# Lifted Weight Learning of Markov Logic Networks Revisited (Appendix)

## Ondřej Kuželka

Czech Technical University in Prague Dept of Computer Science, KU Leuven

# A COMPUTING POLYTOPES FOR 2-VARIABLE FORMULAS

In this section we describe an algorithm for constructing relational marginal polytopes given by sets of first-order formulas, each with at most 2 logical variables. The algorithm described in this section is largely inspired by the WFOMC algorithm from [1]. In what follows in this section, we will denote by  $\Omega_{\Phi_0}$  the set of possible worlds over domain  $\Delta = \{c_1, \ldots, c_{|\Delta|}\}$  which satisfy a given set  $\Phi_0$  of universally quantified first-order logic sentences.<sup>1</sup>

We need an algorithm which can compute the set  $\mathcal{K}(\Phi, \Omega_{\Phi_0})$  defined in Section 5. Let  $\mathcal{U}$  be the set of all unary predicates in the considered first-order language  $\mathcal{L}$  and  $\mathcal{B}$  be the set of all binary predicates (for 2-variable formulas, we may assume w.l.o.g.<sup>2</sup> that  $\mathcal{L}$  does not contain any literals of arity higher than 2). In the following, we will use the notion of *cells*, which was also used in [1]. Given a possible world  $\omega$ , we say that two constants  $c, c' \in \Delta$  are in the same *cell* if for all  $u \in \mathcal{U}$  we have  $\omega \models u(c)$  iff  $\omega \models u(c')$ ; each cell can then be identified by a subset of  $\mathcal{U}$  naturally.

**Remark 1.** Suppose that  $\mathcal{B} = \emptyset$  (i.e. we only have unary predicates) and that  $\Phi_0$  and  $\Phi$  are constant-free. Then we can construct the set  $\mathcal{K}(\Phi, \Omega_{\Phi_0})$  in polynomial time as follows. First, we construct an auxiliary set of all integer partitions of  $|\Delta|$ :

$$\mathcal{J} = \left\{ (j_1, \dots, j_{|2^{\mathcal{U}}|}) \left| \sum_{k=1}^{|2^{\mathcal{U}}|} j_k = |\Delta| \land \forall k : j_k \ge 0 \right. \right\}$$

The intention is that the i-th entry of a vector  $J \in \mathcal{J}$  should represent the number of constants  $c \in \Delta$  that are in the i-th cell (here the cells will be ordered arbitrarily in some order). We can then use the set  $\mathcal{J}$  to define a set of possible worlds  $\Omega_R \subseteq \Omega_{\Phi_0}$  which will be representative of all the possible worlds in the sense

### Vyacheslav Kungurtsev

Czech Technical University in Prague

that  $\mathcal{K}(\Phi, \Omega_{\Phi_0}) = \{(Q_{\omega}(\alpha_1), \dots, Q_{\omega}(\alpha_l)) | \omega \in \Omega_R \}$ . We define the set  $\Omega_R$  as follows. First we order (arbitrarily) the constants in  $\Delta$  and we do the same with the sets in  $2^{\mathcal{U}}$ ; we denote by  $c_i$  the *i*-th constant and similarly, by  $U_i$ , the *i*-th subset of  $\mathcal{U}$ . For every  $J = (j_1, \dots, j_{|\mathcal{U}|}) \in \mathcal{J}$  we construct:

$$\omega_{J} = \bigcup_{i=1}^{j_{1}} \bigcup_{R \in U_{1}} \{R(c_{i})\} \cup \bigcup_{i=j_{1}+1}^{j_{1}+j_{2}} \bigcup_{R \in U_{2}} \{R(c_{i})\} \cup \dots$$

$$\cdots \cup \bigcup_{i=j_{1}+\cdots+j_{|2^{\mathcal{U}}|-1}+1}^{|\Delta|} \bigcup_{R \in U_{|2^{\mathcal{U}}|}} \{R(c_{i})\}$$

Then we define  $\Omega_R = \{\omega_J | J \in \mathcal{J}\}$ . Notice that  $|\Omega_R|$  is polynomial in  $|\Delta|$ . Finally, it is easy to show that we can do the following in polynomial time (i.e. polynomial in  $|\Delta|$ ): (i) to filter out possible worlds that do not satisfy  $\Phi_0$  and (ii) to compute  $(Q_\omega(\alpha_1), \ldots, Q_\omega(\alpha_l))$ .

In the next example we illustrate the construction from the above remark.

**Example 2.** Let  $\mathcal{U} = \{sm/1\}$  and  $\Delta = \{Alice, Bob\}$ . Then  $\mathcal{J} = \{(0,2), (1,1), (2,0)\}$ . Now, for every  $J \in \mathcal{J}$ , we need to construct the respective  $\omega_J$ . That is, for the ordering of constants Alice  $\prec$  Bob and the ordering of cells  $\emptyset \prec \{sm/1\}$ , we have:

$$\begin{split} &\omega_{(0,2)} = \{sm(Alice), sm(Bob)\}, \\ &\omega_{(1,1)} = \{sm(Bob)\}, \\ &\omega_{(2,0)} = \emptyset. \end{split}$$

The set of representative possible worlds is  $\Omega_R = \{\omega_{(0,2)}, \omega_{(1,1)}, \omega_{(2,0)}\}.$ 

We now need to explain how to compute the set  $\mathcal{K}(\Phi, \Omega_{\Phi_0})$  for the case when  $\mathcal{B} \neq \emptyset$ . We again show how to construct the set of representative possible worlds but this time also with binary predicates; we denote this set  $\Omega_R^B$ . We will explain how to construct representatives by extending one possible world  $\omega_0 \in \Omega_R$ , constructed as in Remark 1. Hence, obviously the

<sup>&</sup>lt;sup>1</sup>Existential quantifiers can be treated using a form of Skolemization we omit the details here.

<sup>&</sup>lt;sup>2</sup>We refer to [1] for details.

same procedure will need to be repeated for all possible worlds from  $\Omega_R$ .

Remark 3. First, we consider literals of the form R(c,c) where  $R \in \mathcal{B}$  and  $c \in \Delta$ . We can notice that these literals can be added already in the construction of  $\Omega_R$  (using auxiliary unary predicates), so we will not consider this type of literals here further.

The next remark will provide us with a simple way to construct the set of representatives.

Remark 4. Let us suppose that the possible world  $\omega_J$ , where  $J = (j_1, \dots, j_{|2^{\mathcal{J}}|}) \in 2^{\mathcal{J}}$ , is as in Re-We first discuss how we could generate all possible worlds that could be obtained from  $\omega_J$ . Let  $\Delta_q = \{c_{\sum_{k=1}^{q-1} j_k + 1}, \dots, c_{\sum_{k=1}^q j_k}\}$ , and  $\Delta_r =$  $\{c_{\sum_{k=1}^{r-1}j_k+1},\ldots,c_{\sum_{k=1}^{r}j_k}\}$ . Next we could assign a subset of binary predicates  $\mathcal B$  to each element of the set  $\{(c,c')\in (\Delta_q\times\Delta_r)|c\neq c'\}$  (note that the condition  $c \neq c'$  is only relevant for r = q and note that we have already taken care of literals of the form R(c,c)). If for instance,  $(c_1, c_2)$  got assigned the predicates friends, teammates then we would include the literals  $friends(c_1, c_2)$  and  $teammates(c_1, c_2)$  to the constructed possible world, and analogically for all the other tuples. Finally, let us define #(B,q,r) to be the number of pairs of domain elements from  $\Delta_q \times \Delta_r$  which are assigned the subset of binary predicates  $B \in 2^{\mathcal{B}}$ . We may notice that  $Q_{\omega}(\alpha)$  for any 2-variable quantifier-free formula  $\alpha$  will only depend on the numbers  $\#_{\omega}(B,q,r)$ but not on any other details of the possible worlds. The same also holds for the 2-variable universally quantified formulas in  $\Phi_0$ . Hence, we can construct only representatives with distinct  $\#_{\omega}(B,q,r)$ 's using a straightforward generalization of the procedure from Remark 1.

Finally, we need to show that the number of representatives in the set constructed according to Remark 4 has size polynomial in  $|\Delta|$ . Using Remarks 1, 3 and 4, we can obtain the rather crude upper bound:

$$|\Omega_R^B| \leq (|\Delta|+1)^{2^{|\mathcal{U}|+|\mathcal{B}|}} \cdot (|\Delta|+1)^{2 \cdot 4^{|\mathcal{U}|+|\mathcal{B}|} \cdot 2^{|\mathcal{B}|}}.$$

Here, the first part comes from Remarks 1 and 3 and the second part from Remark 4. Importantly, the bound is polynomial in  $|\Delta|$ . Since our main aim in this paper is establishing existence of polynomial-time algorithms for weight learning, we will not try to optimize this bound. In practice, one could probably find the vertices defining the polytope faster using a generic SAT solver as an oracle inside a heuristic algorithm iteratively traversing vertices of the polytope, but that would not lead to an algorithm with runtime polynomial in the size of the domain.

#### References

[1] P. Beame, G. Van den Broeck, E. Gribkoff, and D. Suciu. Symmetric weighted first-order model counting. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 313–328. ACM, 2015.