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Abstract

We prove that two popular linear contex-
tual bandit algorithms, OFUL and Thomp-
son Sampling, can be made efficient using
Frequent Directions, a deterministic online
sketching technique. More precisely, we show
that a sketch of size m allows a O(md) up-
date time for both algorithms, as opposed
to Ω(d2) required by their non-sketched ver-
sions in general (where d is the dimension
of context vectors). This computational
speedup is accompanied by regret bounds of
order (1 + εm)3/2d

√
T for OFUL and of order(

(1 + εm)d
)3/2√

T for Thompson Sampling,
where εm is bounded by the sum of the tail
eigenvalues not covered by the sketch. In
particular, when the selected contexts span a
subspace of dimension at most m, our algo-
rithms have a regret bound matching that of
their slower, non-sketched counterparts. Ex-
periments on real-world datasets corroborate
our theoretical results.

1 Introduction

The stochastic contextual bandit is a sequential
decision-making problem where an agent interacts with
an unknown environment in a series of rounds. In each
round, the environment reveals a set of feature vectors
(called contexts, or actions) to the agent. The agent
chooses an action from the revealed set and observes the
stochastic reward associated with that action (bandit
feedback). The strategy used by the agent for choosing
actions based on past observations is called a policy.
The goal of the agent is to learn a policy minimizing
the regret, defined as the difference between the total
reward of the optimal policy (i.e., the policy choosing
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the action with highest expected reward at each round)
and the total reward of the agent’s policy.

Contextual bandits are a popular modelling tool in
many interactive machine learning tasks. A typical
area of application is personalized recommendation,
where a recommender system selects a product for
a given user from a set of available products (each
described by a feature vector) and receives a feedback
(purchase or non-purchase) for the selected product.

We focus on the stochastic linear bandit model (Auer,
2002; Dani et al., 2008), where the set of actions (or
decision set) is a finite1 set Dt ⊂ Rd, and the reward
for choosing action xt ∈ Dt is given by Yt = x>t w

?+ηt
where w? ∈ Rd is a fixed and unknown vector of real
coefficients and ηt is a zero-mean random variable. The
regret in this setting is defined by

RT =

T∑
t=1

x?>t w? −
T∑
t=1

x>t w
? (1)

where x?t = arg maxx∈Dt
x>w? is the optimal action

at round t. Bounds on the regret typically apply to any
individual sequence of decision sets Dt and depend on
quantities arising from the interplay between w?, the
sequence of decision sets, and the randomness of the
rewards. Note that RT is a random variable because
the actions xt ∈ Dt selected by the policy are functions
of the past observed rewards. For this reason, our regret
bounds only hold with probability at least 1− δ, where
δ is a confidence parameter. By choosing δ = T−1,
we can instead bound the expected regret E

[
RT
]

by
paying only a lnT extra factor in the bound.

We consider two of the most popular algorithms for
stochastic linear bandits: OFUL (Abbasi-Yadkori et al.,
2011) and linear Thompson Sampling (Agrawal and
Goyal, 2013) (linear TS for short). While exhibiting
good theoretical and empirical performances, both al-
gorithms require Ω

(
d2
)

time to update their model
after each round. In this work we investigate whether
it is possible to significantly reduce this update time
while ensuring that the regret remains nicely bounded.

1Note that our regret bounds do not actually depend on
the cardinality of the sets Dt.
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The quadratic dependence on d is due to the computa-
tion of the inverse correlation matrix of past actions (a
cubic dependence is avoided because each new inverse
is a rank-one perturbation of the previous inverse). The
occurrence of this matrix is caused by the linear nature
of rewards: to compute their decisions, both algorithms
essentially solve a regularized least squares problem at
every round. In order to improve the running time,
we sketch the correlation matrix using a specific tech-
nique —Frequent Directions, (Ghashami et al., 2016)—
that works well in a sequential learning setting. While
matrix sketching is a well-known approach (Woodruff,
2014), to the best of our knowledge this is the first work
that applies sketching to linear contextual bandits while
providing rigorous performance guarantees.

With a sketch size of m, a rank-one update of the cor-
relation matrix takes only time O(md), which is linear
in d for a constant sketch size. However, this speed-
up comes at a price, as sketching reduces the matrix
rank causing a loss of information which —in turn—
affects the least squares estimates used by the algo-
rithms. Our main technical contribution shows that
when OFUL and linear TS are run with a sketched cor-
relation matrix, their regret blows up by a factor which
is controlled by the spectral decay of the correlation
matrix of selected actions. More precisely, we show that
the sketched variant of OFUL, called SOFUL, achieves
a regret bounded by

RT
Õ
=
(
1 + εm

) 3
2

(
m+ d ln

(
1 + εm

))√
T (2)

where m is the sketch size and εm is upper bounded by
the spectral tail (sum of the last d−m+ 1 eigenvalues)
of the correlation matrix for all T rounds. In the
special case when the selected actions span a number
of dimensions equal or smaller than the sketch size, then
εm = 0 implying a regret of order m

√
T . Thus, we

have a regret bound matching that of the slower, non-
sketched counterpart.2 When the correlation matrix
has rank larger than the sketch size, the regret of
SOFUL remains small to the extent the spectral tail of
the matrix grows slowly with T . In the worst case of
a spectrum with heavy tails, SOFUL may incur linear
regret. In this respect, sketching is only justified when
the computational cost of running OFUL cannot be
afforded. Similarly, we prove that the efficient sketched
formulation of linear TS enjoys a regret bound of order

RT
Õ
=
(
m+ d ln(1 + εm

))(
1 + εm

) 3
2
√
dT . (3)

Once again, for εm = 0 our bound is of order m
√
dT ,

which matches the regret bound for linear TS. When

2The regret bound of OFUL in (Abbasi-Yadkori et al.,

2011, Theorem 3) is stated as O(d
√
T ), however, it can

be improved for low-rank problems by using the “log-det”
formulation of the confidence ellipsoid.

the rank of the correlation matrix is larger than the
sketch size, the bound for linear TS behaves similarly
to the bound for SOFUL.

Finally, we show a problem-dependent regret bound
for SOFUL. This bound, which exhibits a logarithmic
dependence on T , depends on the smallest gap ∆ be-
tween the expected reward of the best and the second
best action across the T rounds,

RT
Õ
=

1

∆

(
1 + εm

)3(
m+ d ln

(
1 + εm

))2

(lnT )2 . (4)

When εm(T ) = 0 this bound is of order m2

∆ (lnT )2

which matches the corresponding bound for OFUL.
Experiments on six real-world datasets support our
theoretical results.

Additional related work. For an introduction to
contextual bandits, we refer the reader to the recent
monograph of Lattimore and Szepesvári (2018). The
idea of applying sketching techniques to linear contex-
tual bandits was also investigated by Yu et al. (2017),
where they used random projections to preliminarly
draw a random m-dimensional subspace which is then
used in every round of play. However, the per-step com-
putation time of their algorithm is cubic in m rather
than quadratic like ours. Morover, random projection
introduces an additive error ε in the instantaneous re-
gret which becomes of order m−1/2 for any value of
the confidence parameter δ bounded away from 1. A
different notion of compression in contextual bandits is
explored by Jun et al. (2017), where they use hashing
algorithms to obtain a computation time sublinear in
the number K of actions. An application of sketching
(including Frequent Directions) to speed up 2nd order
algorithms for online learning is studied by Luo et al.
(2016), in a RKHS setting by Calandriello et al. (2017),
and in stochastic optimization by Gonen et al. (2016).

2 Notation and preliminaries

Let B(z, r) ⊂ Rd be the Euclidean ball of center z
and radius r > 0 and let B(r) = B(0, r). Given a
positive definite d × d matrix A, we define the in-
ner product 〈x, z〉A = x>Ay and the induced norm

‖x‖A =
√
x>Ax, for any x, z ∈ Rd. Throughout the

paper, we write f
Õ
= g to denote f = Õ(g). The

contextual bandit protocol is described in Algorithm 1.

Algorithm 1 (Contextual Bandit)

1: for t = 1, 2, . . . do
2: Get decision set Dt ⊂ Rd
3: Use current policy to select action xt ∈ Dt

4: Observe reward Yt ∈ R
5: Use pair (xt, Yt) to update the current policy
6: end for
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We introduce some standard assumptions for the linear
contexual bandit setting. At any round t = 1, 2, . . . the
decision set Dt ⊂ Rd is finite and such that ‖x‖ ≤ L
for all x ∈ Dt and for all t ≥ 1. The noise sequence
η1, η2 . . . , ηT is conditionally R-subgaussian for some
fixed constant R ≥ 0. Formally, for all t ≥ 1 and all
λ ∈ R, E

[
eληt

∣∣ η1, . . . , ηt−1

]
≤ exp

(
λ2R2/2

)
. Note

that this implies E[ηt | η1, . . . , ηt−1] = 0 and Var[ηt |
η1, . . . , ηt−1] ≤ R2. Finally, we assume that a known
upper bound S on ‖w?‖ is available.

Both OFUL and Linear TS operate by computing a
confidence ellipsoid to which w? belongs with high
probability. Let Xt = [x1, . . . ,xt]

> be the t×d matrix
of all actions selected up to round t by an arbitrary
policy for linear contextual bandits. For λ > 0, define
the regularized correlation matrix of actions V t and
the regularized least squares (RLS) estimate ŵt as

V t = X>t Xt + λI and ŵt = V −1
t

t∑
s=1

xsYs . (5)

The following theorem (Abbasi-Yadkori et al., 2011,
Theorem 2) bounds in probability the distance, in terms
of the norm ‖·‖V t

, between the optimal parameter w?

and the RLS estimate ŵt.

Theorem 1 (Confidence Ellipsoid). Let ŵt be the
RLS estimate constructed by an arbitrary policy for
linear contextual bandits after t rounds of play. For
any δ ∈ (0, 1), the optimal parameter w? belongs to
the set Ct ≡

{
w ∈ Rd : ‖w − ŵt‖V t

≤ βt(δ)
}

with
probability at least 1− δ, where

βt(δ) = R

√
d ln

(
1 +

tL2

λd

)
+ 2 ln

(
1

δ

)
+ S
√
λ . (6)

OFUL. The actions selected by OFUL are solutions
to the following constrained optimization problem

xt = arg max
x∈Dt

max
w∈Rd

x>w

such that ‖w − ŵt−1‖V t−1 ≤ βt−1(δ) .

Using Lemma 5 (in the appendix), OFUL can be for-
mulated as Algorithm 2. Note that xt maximizes
the expected reward estimate ŵ>t−1x plus a term
βt−1(δ) ‖x‖V −1

t−1
that provides an upper confidence

bound for the RLS estimate in the direction of x.

Linear TS. The linear Thompson Sampling algo-
rithm of Agrawal and Goyal (2013) is Bayesian in
nature: the selected actions and the observed rewards
are used to update a Gaussian prior over the parameter
space. Each action xt is selected by maximixing x>ŵts

t

over x ∈ Dt, where ŵts
t is a random vector drawn from

the posterior. As shown by Abeille and Lazaric (2017),

Algorithm 2 (OFUL)

Input: δ, λ > 0
1: ŵ0 = 0,V −1

0 = 1
λI.

2: for t = 1, 2, . . . do
3: Get decision set Dt

4: Play xt ← arg max
x∈Dt

{
ŵ>t−1x+ βt−1(δ) ‖x‖V −1

t−1

}
5: Observe reward Yt
6: Compute V −1

t and ŵt using (5)
7: end for

linear TS can be equivalently defined as a randomized
algorithm based on the RLS estimate (see Algorithm 3).
The random vectors Zt are drawn i.i.d. from a suitable

Algorithm 3 (Linear TS)

Input: δ, λ > 0,m ∈ {1, . . . , d − 1}, Dts (sampling
distribution)

1: ŵ0 = 0,V −1
0 = 1

λId×d, δ
′ = δ/(4T )

2: for t = 1, 2, . . . do
3: Get decision set Dt

4: Sample Zt ∼ Dts

5: Play xt ← arg max
x∈Dt

x>
(
ŵt−1 + β̃t(δ

′)V
− 1

2
t−1Zt

)
6: Observe reward Yt

7: Compute V
− 1

2
t and ŵt using (5)

8: end for

multivariate distribution Dts that need not be related
to the posterior. In order to prove regret bounds, it is
sufficient that the law of Zt satisfies certain properties.

Definition 1 (TS-sampling distribution). A multivari-
ate distribution Dts on Rd, absolutely continuous w.r.t.
the Lebesgue measure, is TS-sampling if it satisfies the
following two properties:

• (Anti-concentration) There exists p > 0 such that
for any u with ‖u‖ = 1, P

(
u>Z ≥ 1

)
≥ p.

• (Concentration) There exist c, c′ > 0 such that for
all δ ∈ (0, 1),

P

(
‖Z‖ ≤

√
cd ln

(
c′d

δ

))
≥ 1− δ .

Similarly to OFUL, linear TS uses the notion of confi-
dence ellipsoid. However, due to the properties of the
sampling distribution Dts, the ellipsoid used by linear
TS is larger by a factor of order

√
d than the ellipsoid

used by OFUL. This causes an extra factor of
√
d in

the regret bound, which is not known to be necessary.

Note that both OFUL and linear TS need to maintain
V −1
t (or V

− 1
2

t ), which requires time Ω
(
d2
)

to update.
In the next section, we show how this update time can
be improved by sketching the regularized correlation
matrix V t.
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3 Sketching the correlation matrix

The idea of sketching is to maintain an approximation
of Xt, denoted by St ∈ Rm×d, where m� d is a small
constant called the sketch size. If we choose m such that
S>t St approximates X>t Xt well, we could use S>t St +
λI in place of V t. In the following we use the notation
Ṽ t = S>t St + λI to denote the sketched regularized
correlation matrix. The RLS estimate based upon it is
denoted by

w̃t = Ṽ
−1

t

t∑
s=1

xsYs . (7)

A trivial replacement of V with Ṽ does not yield
an efficient algorithm. On the other hand, using the
Woodbury identity we may write

Ṽ
−1

t =
1

λ

(
Id×d − S>t HtSt

)
where Ht =

(
StS

>
t + λIm×m

)−1

. Here matrix-vector

multiplications involving St require time O(md), while
matrix-matrix multiplications involving Ht require
time O(m2). So, as long as St and Ht can be effi-
ciently maintained, we obtain an algorithm for linear

stochastic bandits where Ṽ
−1

t can be updated in time
O(md+m2). Next, we focus on a concrete sketching
algorithm that ensures efficient updates of St and Ht.

Frequent Directions. Frequent Directions (FD)
(Ghashami et al., 2016) is a deterministic sketching
algorithm that maintains a matrix St whose last row
is invariably 0. On each round, we insert x>t into
the last row of St−1, perform an eigendecomposi-
tion S>t−1St−1 + xtx

>
t = U t ΣtU

>
t , and then set

St =
(
Σt − ρtIm×m

) 1
2U t, where ρt is the smallest

eigenvalue of S>t St. Observe that the rows of St form
an orthogonal basis, and therefore Ht is a diagonal ma-
trix which can be updated and stored efficiently. Now,
the only step in question is an eigendecomposition,
which can also be done in time O(md) —see (Ghashami
et al., 2016, Section 3.2). Hence, the total update time
per round is O(md). The updates of matrices St and
Ht are summarized in Algorithm 4.

Algorithm 4 (FD Sketching)

Input: St−1 ∈ Rm×d,xt ∈ Rd, λ > 0
1: Compute eigendecomposition
U>diag{ρ1, . . . , ρm}U = S>t−1St−1 + xtx

>
t

2: St ← diag{
√
ρ1 − ρm, . . . ,

√
ρm−1 − ρm, 0}U

3: Ht ← diag
{

1
ρ1−ρm+λ , . . . ,

1
λ

}
Output: St,Ht

It is not hard to see that FD sketching sequentially
identifies the top-m eigenvectors of the matrix X>TXT .
Thus, whenever we use a sketched estimate, we lose a
part of the spectrum tail. This loss is captured by the
following notion of spectral error,

εm = min
k=0,...,m−1

λd−k + λd−k+1 + · · ·+ λd
λ(m− k)

(8)

where λ1 ≥ . . . ≥ λd are the eigenvalues of the correla-
tion matrix X>TXT . Note that εm ≤ (λm+ · · ·+λd)/λ.
For matrices with low rank or light-tailed spectra we
expect this spectral error to be small. In the following,
we use m̃ to denote the quantity m+d ln(1+εm) which
occurs often in our bounds involving sketching. Note
that m̃ ≥ m and m̃→ m as the spectral error vanishes.

Since the matrix V t is used to compute both the
RLS estimate ŵt and the norm ‖·‖V t

, the sketch-
ing of V t clearly affects the confidence ellipsoid. The
next theorem quantifies how much the confidence el-
lipsoid must be blown up in order to compensate for
the sketching error. Let ρt be the smallest eigenvalue
of the FD-sketched correlation matrix S>t St and let
ρ̄t = ρ1 + · · · + ρt. The following proposition due to
Ghashami et al. (2016) (see the proof of Thm. 3.1,
bound on ∆) relates ρ̄t to εm defined in (8).

Proposition 1. For any t = 0, . . . , T , any λ > 0, and
any sketch size m = 1, . . . , d, it holds that ρ̄t/λ ≤ εm.

A key lemma in the analysis of regret is the follow-
ing sketched version of (Abbasi-Yadkori et al., 2011,
Lemma 11), which bounds the sum of the ridge lever-
age scores. Although sketching introduces the spectral
error εm, it also improves the dependence on the di-
mension from d to m whenever εm is sufficiently small.

Lemma 1 (Sketched leverage scores).

T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}
≤ 2 (1 + εm)

(
m̃+m ln

(
1 +

TL2

mλ

))
. (9)

We can now state the main result of this section.

Theorem 2 (Sketched confidence ellipsoid). Let w̃t

be the RLS estimate constructed by an arbitrary policy
for linear contextual bandits after t rounds of play. For
any δ ∈ (0, 1), the optimal parameter w? belongs to

the set C̃t ≡
{
w ∈ Rd : ‖w − w̃t‖Ṽ t

≤ β̃t(δ)
}

with

probability at least 1− δ, where

β̃t(δ) = R

√
m ln

(
1 +

tL2

mλ

)
+ 2 ln

1

δ
+ d ln

(
1 +

ρ̄t
λ

)
·
√

1 +
ρ̄t
λ

+ S
√
λ
(

1 +
ρ̄t
λ

)
(10)

Õ
= R

√
m̃ (1 + εm) + S

√
λ (1 + εm) . (11)
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Note that (11) is larger than its non-sketched coun-
terpart (6) due to the factors 1 + εm. However, when

the spectral error εm vanishes, β̃t(δ) becomes of order
R
√
m+S

√
λ, which improves upon (6) since we replace

the dependence on the ambient space dimension d with
the dependence on the sketch size m. In the following,
we use the abbreviation Mλ = max

{
1, 1/
√
λ
}

.

4 Sketched OFUL

Equipped with the sketched confidence ellipsoid and the
sketched RLS estimate, we can now introduce SOFUL
(Algorithm 5), the sketched version of OFUL. SOFUL

Algorithm 5 (SOFUL)

Input: δ, λ > 0,m ∈ {1, . . . , d− 1}
1: w̃0 = 0, Ṽ

−1

0 = 1
λId×d,S0 = 0m×d

2: for t = 1, 2, . . . do
3: Get decision set Dt

4: Play xt ← arg max
x∈Dt

{
w̃>t−1x+ β̃t−1(δ) ‖x‖

Ṽ
−1

t−1

}
5: Observe reward Yt
6: Compute St,Ht using Alg. 4 given St−1,xt

7: Ṽ
−1

t ← 1
λ

(
Id×d − S>t HtSt

)
8: Compute w̃t using (7)
9: end for

enjoys the following regret bound, characterized in
terms of the spectral error.

Theorem 3. The regret of SOFUL with FD-sketching
of size m w.h.p. satisfies

RT
Õ
= Mλ

(
1 + εm

) 3
2 m̃
(
R+ S

√
λ
)√

T .

Similarly to Abbasi-Yadkori et al. (2011), we also prove
a distribution dependent regret bound for SOFUL. This
bound is polylogarithmic in time and depends on the
smallest difference ∆ between the rewards of the best
and the second best action in the decision sets,

∆ = min
t=1,...,T

max
x∈Dt\{x?

t }
(x?t − x)

>
w? .

Theorem 4. The regret of SOFUL with FD-sketching
of size m w.h.p. satisfies

RT
Õ
= Mλ (1 + εm)

3
m̃2
(
R2 + S2λ

) (lnT )2

∆
.

Proofs of the regret bounds appear in the supplemen-
tary material (Section A.3).

5 Sketched linear TS

In this section we introduce a variant of linear TS
(Algorithm 3) based on FD-sketching. Similarly to

SOFUL, sketched linear TS (see Algorithm 6) uses the

FD-sketched approximation Ṽ t−1 of the correlation
matrix V t−1 in order to select the action xt. Note

Algorithm 6 (Sketched linear TS)

Input: δ, λ > 0,m ∈ {1, . . . , d−1}, Dts (TS-sampling
distribution)

1: w̃0 = 0, Ṽ
−1

0 = 1
λId×d,S0 = 0m×d, δ

′ = δ/(4T )
2: for t = 1, 2, . . . do
3: Get decision set Dt

4: Sample Zt ∼ Dts

5: Play xt ← arg max
x∈Dt

x>
(
w̃t−1 + β̃t(δ

′)Ṽ
− 1

2

t−1Zt

)
6: Observe reward Yt
7: Compute St,Ht using Alg. 4 given St−1, Xt

8: Ṽ
−1

t ← 1
λ

(
Id×d − S>t HtSt

)
9: Compute w̃t using (7)

10: end for

that, in this case, we need both Ṽ
−1

t−1 and Ṽ
− 1

2

t−1 to
compute xt. Using the generalized Woodbury identity
(Corollary 1 in Appendix A.2 for proofs), we can write

Ṽ
− 1

2

t = S
′>
t

(
S′tS

′>
t

)−1
(
λ

2
I + S′tS

′>
t

)− 1
2

S′t

where S′t =
(
Σt +

(
λ
2 − ρt

)
Im×m

) 1
2 U t. Note that

Ṽ
− 1

2

t can still be computed in timeO
(
md+m2

)
because

S′tS
′>
t is a diagonal matrix.

The confidence ellipsoid stated in Theorem 2 applies
to any contextual bandit policy, and so also to the
w̃t constructed by sketched linear TS. However, as
shown by Abeille and Lazaric (2017), the analysis
needs a confidence ellipsoid larger by a factor equal
to the bound on ‖Z‖ appearing in the concentra-
tion property of the TS-sampling distribution. More
precisely, the TS-confidence ellipsoid is defined by

C̃ts
t ≡

{
w ∈ Rd : ‖w − w̃t‖Ṽ t

≤ γ̃t
(
δ/(4T )

)}
where

γ̃t(δ) = β̃t(δ)

√
cd ln

(
c′d

δ

)
. (12)

The quantity β̃t(δ) is defined in (10) and c, c′ are the
concentration constants of the TS-sampling distribu-
tion (Definition 1). We are now ready to prove a bound
on the regret of linear TS with FD-sketching.

Theorem 5. The regret of FD-sketched linear TS, run
with sketch size m w.h.p. satisfies

RT
Õ
= Mλ (1 + εm)

3
2 m̃

(
R+ S

√
λ
)√

dT .
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The proof of Theorem 5 closely follows the analysis
of Abeille and Lazaric (2017) with some key modifica-
tions due to the sketching operations. For completeness,
we include the proof in the supplementary material.

6 Some proof sketches

Our regret analyses follow Abbasi-Yadkori et al. (2011);
Abeille and Lazaric (2017) and related works. However,
due to the sketching of the correlation matrix, some key
components of the proofs now depend on the spectral
error (8). Because of that, we need tools specific to the
analysis of linear bandits with FD-sketching. These
tools are used to bound the instantaneous regret

(
x?−

xt
)>
w? in terms of the norm ‖w? − w̃t‖Ṽ t−1

and the

ridge leverage scores. Armed with these results, we then
prove our regret bounds in Section 6.1. In this section
we only present the core regret analysis of SOFUL,
while we defer its complete analysis and analysis of the
sketched linear TS to the supplementary material.

6.1 Proof of regret bounds for SOFUL

We start by introducting a basic relationship between
the correlation matrix of actions X>s Xs and its FD-
sketched estimate S>t St with sketch size m ≤ d. Recall
that ρt is the smallest eigenvalue of S>t St for t =
1, . . . , T and ρ̄t = ρ1 + · · ·+ ρt.

Proposition 2. Let Ss be the matrix computed by
FD-sketching at time step s = 1, . . . , t (where S0 = 0).
Then X>s Xs = S>s Ss + ρ̄sI .

Proof. By construction, S>s−1Ss−1+xsx
>
s = U sΣsU

>
s

where Ss = (Σs − ρsIm×m)
1
2 U s. Thus,

S>s Ss = U sΣsU
>
s − ρsI = S>s−1Ss−1 + xsx

>
s − ρsI

Summing both sides of the above over s = 1, . . . , t,
S>t St =

∑t
s=1 xsx

>
s −

∑t
s=1 ρsI .

We will also use the following lemma of (Abbasi-Yadkori
et al., 2011, Lemma 11).

Lemma 2. For λ ≥ max
{

1, L2
}

, we have that

T∑
t=1

‖xt‖2V −1
t−1

≤ 2d ln

(
1 +

TL2

λd

)
. (13)

The following lemma gives a sketch-specific version of
the determinant-trace inequality, shown in the supple-
mentary material (Lemma 8).

Lemma 3.

ln

(
det(V t)

det(λI)

)
≤ d ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

)
.

Next we prove Lemma 1, which is similar to Lemma 2.
However, now the statement depends on the sketched
matrix Ṽ t−1 instead of V t−1.

Proof of Lemma 1. Throughout the proof, unless
stated explicitly, we drop the subscripts containing
t. Therefore, V = V t−1, Ṽ = Ṽ t−1, x = xt, and

ρ̄ = ρ̄t−1. Now suppose that (λ̃i + λ, ũi) is an i-th

eigenpair of Ṽ . Then, Proposition 2 implies that a
corresponding eigenpair of V is (λ̃i + λ+ ρ̄, ũi). Using
this fact we have that

‖x‖2V −1 = x>Ṽ Ṽ
−1
V −1x

= x>

(
d∑
i=1

ũiũ
>
i

1

λ̃i + λ

λ̃i + λ

λ̃i + λ+ ρ̄

)
x

≥ λ

λ+ ρ̄
x>

(
d∑
i=1

ũiũ
>
i

1

λ̃i + λ

)
x =

λ

λ+ ρ̄
‖x‖2

Ṽ
−1 .

Furthermore, this implies that

min

{
1,

λ

λ+ ρ̄
‖x‖2

Ṽ
−1

}
≤ min

{
1, ‖x‖2V −1

}
⇒ min

{
1, ‖x‖2

Ṽ
−1

}
≤
(

1 +
ρ̄

λ

)
min

{
1, ‖x‖2V −1

}
.

Finally, combining the above with Lemma 2, equation
and using the fact that ρ̄t−1 ≤ ρ̄T , we obtain

T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}
≤ 2

(
1 +

ρ̄T
λ

)
ln

(
det(V T )

det(λI)

)
≤ 2

(
1 +

ρ̄T
λ

)(
d ln

(
1 +

ρ̄T
λ

)
+m ln

(
1 +

TL2

mλ

))
≤ 2 (1 + εm)

(
d ln (1 + εm) +m ln

(
1 +

TL2

mλ

))
where the penultimate inequality follows from Lemma 3
and the last step follows from Proposition 1.

Now we give a bound on the instantaneous regret.

Lemma 4. For any δ > 0, the instantaneous regret
of SOFUL satisfies (x?t − xt)>w? ≤ 2β̃t−1(δ)‖xt‖Ṽ −1

t−1

for t = 1, . . . , T .

Proof. Let w̃so
t−1 be the FD-sketched RLS estimate of

OFUL (Algorithm 5). Recall that the optimal action
at time t is x?t = arg maxx∈Dt

x>w?, whereas(
xt, w̃

so
t−1

)
= arg maxx>w (x,w) ∈ Dt × C̃t−1 .

We use these facts to bound the instantaneous regret,(
x?t − xt

)>
w? ≤ x>t

(
w̃so
t−1 −w?

)
= x>t

(
w̃so
t−1 − w̃t−1

)
+ x>t (w̃t−1 −w?)
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≤ ‖xt‖Ṽ −1

t−1

(
‖w̃so

t−1 − w̃t−1‖Ṽ t−1
+ ‖w̃t−1 −w?‖Ṽ t−1

)
≤ 2β̃t−1(δ)‖xt‖Ṽ −1

t−1

(by Theorem 2)

where we get penultimate inequality by Cauchy-
Schwartz inequality.

Proof of Theorem 3. Using Lemma 4 gives

RT =

T∑
t=1

(x?t − xt)
>
w?

≤ 2

T∑
t=1

min
{
LS, β̃t−1(δ)‖xt‖Ṽ −1

t−1

}
(14)

≤ 2

T∑
t=1

β̃t−1(δ) min

{
L√
λ
, ‖xt‖Ṽ −1

t−1

}
(15)

≤ 2Ã

T∑
t=1

min

{
L√
λ
, ‖xt‖Ṽ −1

t−1

}

≤ 2Ãmax

{
1,

L√
λ

} T∑
t=1

min
{

1, ‖xt‖Ṽ −1

t−1

}

≤ 2Ãmax

{
1,

L√
λ

}√√√√T

T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}

where we used Ã = maxt=0,...,T−1 β̃t(δ). Also,
we get (14) since maxt=1,...,T maxx∈Dt

|x>w?| ≤
LS by Cauchy-Schwartz, and (15) since

mint=0,...,T−1 minδ∈[0,1] β̃t(δ) ≥ S
√
λ. The last

inequality is obtained via the Cauchy-Schwartz
inequality. Now we finish by bounding β̃t(δ) using (11)
and we bound the summation term using Lemma 1,

RT
Õ
= Mλ

√
T
(
R
√
m̃ (1 + εm) + S

√
λ (1 + εm)

)
·
√
m̃ (1 + εm)

Õ
= Mλ

√
T
(
Rm̃ (1 + εm) + S

√
λ (1 + εm)

3
2

√
m̃
)

Õ
= Mλ (1 + εm)

3
2 m̃

(
R+ S

√
λ
)√

T

7 Experiments

In this section we present a simple empirical evaluation
of OFUL and linear TS against their sketched versions.

Setup. The idea of our experimental setup is simi-
lar to the one described by Cesa-Bianchi et al. (2013).
We convert a K-class classification problem into a con-
textual bandit problem as follows: given a dataset of
labeled instances (x, y) ∈ Rd×{1, . . . ,K}, we partition
it into K subsets according to the class labels. Then we

create K sequences by drawing a random permutation
of each subset. At each step t the decision set Dt is
obtained by picking the t-th instance from each one of
these K sequences. Finally, rewards are determined by
choosing a class y ∈ {1, . . . ,K} and then consistently
assigning reward 1 to all instances labeled with y and
reward 0 to all remaining instances. The reported
mean and standard deviation of the cumulative reward
are averaged over four random permutations of the K
sequences. This procedure is used for all baselines.

Datasets. We perform experiments on six publicly
available datasets for multiclass classification from the
openml repository (Vanschoren et al., 2013), see the
table below here for details.

Dataset Examples Features Classes
Bank 45k 17 2
SatImage 6k 37 6
Spam 4k 58 2
Pendigits 11k 17 10
MFeat 2k 48 10
CMC 1.4k 10 3

Baselines. The hyperparameters β (confidence ellip-
soid radius) and λ (RLS regularization parameter) are
selected on a validation set of size 100 via grid search on
(β, λ) ∈

{
1, 102, 103, 104

}
×
{

10−2, 10−1, 1
}

for OFUL,

and
{

1, 102, 103
}
×
{

10−2, 10−1, 1, 102
}

for linear TS.

Results The experiments we present in this section
measure cumulative reward throughout time. In the
first experiment we compare OFUL and linear TS to
their sketched versions while varying the sketch size (in
the plots the sketch size is expressed as a percentage
of the context space dimension). Results for the three
datasets are presented in Figure 1, while results for
the remaining datasets can be found in the supple-
mentary material. We observe that on two datasets
out of three, sketched algorithms indeed do not suf-
fer a substantial drop in performance when compared
to the non-sketched ones, even when the sketch size
amounts to 60% of the context space dimension. This
demonstrates that sketching successfully captures rel-
evant subspace information relatively to the goal of
maximizing reward.

Because the FD-sketching procedure considered in this
paper is essentially performing online PCA, it is nat-
ural to ask how our sketched algorithms would com-
pare to their non-sketched version run on the best m-
dimensional subspace (computed by running PCA on
the entire dataset). In Figure 2, we compare OFUL and
SOFUL (results for linear TS are included in the sup-
plementary material). In particular, we keep 60%, 40%,
and 20% of the top principal components, and notice
that, like in Figure 1, there are cases with little or no
loss in performance.
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Figure 1: Comparison of SOFUL (first row) and sketched linear TS (second row) to their non-sketched variants
on three real-world datasets and for different sketch sizes. Note that, in some cases, a sketch size equal to 80%
and even 60% of the context space dimension does not significantly affect the perfomance.

Figure 2: Comparison of OFUL run on the best m-dimensional subspace against SOFUL run with sketch size m.
Rows show m as a fraction of the context space dimension: 60%, 40%, 20%, while columns correspond to different
datasets. Note that, in some cases (with sketch size m of size at least 60%), SOFUL performs as well as if the
best m-dimensional subspace had been known in hindsight.
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Cambridge University Press, 2018.

H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford.
Efficient second order online learning by sketching.
In Conference on Neural Information Processing Sys-
tems (NIPS), pages 902–910, 2016.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo.
OpenML: Networked Science in Machine Learning.
SIGKDD Explorations, 15(2):49–60, 2013.

D. Woodruff. Sketching as a tool for numerical lin-
ear algebra. Foundations and Trends in Theoretical
Computer Science, 10(1–2):1–157, 2014.

X. Yu, M. R. Lyu, and I. King. Cbrap: Contextual ban-
dits with random projection. In Conference on Arti-
ficial Intelligence (AAAI), pages 2859–2866, 2017.


