. In particular,
if γ ≤ c

√
ln ln p the number of projections required

is proved to be sub-logarithmic in p. As an example,
we note the real data set of the USPS digits which
has a minimal separation of c = 0.63 (see Table 10 in
[Dasgupta(2000)]).

Under the above condition we propose a o(ln p)O(np)-
time recipe for clustering arbitrary Gaussian distri-
butions based on 1-dimensional random projections.
Given a user-prescribed error e (s.t. γ = Q−1(e)), after
each random projection, i) the parameters of the pro-
jected Gaussians are learned using for instance method
of moments (MoM) [Pearson(1894)] that runs in O(n)-
time, ii) if the desired separation γ is achieved the
process stops. Otherwise, a new random projection
is performed until a theoretically-derived budget for
e is exhausted. Since parameter learning is done in
1-dimension, the sample complexity of our algorithm is
independent of the ambient dimension p: O( 1

ε2 log 1
δ ),

where ε is an error in the mixture parameter estimation,
and δ is the confidence.

We provide our main results in Section 2. For space-
limit reasons the proofs are provided in supplemental
material. Our algorithm is presented in Section 3,
and its sample complexity is analyzed in section 4.
Experimental validation is provided in section 5.
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Table 1: Complexity comparison with parameter learning methods
Author Method GMM Class Running-time Complexity Sample Com-

plexity
Sep. Parameters\comments

Dasgupta Random projec-
tion

Shared
Spherical

O(dn2 + ndp) kO(log2(1/εδ)) √
p d- num. projections,

{‖µ̂i − µi‖} ≤ εσ
√
p

Arora et. al. Distance based Arbitrary
GMM

O(p2poly(k) log2 p
δ ),

O(pn2) distance computa-
tion

O(p ·
poly(k) log p

δ )
Ω(p

1
4 ) k - num. Gaussians

Vempala et.
al.

Spectral and
distance-based

Spherical
GMM

poly(p, k), p3 for SVD,
O(pn2) distances

poly(p, k) Ω(k
1
4 )

Kalai et. al. Random projec-
tion and MoM

Arbitrary 2-
GMM

poly(p, 1
ε ,

1
δ ,

1
w ,

1
D1,2

), p2

projections
same as running
time

≥ 0 D1,2 - distributions
distance, ε its accuracy
param.

Sinha et. al. Determin. pro-
jection MoM

Arbitrary
GMM

poly(p, 1
ε ,

1
δ , B), al-

gorithm uses
(
p

2k2

)
projections

poly(p, 1
ε ,

1
δ , B) ≥ 0 ε - L2 error in params.

B - radius of params.
ball

This paper Random 1D
Projections
and MoM

Arbitrary
2-mixture

expected o(log p)O(np)
for γ

c ≤
√

ln ln p

O( 1
ε2 log 1

δ ) √
p γ - separation in 1D,

for clustering error e ≤
Q(γ)

2 Main Results

In this section we consider data that is generated ac-
cording to a mixture of two Gaussian distributions
N (m1,Σ1) and N (m2,Σ2), which are c-separated. We
study the probability that a random projection achieves
a 1-dimensional separation γ or higher, which can be
directly related to a prescribed clustering error e as
e ≤ Q(γ) for two Gaussian distributions. Moreover,
we prove conditions for the number of 1-dimensional
projections required to achieve separation γ to be sub-
logarithmic in p when γ (corresponding to a clustering
error in 1-dimension) is similar to c. These results allow
the construction of very efficient (and simple) cluster-
ing algorithms that run in o(ln p)O(np) for arbitrary
mixtures, with sample complexity that is independent
of p.

We divide the main results into two cases. The first
case is when the two Gaussians are spherical balls. The
second case is when Σ1 and Σ2 are arbitrary positive
semi-definite matrices. We also demonstrate the exten-
sion of our theoretical analysis for a mixture of k > 2
Gaussians.

2.1 Mixture of spherical Gaussians

Consider the special case where Σi = σ2
i Ip, for i = 1, 2.

We examine projecting points generated according to
w1N (m1,Σ1) + w2N (m2,Σ2) using a random vector
A = (A1, . . . , Ap), where A1, . . . , Ap are independent
and identically distributed (i.i.d.) as N (0, 1). Us-
ing this projection, we derive a mixture of two Gaus-
sians in R. Conditioned on A = a, the two Gaus-
sians N (m1,Σ1) and N (m1,Σ2) in Rp are mapped to
N (〈m1,a〉, σ2

1‖a‖2), and N (〈m2,a〉, σ2
2‖a‖2), respec-

tively. Therefore, the two projected distributions are
γ-separation, if |〈m1,a〉 − 〈m2,a〉| > γ(σ1 + σ2)‖a‖,

or

|〈m1 −m2,a〉| > γ(σ1 + σ2)‖a‖. (3)

Since A is not a fixed vector, the question is that given
the randomness in the generation of the projection
vector A, what is the probability that condition (3)
holds. In other words, given m1, m2, σ1 and σ2, we
are interested in P(|〈m1 −m2,A〉| > γ(σ1 + σ2)‖A‖),
or

P
(∣∣∣〈 m1 −m2

‖m1 −m2‖
,

A
‖A‖〉

∣∣∣ > γ(σ1 + σ2)
‖m1 −m2‖

)
,

where A1, . . . , Ap
i.i.d.∼ N (0, 1). The following key theo-

rem derives a lower bound on this probability.

Theorem 1 Consider two spherical Gaussian distri-
butions N (m1, σ

2
1Ip) and N (m2, σ

2
2Ip) in Rp. Con-

sider projecting each point generated according to these
Gaussian distributions using A = (A1, . . . , Ap), where
A1, . . . , Ap are i.i.d. N (0, 1). Given γ > 0, let

c ,
‖m1 −m2‖
(σ1 + σ2)√p . (4)

Then, the probability that the separation of the projected
Gaussians is larger than γ is larger than

2
(

1− e−
p−1

2 (τ−log(1+τ))
)
Q

γ
c

√√√√ (1− 1
p )

(1− γ2

pc2 )
(1 + τ)

 ,

(5)

where τ > 0 is a free parameter.

In Lemma 1 below, we map the separation γ of the
projected Gaussian distributions in R to the error prob-
ability of an optimal classifier that has access to the
parameters of the two projected Gaussians. Intuitively,
the higher the separation of the two projected Gaus-
sians, the lower the associated classification error.
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Lemma 1 Consider points in R drawn from a mix-
ture of two Gaussian distributions wN (m1, σ1) + (1−
w)N (m2, σ2). Assume that the two components of the
mixture are c-separated. Then, the error probability of
the optimal Bayesian classifier is smaller than Q

(
c
2
)
.

In the special case where σ1 = σ2 = σ, the error proba-
bility of the optimal Bayesian classifier is smaller than
Q(c).

Note that based on Lemma 1, if the two high-
dimensional Gaussians share a covariance matrix, then
a separation of γ = Q−1(e) in R is sufficient for achiev-
ing error e. If Σ1 6= Σ2, then γ is set as 2Q−1(e).

Next, Lemma 2 shows that the expected value of the
squared separation of the randomly projected Gaussian
distributions is equal to c2. Lemma 2 is later utilized
to approximate the unknown separation c from the em-
pirical expectation Ê[γ2] in 1-dimensional projections.

Lemma 2 Consider m1,m2 ∈ Rp and σ1, σ2 ∈ R+

and define c as in (4). Then, under a random 1-
dimensional projection with A = (A1, . . . , Ap), where
A1, . . . , Ap

i.i.d.∼ N (0, 1),

E
[
|〈A,m1 −m2〉|2

(σ1 + σ2)2‖A‖2

]
= c2. (6)

In practice, given a desired accuracy e, Lemma 1 is used
to derive γ, the desired separation in R, that guarantees
accuracy e. Then, using Lemma 2 to estimate the
unknown separation c, one can compute the probability
of attaining γ, or the expected number of projections,
via Theorem 1.

Next, we derive bounds on the expected number of
projections needed to achieve a separation γ. Let d(γ)
denote the expected number of projections required to
achieve γ-separation in R. The following corollaries
use Theorem 1 to analyze and bound d(γ) for different
separation values of the two high-dimensional Gaus-
sians.

Corollary 1 Consider the same setup as in Theorem
1.Then,

lim
p→∞

d(γ) ≤ 1
2Q(γc ) .

In the following corollary we establish the conditions
on γ and c so that with a number of projections that
is sub-logarithmic in p γ can be achieved.

Corollary 2 Consider the same setup as in Theorem
1. If γ is such that γ ≤ c(ln ln p)

1−η
2 , where η > 0 is a

free parameter, then d(γ) = o(ln p).

In a similar manner Corollary 3 captures the tradeoff
between the number of projections and the resulting

1-dimensional separation for γ = (ln ln p)
1−η

2 with d =
o(ln p) projections. This result provides a substantially
higher running-time but for a tradeoff in the accuracy.
The proof follows similarly to the proof of Corollary
(2).

Corollary 3 Consider the same setup as in Theorem
1. If γ is such that γ ≤ c(ln p)

1−η
2 , where η > 0 is a

free parameter, then d(γ) = o(p).

To exemplify the tradeoff implications, consider γ
c =√

ln ln p = 1.49, p = 104, and c = 1. According to
an optimal Bayes classifier this yields 5% clustering
error in 1-dimension. To achieve that error d(γ) ≤ 9.24
projections are sufficient to be examined, on average.
On the other hand, for γ

c =
√

ln p = 3.03 the clustering
error is essentially 0, however, the average number
of projections required to achieve this error rate is
d(γ) ≤ 104.

The conditions provided in corollary 2 address the
similarity between γ and c and enable us to construct
novel and efficient algorithms employing remarkably
small number of projections if γ is close to c up to a
log-logarithmic factor in p.

2.2 The case of k-GMM (k > 2)

We extend Theorem 1 via a union bound to the case
of k Gaussians:

Theorem 2 Consider m1, ...,mk ∈ Rp and
σ1, ..., σk ∈ R+. Assume that A = (A1, . . . , Ap)
are generated i.i.d. according to N (0, 1). Given
γmin > 0, and i, j ∈ {1, . . . , k} let

c(i,j) = ‖mi −mj‖√
p(σi + σj)

.

Let cmin , mini,j c(i,j). Define event B as having sepa-
ration larger than γmin by all pairs of projected Gaus-
sians. Thats is,

B ,
{∣∣∣〈mi −mj ,

A
‖A‖〉

∣∣∣ ≥ γmin(σi + σj) :

∀(i, j) ∈ {1, . . . , k}2, i 6= j
}
. (7)

Then,

P(Bc) ≤

k2

2

(
1− 2Q

(γmin

cmin

√√√√ 1.1
1− γ2

min
c2

minp

)
(1− e−0.002p)

)
. (8)

The following corollary of Theorem 2 provides a better
understanding of the running time dependency of this
method on the number of components k.



Dan Kushnir, Shirin Jalali, Iraj Saniee

Corollary 4 Consider the same setup as Theorem 2.
Let d(γmin) denote the expected number of projections
required to obtain separation γmin between each pair of
projected Gaussians. Then, if

γmin ≤ (1− α)
√

2π
1.1

cmin

k2 ,

for some α ∈ (0, 1), then lim supp→∞ d(γmin) ≤ 1
α .

2.3 Mixture of two arbitrary Gaussians

At this stage we are read to generalize the results of the
previous section to arbitrary Gaussians with covariance
matrices Σ1 and Σ2. Conditioned on A = a, projecting
points X drawn from Gaussian distribution N (mi,Σi)
as XTa are distributed as a Gaussian distribution with
mean E[〈X,a〉] = 〈mi,a〉, and variance var(〈X,a〉) =
aTΣia. As argued before, the two projected clusters
are γ-separated, if |〈m1,a〉 − 〈m2,a〉| > γ(

√
aTΣ1a +√

aTΣ2a), or

|〈m1 −m2,a〉| > γ
(√

aTΣ1a +
√

aTΣ2a
)
, (9)

for some appropriate γ > 0. Unlike the condition stated
in (3), both sides of (9) depend on the direction of a.
Therefore, analyzing the following probability

P
(
|〈m1 −m2,A〉| > γ(

√
ATΣ1A +

√
ATΣ2A )

)
,

is more complicated. The following theorems 3 and 4
provide lower bounds on this probability for the cases
of Σ1 + Σ2 having a full rank r = p, and for the case
of partial rank r < p, respectively.

Theorem 3 Consider m1,m2 ∈ Rp and semi-positive
definite matrices Σ1 and Σ2. Assume that the entries
of A = (A1, . . . , Ap) are generated i.i.d. according to
N (0, 1). Let λmax denote the maximum eigenvalue of
Σ1 + Σ2. Also, given γ > 0, let

β ,
2γ2λmaxp

‖m1 −m2‖2
.

Then, for any τ > 0, the probability that the 1-
dimensional projected Gaussians using a uniformly
random direction are γ-separated, i.e., P

(
|〈m1 −

m2,A〉| ≥ γ(
√

ATΣ1A +
√

ATΣ2A )
)
, can be lower-

bounded by

Q
(√√√√β

(1− 1
p )

(1− β
p )

(1 + τ)
)

(1− e−
p−1

2 (τ−log(1+τ))). (10)

In Theorem 4 we consider the case where the covariance
matrices are not full-rank. In this case the expected
number of required projections significantly decreases
if the rank of Σ1 + Σ2 is much smaller than p:

Theorem 4 Consider m1,m2 ∈ Rp and semi-positive
definite matrices Σ1 and Σ2. Assume that the entries
of A = (A1, . . . , Ap) are generated i.i.d. according to
N (0, 1). Let r and λmax denote the rank and the max-
imum eigenvalue of Σ1 + Σ2, respectively. Also, given
γ > 0, τ1 ∈ (0, 1) and τ2 > 0, let

β ,
2(1 + τ2)γ2λmaxr

(1− τ1)‖m1 −m2‖2
.

Then, for any τ > 0, the probability that the 1-
dimensional projected Gaussians using a uniformly
random direction are γ-separated, i.e., P

(
|〈m1 −

m2,A〉| ≥ γ(
√

ATΣ1A +
√

ATΣ2A )
)
, can be lower-

bounded by

2Q

√√√√β
(1− 1

p )
(1− β

p )
(1 + τ)

 (1− e−
p−1

2 (τ−log(1+τ)))

− e
p
2 (τ1+log(1−τ1)) − e− r2 (τ2−log(1+τ2)).

As before, let d(γ) denote the expected number of
1-dimensional random projections required to attain
γ-separation in 1-dimension. Similar to the case of
spherical Gaussians, Corollaries 5 and 6 study the num-
ber of projections required for attaining a separation
γ. The proofs follow closely the proofs of Corollaries 1
and 2.

Corollary 5 Consider two c-separated Gaussian dis-
tributions in Rp with means m1,m2 ∈ Rp and covari-
ance matrices Σ1 and Σ2. Let β , 2γ2λmaxp

‖m1−m2‖2 , where
λmax denotes the maximal eigenvalue of the matrix
Σ1 + Σ2. Then as limp→∞ d(γ) ≤ 1

2Q(
√
β)
.

Corollary 6 Consider the same setup as in Corollary
5. If γ is such that

√
β = (ln ln p)

1−η
2 , where η > 0 is

a free parameter, then d(γ) = o(ln p).

3 Algorithm

In this section, we propose Algorithm 1 for clustering
arbitrary mixtures of Gaussian distributions. The al-
gorithm receives as input the n × p data matrix X,
a prescribed error - e, and a maximum number of 1-
dimensional projections - M . M can be estimated, for
example, as o(ln p) before execution based on corol-
laries 2, or 6. The algorithm sequentially performs
1-dimensional projections, where each projection’s di-
rection is chosen uniformly at random. After each
random projection, the parameters of the projected mix-
ture of Gaussians in 1-dimension and its corresponding
clustering error are estimated with the MoM algorithm
of [Hardt(2015)] or EM [Dempster et al.(1977)]. This
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Algorithm 1: ClusterGMM
Data: X − n× p data matrix, e - error,
M - projection budget
Result: C∗
initialization: i = 1 ê =∞
while i < M do

Project to random direction: 〈X,Ai〉
Learn 1-dimensional parameters:
(m̂i

1, m̂
i
2, σ̂

i
1, σ̂

i
2, ŵ

i
1)

Learn a separator C∗ and compute ê
if ê < e then

return(C∗)
if Mixture is spherical then

Estimate the necessary number of
projections - M̄ (using Lemma 2 and Thm.
1)

if M < M̄ then
print("Error not Achievable")
EXIT;

print("Error not Achievable")

process is iterated until either the desired accuracy e
is achieved by the current projection, or the maximum
number of projections M is reached.

For the spherical case, one can use on-the-fly Lemma 2
to estimate c at the iteration i as

c̄ =

√√√√1
i

i∑
j=1

γ̂2
j , (11)

where γ̂j is the estimated 1-dimensional separation from
projection Aj . Once c is estimated via (11) one can
update the number of projections to achieve γ = Q−1(e)
via Theorem 1 and its Corollary 2. If the required
number of projections (compute based on c̄) is larger
than the budget M the algorithm can be stopped.

Note that Alg. 3.3 of [Hardt(2015)] involves computing
the 6 moments of the 1-dimensional projected sample
and finding the roots of a low degree polynomial. Hence,
the parameters estimation step comprises of linear run-
ning time complexity in the sample size. Alternatively,
using EM [Dempster et al.(1977)] with its linear run-
ning time for each step comprises overall linear running
time for a bounded number of iterations.

We provide numerical experiments in section 5.

4 Sample complexity

In this section, we study the sample complexity of our
proposed algorithm. Note that in our algorithm, pa-
rameter estimation is only done after 1-dimensional
projections, and hence in R. After each random pro-

jection, we use Algorithm 3.3 of [Hardt(2015)] to esti-
mate the parameters of the projected mixture of two
Gaussian distributions. Algorithm 3.3 is a variation
of the well-known method of moments proposed by
Pearson in [Pearson(1894)]. The following result from
[Hardt(2015)] summarizes the performance of Algo-
rithm 3.3 in estimating the parameters of a mixture of
two general Gaussians in 1-dimension.

Theorem 5 (Theorem 3.10 in [Hardt(2015)])
Consider a mixture of two Gaussian distri-
bution wN (µ1, σ1) + (1 − w)N (µ2, σ2). Let
σ2 = w(1 − w)(µ1 − µ2)2 + wσ2

1 + (1 − w)σ2
2

denote the variance of this distribution. Then,
given n = O( 1

ε2 log 1
δ ) samples, Algorithm 3.3, with

probability 1−δ, returns estimates of the parameters as
(µ̂1, µ̂2, σ̂1, σ̂1, ŵ), which under the right permutation
of the indices, satisfy the following guarantees, for
i = 1, 2,

• If n ≥
(

σ2

|µ1−µ2|2

)6
, then |µi − µ̂i| ≤ ε|µ1 − µ2|,

|σ2
i − σ̂2

i | ≤ ε|µ1 − µ2|2, and |w − ŵ| ≤ ε.

• If n ≥
(

σ2

|σ2
1−σ2

2 |

)6
, then |σ2

i − σ̂2
i | ≤ ε|σ2

1 − σ2
2 | +

|µ1 − µ2|2, and |w − ŵ| ≤ ε+ |µ1−µ2|2
|σ2

1−σ2
2 |
.

• For any n ≥ 1, the algorithm performs as well as
assuming the mixture is a single Gaussian, and
|µi − µ̂i| ≤ |µ1 − µ2|+ εσ, and |σ2

i − σ̂2
i | ≤ |µ1 −

µ2|2 + |σ2
1 − σ2

2 |+ εσ2.

Consider a mixture of two c-separated Gaussians in
Rp, and assume that γ denotes the separation required
for the projected Gaussians in R to achieve the desired
error e. In such a setting, to analyze the sample com-
plexity of our proposed methods, we need to show that,
there exists γ′ smaller than γ, such that

i) if after a random projection, the two projected
Gaussian are γ′′-separated, where γ′′ > γ′, then
the number of samples is such that, with high
probability, we are able to estimate the separation
γ′′ accurately,

ii) if the two projected Gaussians are γ′′-separated,
where γ′′ ≤ γ′, then, with high probability, we are
able to reject that direction.

Condition i) guarantees that the direction with sepa-
ration γ, if it exists, will be detected, and Condition
ii) ensures that there are no false detections, where
a direction with low-separation is misidentified as a
good direction. In the following, we derive the sample
complexity required to satisfy each condition.
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First, to address Condition i) the following corollary
7, a direct result of Theorem 5, shows that, if the two
components of a Gaussian mixture model are separated
enough in 1-dimension, given sufficient number of sam-
ples, Algorithm 3.3 of [Hardt(2015)] returns accurate
estimates of all parameters. Then, Theorem 6 connects
the error in estimating the parameters (µ1, µ2, σ1, σ2, w)
to the error in estimating the clustering error. Since
the ultimate goal of our algorithm is to find a direction
which yields a desired clustering error, it is important
to establish such a connection, which, given the desired
clustering error, characterizes some sufficient accuracy
in estimating the parameters.

Corollary 7 Let (X1, . . . , Xn) denote n i.i.d. samples
of a mixture of two c-separated Gaussians wN (µ1, σ1)+
(1−w)N (µ2, σ2), where µ1 < µ2 and σ1 = σ2. Further
assume that the separation c = |µ1−µ2|/(σ1 +σ2) in 1-
dimension is larger than γmin. Let (µ̂1, µ̂2, σ̂1, σ̂2, ŵ) de-
note the estimates of (µ1, µ2, σ1, σ2, w) returned by Al-
gorithm 3.3 of [Hardt(2015)]. Then, if n = O( 1

ε2 log 1
δ )

and n ≥ 1
(2γmin)12 , then |µi−µ̂i| ≤ ε|µ1−µ2|, |σ2

i−σ̂2
i | ≤

ε|µ1 − µ2|2, and |w − ŵ| ≤ ε.

Theorem 6 Consider (X1, . . . , Xn) that are generated
i.i.d. according to a mixture of two γ-separated Gaus-
sians wN (µ1, σ1) + (1− w)N (µ2, σ2), where σ1 = σ2,
w ∈ [wmin, 0.5], µ1 < µ2 and γ ∈ [γmin, γmax]. Let
(µ̂1, µ̂2, σ̂1, σ̂2, ŵ) denote the estimate of the unknown
parameters (µ1, µ2, σ1, σ2, w). Let eopt and ê denote the
minimum achievable clustering error and a clustering
error based on the estimated parameters, respectively.
Then, if |µi − µ̂i| ≤ ε|µ1 − µ2|, |σ2

i − σ̂2
i | ≤ ε|µ1 − µ2|2,

|w−ŵ| ≤ ε, and (16γ2
max+8γmax ln 1−wmin

wmin
+2γmaxε)ε <

1
2 , then

|ê− eopt| ≤
(

2γ + 1
wminγ

+
(

1
γ

+ 2γ
)

ln 1− wmin

wmin

+ 8γ2
max
γ

+ 2γ
(

4γ + 2 ln 1− wmin

wmin

)2 )
ε

+Q

(
1

4γε + ε1

)
+ ε2,

where ε1 = o(1/ε) and ε2 = o(ε).

Note that, as expected, as γmin converges to zero, by
Corollary 7, the required number of samples for accu-
rate estimation of the parameters grows to infinity. On
the other hand, too small separation γ corresponds to
large overlap of the two Gaussians. Hence, to establish
condition ii) we later describe a procedure to discard
directions with low separation. As confirmed in the
following lemma 3, unless the weights of the two Gaus-
sians are very non-uniform, i.e. min(w, 1 − w) is far

from 0.5, low separation corresponds to high clustering
error.

Lemma 3 Consider i.i.d. points generated as
wN (µ1, σ) + (1 − w)N (µ2, σ). Without loss of
generality, assume that µ1 ≤ µ2 and w < 0.5. Let
γ = (µ2 − µ1)/(2σ). Also, let eopt denote the error
probability of an optimal Bayesian classifier. Then, if
w ≤ 0.1,

eopt ≥ wQ
(
− 1
γ

+ γ

)
. (12)

For w ∈ (0.1, 0.5],

eopt ≥ wQ (γ) . (13)

Therefore, if the ultimate goal is to achieve a reasonable
clustering error through multiple random projections,
for those directions with too small separation, we only
need to identify them and discard them. In other words,
for such directions, it is not necessary to estimate all
the parameters of the projected Gaussians accurately,
as they ultimately are not going to be used for cluster-
ing. The following lemma provides a mechanism for
identifying and discarding all directions that have a
separation smaller than some threshold.

Lemma 4 Let (X1, . . . , Xn) denote n i.i.d. samples of
a mixture of two γ-separation Gaussians wN (µ1, σ1) +
(1− w)N (µ2, σ2), where σ1 = σ2, γ = (µ2 − µ1)/(σ1 +
σ2) < 1/2 and µ1 < µ2. Let (µ̂1, µ̂2, σ̂1, σ̂2, ŵ) denote
the estimates of (µ1, µ2, σ, σ, w) returned by Algorithm
3.3 of [Hardt(2015)]. Then, if n = O( 1

ε2 log 1
δ ), with

probability larger than 1− δ,

|µ̂1 − µ̂2|
σ̂1 + σ̂2

≤ 3γ + ε

1− 2
√
γ2 + ε

.

To shed more light on the implications of Lemma 4,
consider, for example, a mixture of two 1-dimensional
Gaussians with equal variance and separation γ smaller
than 1

8 . Then, given n = O( 1
ε2 log 1

δ ) i.i.d. samples,
with probability larger than 1− δ, the estimated sepa-
ration (using parameters derived from Algorithm 3.3
of [Hardt(2015)]) is smaller than

3
8 + ε

1− 2
√

( 1
8 )2 + ε

= 1
2 + o(ε).

Therefore, if after performing each random projection,
we estimate the parameters of the two Gaussians us-
ing Algorithm 3.3 of [Hardt(2015)] and then estimate
their separation as |µ̂1−µ̂2|

σ̂1+σ̂2
and discard all those direc-

tions that have estimated separation smaller than 1
2 ,

we would, with high probability, discard all directions
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Figure 1: Spherical Gaussians: Data contains 10K points realization for a mixture of two Gaussians in Rp, p = 100. A
- Projection order vs. separation to reach 20% error. Algorithm performance compared with the theoretical upper-bound of
Theorem 1. B - number of projections vs. accuracy for separation values 0.1, 0.5, 1, and 2. Non-Spherical Gaussians:
Data contains 10K points realization for a mixture of two Gaussians in Rp, p = 1000. C - Error vs. rank of (Σ1 + Σ2). D -
number of projections vs. rank compared with Theorem 4 bound.

with a separation smaller than 1/8. Therefore, if the
desired clustering error is smaller than Q( 1

2 ), then this
procedure discards directions that have no chance of
yielding the required performance. For directions with
separation larger than 1/8, we need to have enough
samples to estimate the parameters accurately. The
required number of samples for achieving this goal
is shown in Corollary 7, which follows directly from
Theorem 3.10 of [Hardt(2015)]. Note that using this
procedure, directions with estimated separation smaller
than 0.5 include those directions with separation in
( 1

8 ,
1
2 ), for which, with high probability, we have esti-

mated the parameters accurately, and those directions
with separation smaller than 1

8 , for which we have only
a crude estimate of the parameters.

5 Experiments

Spherical Gaussians: Number of projections vs.
separation. We generate 10K points in R100, with
w1 = w2 and σ1 = σ2. The user’s desired error is fixed
at e = 20% as we measure the number of projections
used until the error is achieved. Fig. 1-A plots the
number of projections scanned until the prescribed ac-
curacy is attained for various c values. We also use the
lower bound provided by Theorem 1 to plot the inverse
of the probability bound defined there corresponding to
the expected number of projections to achieve e. The
tightness of the bound is clearly observed.

Spherical Gaussians: Error vs. number of pro-
jections. Fig. 1-B reports the accuracy values vs.
number of projections for varying c values. The exper-
iment marks the necessary number of projections to
achieve the minimal possible error. The curves demon-
strate the high efficiency in which the algorithm can
cluster the data to a prescribed error that corresponds
to the high dimensional separation.

Non-spherical Gaussians: Accuracy vs. rank.
Using Algorithm 1, we examine the error as function
of the rank of the covariance summation matrix (Σ1 +
Σ2). Fig. 1-C demonstrates this error. We note that
as the matrix approaches the full rank (with equal
variance in the populated dimensions) the error of
our algorithm approaches the error 0.1 attained for
spherical Gaussians at c = 0.5.

Non-spherical Gaussians: Number of projec-
tions vs. rank. In Fig. 1-D we report results for
a 4% error prescribed, as we examine the number of
projections required by our algorithm vs. the rank of
(Σ1 + Σ2), and the bound provided by Theorem 4. The
separation in this case is 0.5.

We note that our bounds are on the expected number of
projections. Moreover, slight deviations in the number
of projections from the bound may also occur due to
precision in algorithm convergence (EM or MoM).

6 Conclusion

In this paper we study the problem of clustering ar-
bitrary GMMs using independent and uniformly at
random one-dimensional projections. To achieve this
goal, we derived bounds on the number of independent
random 1-dimensional projections required to achieve
a desired clustering error e in R, for both spherical
and non-spherical GMMs. Our bounds show that for
sufficiently-separated high-dimensional Gaussians, e
can be achieved in linear running time in both the
dimension of the data and its sample size. Moreover,
our sample complexity is independent of the original
data dimension p. Our analysis also provides a mecha-
nism that allows discarding the directions in which the
mixture parameters cannot be estimated accurately.
Finally, we also studied the case of k > 2 Gaussians.
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