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A COMPUTING POLYTOPES FOR
2-VARIABLE FORMULAS

In this section we describe an algorithm for construct-
ing relational marginal polytopes given by sets of first-
order formulas, each with at most 2 logical variables.
The algorithm described in this section is largely in-
spired by the WFOMC algorithm from [1]. In what
follows in this section, we will denote by ΩΦ0

the set of
possible worlds over domain ∆ = {c1, . . . , c|∆|} which
satisfy a given set Φ0 of universally quantified first-
order logic sentences.1

We need an algorithm which can compute the set
K(Φ,ΩΦ0

) defined in Section 5. Let U be the set of
all unary predicates in the considered first-order lan-
guage L and B be the set of all binary predicates (for
2-variable formulas, we may assume w.l.o.g.2 that L
does not contain any literals of arity higher than 2).
In the following, we will use the notion of cells, which
was also used in [1]. Given a possible world ω, we say
that two constants c, c′ ∈ ∆ are in the same cell if for
all u ∈ U we have ω |= u(c) iff ω |= u(c′); each cell can
then be identified by a subset of U naturally.

Remark 1. Suppose that B = ∅ (i.e. we only have
unary predicates) and that Φ0 and Φ are constant-free.
Then we can construct the set K(Φ,ΩΦ0

) in polynomial
time as follows. First, we construct an auxiliary set of
all integer partitions of |∆|:

J =

(j1, . . . , j|2U |)

∣∣∣∣∣∣
|2U |∑
k=1

jk = |∆| ∧ ∀k : jk ≥ 0


The intention is that the i-th entry of a vector J ∈ J
should represent the number of constants c ∈ ∆ that
are in the i-th cell (here the cells will be ordered arbi-
trarily in some order). We can then use the set J to
define a set of possible worlds ΩR ⊆ ΩΦ0

which will be
representative of all the possible worlds in the sense

1Existential quantifiers can be treated using a form of
Skolemization we omit the details here.

2We refer to [1] for details.

that K(Φ,ΩΦ0) = {(Qω(α1), . . . , Qω(αl))|ω ∈ ΩR}.
We define the set ΩR as follows. First we order
(arbitrarily) the constants in ∆ and we do the same
with the sets in 2U ; we denote by ci the i-th constant
and similarly, by Ui, the i-th subset of U . For every
J = (j1, . . . , j|2U |) ∈ J we construct:

ωJ =

j1⋃
i=1

⋃
R∈U1

{R(ci)} ∪
j1+j2⋃
i=j1+1

⋃
R∈U2

{R(ci)} ∪ . . .

· · · ∪
|∆|⋃

i=j1+···+j|2U |−1+1

⋃
R∈U|2U |

{R(ci)}

Then we define ΩR = {ωJ |J ∈ J }. Notice that |ΩR| is
polynomial in |∆|. Finally, it is easy to show that we
can do the following in polynomial time (i.e. polyno-
mial in |∆|): (i) to filter out possible worlds that do not
satisfy Φ0 and (ii) to compute (Qω(α1), . . . , Qω(αl)).

In the next example we illustrate the construction from
the above remark.

Example 2. Let U = {sm/1} and ∆ = {Alice,Bob}.
Then J = {(0, 2), (1, 1), (2, 0)}. Now, for every J ∈
J , we need to construct the respective ωJ . That is, for
the ordering of constants Alice ≺ Bob and the ordering
of cells ∅ ≺ {sm/1}, we have:

ω(0,2) = {sm(Alice), sm(Bob)},
ω(1,1) = {sm(Bob)},
ω(2,0) = ∅.

The set of representative possible worlds is ΩR =
{ω(0,2), ω(1,1), ω(2,0)}.

We now need to explain how to compute the set
K(Φ,ΩΦ0

) for the case when B 6= ∅. We again show
how to construct the set of representative possible
worlds but this time also with binary predicates; we de-
note this set ΩB

R . We will explain how to construct rep-
resentatives by extending one possible world ω0 ∈ ΩR,
constructed as in Remark 1. Hence, obviously the
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same procedure will need to be repeated for all possible
worlds from ΩR.

Remark 3. First, we consider literals of the form
R(c, c) where R ∈ B and c ∈ ∆. We can notice that
these literals can be added already in the construction
of ΩR (using auxiliary unary predicates), so we will
not consider this type of literals here further.

The next remark will provide us with a simple way to
construct the set of representatives.

Remark 4. Let us suppose that the possible world
ωJ , where J = (j1, . . . , j|2J |) ∈ 2J , is as in Re-
mark 1. We first discuss how we could gener-
ate all possible worlds that could be obtained from
ωJ . Let ∆q = {c∑q−1

k=1 jk+1, . . . , c
∑q

k=1 jk}, and ∆r =

{c∑r−1
k=1 jk+1, . . . , c

∑r
k=1 jk}. Next we could assign a sub-

set of binary predicates B to each element of the set
{(c, c′) ∈ (∆q × ∆r)|c 6= c′} (note that the condition
c 6= c′ is only relevant for r = q and note that we
have already taken care of literals of the form R(c, c)).
If for instance, (c1, c2) got assigned the predicates
friends, teammates then we would include the literals
friends(c1, c2) and teammates(c1, c2) to the constructed
possible world, and analogically for all the other tuples.
Finally, let us define #(B, q, r) to be the number of
pairs of domain elements from ∆q ×∆r which are as-
signed the subset of binary predicates B ∈ 2B. We may
notice that Qω(α) for any 2-variable quantifier-free
formula α will only depend on the numbers #ω(B, q, r)
but not on any other details of the possible worlds.
The same also holds for the 2-variable universally
quantified formulas in Φ0. Hence, we can construct
only representatives with distinct #ω(B, q, r)’s using
a straightforward generalization of the procedure from
Remark 1.

Finally, we need to show that the number of represen-
tatives in the set constructed according to Remark 4
has size polynomial in |∆|. Using Remarks 1, 3 and 4,
we can obtain the rather crude upper bound:

|ΩB
R | ≤ (|∆|+ 1)2|U|+|B| · (|∆|+ 1)2·4|U|+|B|·2|B| .

Here, the first part comes from Remarks 1 and 3 and
the second part from Remark 4. Importantly, the
bound is polynomial in |∆|. Since our main aim in
this paper is establishing existence of polynomial-time
algorithms for weight learning, we will not try to op-
timize this bound. In practice, one could probably
find the vertices defining the polytope faster using a
generic SAT solver as an oracle inside a heuristic al-
gorithm iteratively traversing vertices of the polytope,
but that would not lead to an algorithm with runtime
polynomial in the size of the domain.
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