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Abstract

We study lifted weight learning of Markov
logic networks. We show that there is an al-
gorithm for maximum-likelihood learning of
2-variable Markov logic networks which runs
in time polynomial in the domain size. Our
results are based on existing lifted-inference
algorithms and recent algorithmic results on
computing maximum entropy distributions.

1 INTRODUCTION

Statistical Relational Learning [7] (SRL) is concerned
with learning probabilistic models from relational
data. Markov Logic Networks [9] (MLNs) are among
the most prominent SRL systems. An MLN is given
by a set of weighted first-order logic formulas and a do-
main ∆. Generative weight learning of MLNs is typi-
cally performed using maximum-likelihood estimation.
Unfortunately, maximizing likelihood of MLNs is gen-
erally intractable. Therefore, in practice, one often
resorts to heuristic approximations. Another option
besides using approximations is to restrict the class of
MLNs to those for which inference can be performed
efficiently. This has been studied in the subarea of
SRL called lifted inference [5]. In particular, it has
been shown in [13, 12] that probabilistic inference in
MLNs with formulas containing at most 2 logical vari-
ables can be performed in time polynomial in the size
of the given domain ∆. This has been exploited in [14]
for maximum-likelihood learning of MLNs, suggesting
tractable learning of 2-variable MLNs could be pos-
sible. However, although it showed that gradients of
log-likelihood can be computed efficiently, it did not
provide a bound on the total runtime of the learning
algorithm, specifically, because this bound was miss-
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ing a guarantee on the number of iterations of the op-
timization algorithm.

In this paper, we complete the work of [14] by answer-
ing whether maximum-likelihood learning of MLNs
can be done in time polynomial in the size of the do-
main for 2-variable MLNs. We give a positive answer
to this question (Theorem 11), under consideration of
the dependence of the runtime bounds on how extreme
the statistics of the training data are. To arrive at this
positive result, we need to combine results from three
streams of research: (i) lifted inference [13, 2], (ii) links
between maximum-likelihood learning of MLNs and
relational marginal problems [8], and (iii) algorithmic
results on maximum-entropy distributions [11]. We
should note here that our results are mostly of the-
oretical interest. Making the algorithms described in
this paper practical would be potential future research.

The rest of the paper is structured as follows. After
covering the necessary background material in Section
2, we introduce the concept of interiority in relational
marginal polytopes in Section 3. We then state our
main technical results in Section 4. Then, in Sections
5, 6, we work towards the proof of the main results
which we finish in Sections 7 and 8. The paper is
concluded in Section 9.

2 BACKGROUND

2.1 First-Order Logic

We consider a function-free first-order logic language
L, built from a set of constants Const, variables Var
and predicates Rel =

⋃
i Reli, where Reli contains the

predicates of arity i. We assume an untyped language
(all our results can be straightforwardly generalized
to the typed case). For a1, ..., ak ∈ Const ∪ Var and
R ∈ Relk, we call R(a1, ..., ak) an atom. If a1, .., ak ∈
Const, this atom is called ground. A literal is an atom
or its negation. We use Vars(α) to denote the variables
that appear in a formula α. The formula α0 is called a
grounding of α if α0 can be obtained by replacing each
variable in α with a constant from Const. A formula is
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called closed if all variables are bound by a quantifier.
A variable in a formula is called free if it is not bound
by a quantifier. A formula with no free variables is
called a sentence. A formula is called quantifier-free if
all variables in it are free. A possible world ω is defined
as a set of ground atoms. A substitution is a mapping
from variables to terms. An injective substitution is a
substitution which does not map any two variables to
the same variable or constant.

2.2 Markov Logic Networks

A Markov logic network [9] (MLN) is a set of weighted
first-order logic formulas (α,w), where w ∈ R and α is
a function-free and quantifier-free first-order formula.
The semantics are defined w.r.t. the groundings of the
first-order formulas, relative to some finite set of con-
stants ∆, called the domain. An MLN is classically
seen as a template that defines a Markov random field
(in Section 2.4, we describe another way of interpret-
ing MLNs–as solutions to max-entropy marginal prob-
lems). Specifically, an MLN Φ induces the following
probability distribution on the set of possible worlds

ω ∈ Ω: pΦ(ω) = 1
Z exp

(∑
(α,w)∈Φ w ·N(α, ω)

)
,

where N(α, ω) is the number of injective1 groundings
of α satisfied in ω, and Z is a normalization constant
to ensure that pΦ is a probability distribution.

2.3 Ellipsoid Algorithm

In this section we briefly describe the main properties
of the ellipsoid algorithm for convex optimization [4];
the exposition is based on [11]. Consider an arbitrary
convex optimization problem,

maxλ∈Rm g(λ)
s.t. hi(λ) = 0, ∀i ∈ {1, ..., k}

where g is concave and hi are all affine. Assume
that g and hi are differentiable everywhere, and fur-
thermore, there exists a strong first order oracle for
g which, given λ, outputs g(λ) and ∇g(λ) and that
we can project ∇g(λ) onto the affine space defined by
K = {λ : hi(λ) = 0, ∀i ∈ {1, ..., k}}.

The ellipsoid algorithm will be used in the proofs in
this paper as it satisfies the following property,

Theorem 1. [11, Theorem 2.13] Given any β,R > 0,
there exists an algorithm, namely the ellipsoid algo-
rithm which, given a strong first-order oracle for g,
returns a λ̂ such that,

g(λ̂) ≥ max
λ∈K,‖λ‖∞≤R

g(λ)

1Normally, MLNs are not defined with injective ground-
ings. However, working with injective groundings turns out
to be more convenient and equally expressive [8, 6].

+ β

(
min

λ∈K,‖λ‖∞≤R
g(λ)− max

λ∈K,‖λ‖∞≤R
g(λ)

)
and the number of calls to the strong first-order oracle
is bounded by a polynomial in m, logR and log(1/β).

2.4 Relational Marginal Problems

In this section we describe the relationship between
MLN weight learning using maximum likelihood es-
timation and so-called relational marginal problems
which were studied in [8].

We start by defining formula statistics which are
closely related to random-substitution semantics [1,
10]. In our case, the formula statistics are just rescaled
numbers of true groundings of a formula (defined in
Section 2.2), where the scaling depends on the num-
ber of variables in the formula.

Definition 1 (Formula statistics). Let α be a
quantifier-free first-order logic formula with k variables
{x1, . . . , xk}. We define its formula statistic w.r.t. a
possible world ω as:

Qω(α) =

(
|∆|
k

)−1

· (k!)−1 ·N(α, ω).

Remark 2. When α does not contain any variables,
e.g. when α = smokes(Alice), then Qω(α) ∈ {0, 1}.

Intuitively, for a given formula α and a possible world
ω, the formula statistic Qω(α) is the probability that
the ground formula αϑ is true where ϑ is a grounding
injective substitution of α’s free variables picked from
all such substitutions uniformly at random.2

Example 3. Let ω = {fr(Alice,Bob), fr(Bob,Alice),
fr(Bob,Eve), fr(Eve,Bob), sm(Alice)} and ∆ =
{Alice,Bob,Eve}, i.e. the only smoker is Alice and the

friendship structure is:
Alice Bob Eve

Let
α = fr(x, y) ⇒ sm(y). We then get Qω(α) = 1

2 (of
the 6 possible injective substitutions ϑ of α’s variables,
three make αϑ true in ω).

Remark 4. Let us have a set Ω of possible worlds
over a domain ∆. MLNs over Ω, given by a set of
weighted formulas Φ = {(α1, w1), . . . , (αl, wl)}, can be
re-defined using formula statistics as:

pΦ(ω) =
1

Z
exp

 ∑
(αi,wi)∈Φ

wi ·Qω(αi)

.
For possible worlds over a domain of fixed size, the
only difference is the scaling factor in the definition of
formula statistics, which is fixed for each formula and

2This is how formula statistics relate to random substi-
tution semantics [1, 10].
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fixed domain size, hence, as a result the only differ-
ence is that the weights need to be scaled as well. In
what follows when we refer to MLNs we will mean this
representation unless stated otherwise.

Next we use formula statistics to define a maximum
entropy distribution over a given set of possible worlds
Ω. Assuming that we know the values θ1, . . . , θl that
the formula statistics of the given formulas α1, . . . , αl
should have in expectation (which we might have, for
instance, estimated from given training data), we can
define the following convex optimization problem en-
coding the maximum entropy problem.

Relational Marginal Problem (Formulation):

min
{Pω : ω∈Ω}

∑
ω∈Ω

Pω logPω s.t. (1)

∀i = 1, . . . , l :
∑
ω∈Ω

Pω ·Qω(αi) = θi (2)

∀ω ∈ Ω : Pω ≥ 0,
∑
ω∈Ω

PΩ = 1 (3)

Here, Pω’s are the decision variables of the problem,
each representing probability of one possible world
ω ∈ Ω. The first line (1) is the maximum entropy crite-
rion (represented here as minimization of negative en-
tropy), (2) are constraints given by the statistics and
(3) are normalization constraints for the probability
distribution.

Assuming there exists a feasible solution satisfying
∀ω : Pω > 0, the optimal solution of the above maxi-
mum entropy problem is an MLN

Pω = pΦ(ω) =
1

Z
exp

 ∑
(αi,λi)∈Φ

λi ·Qω(αi)

 (4)

where the parameters λ = (λ1, . . . , λl) are obtained by
maximizing the dual criterion

L(λ) =
∑
αi

λiθi − log
∑
ω∈Ω

e
∑
αi
λiQω(αi) (5)

This dual criterion also happens to be equivalent to
the log-likelihood of the MLN (4) w.r.t. a (possibly
fictitious) training example ω̂ that has to be over the
same domain ∆ and that satisfies Qω̂(αi) = θi for all
the formula statistics.

Remark 5. Due to the above duality, if we can show
that we can solve relational marginal problems effi-
ciently, it will follow as a corollary that we can solve
maximum likelihood estimation in MLNs efficiently
and vice versa.

Remark 6. Above, we have used the assumption that
there exists a feasible solution where probability of ev-
ery possible world is positive. This does not hurt gen-
erality of our discussion because we can always remove
the possible worlds ω that, by the virtue of the given
constraints, must have zero probability in any feasi-
ble solution from the set Ω. In most cases, Ω is not
given explicitly but by means of a first-order logic the-
ory (that describes which possible worlds are “possi-
ble”), so it is enough to add suitable first-order sen-
tences to this theory.

2.5 Inference Using Weighted Model
Counting

To maximize the dual criterion (5) we will need to be
able to compute its gradient. For the partial deriva-
tives of (5), we have

∂L

∂λi
= θi −

∑
ω∈ΩQω(αi) · e

∑
αi
λiQω(αi)∑

ω∈Ω e
∑
αj
λjQω(αj)

= θi − E[Qω(αi)] (6)

It follows that, in order to compute the gradient, we
will also need to be able to compute the partition func-

tion Z =
∑
ω∈Ω e

∑
αj
λjQω(αj). Computation of the

partition function Z can be converted to a first-order
weighted model counting problem (WFOMC).

Definition 2 (WFOMC [13]). Let w(P ) and w(P )
be functions from predicates to real numbers (we call
w and w weight functions) and let Φ be a first-order
theory. Then WFOMC(Φ, w, w) =

=
∑

ω∈Ω:ω|=Φ

∏
a∈P(ω)

w(Pred(a))
∏

a∈N (ω)

w(Pred(a))

where P(ω) and N (ω) denote the positive liter-
als that are true and false in ω, respectively,
and Pred(a) denotes the predicate of a (e.g.
Pred(friends(Alice,Bob)) = friends).

To compute the partition function Z using weighted
model counting, we may proceed as in [13]. Let a set
of weighted formulas Φ be given. Here, for simplicity
of exposition, we will assume that the formulas in Φ do
not contain constants (we refer to [13] for the general
case). For every weighted formula (αi, λi) ∈ Φ, where
the free variables in αi are exactly x1, . . . , xk, we
create a new formula

∀x1, . . . , xk : ξi(x1, . . . , xk)⇔ (αi(x1, . . . , xk)∧
x1 6= x2 ∧ x1 6= x3 ∧ · · · ∧ xk−1 6= xk)

where ξ is a new fresh predicate. Then we set

w(ξi) = exp

((
|∆|

|Vars(αi)|

)−1

· (|Vars(αi)|!)−1 · λi

)
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and w(ξi) = 1 and for all other predicates we set both
w and w equal to 1. It is easy to check that then
WFOMC(Φ, w, w) = Z, which is what we needed to
compute. To compute the numerator of (6), we need
to compute WFOMC(Φ ∪ {αiϑ}, w, w) where ϑ is an
injective grounding substitution of αi.

Importantly, there are classes of first-order logic theo-
ries for which weighted model counting is polynomial-
time. In particular, as shown in [12], when the the-
ory consists only of first-order logic sentences, each
of which contains at most two logic variables, the
weighted model count can be computed in time poly-
nomial3 in the number of elements in the domain ∆
over which the set of possible worlds Ω is defined. This
is not the case in general when the number of variables
in the formulas is greater than two unless P = #P1 [2].

Remark 7. It has already been shown in [14] that gra-
dients of log-likelihood of an MLN can be computed effi-
ciently whenever WFOMC can be computed efficiently
(in fact, the translation described in this section for
computing Z is essentially the same as the one de-
scribed in [14]).

3 MARGINAL POLYTOPES

Not all possible values of formula statistics correspond
to actual probability distributions.

Example 8. Let α = e(x1, x2), β = e(x1, x2) ∧
e(x2, x3) ∧ e(x3, x1) and let ∆ = {c1, . . . , c100} be the
set of domain elements and Ω be the respective set of
possible worlds over the first-order language given by
the predicate e/2 and the constants from ∆. We can
think of possible worlds ω ∈ Ω as directed graphs (the
predicate e/2 representing edges in the graph and the
constants in ∆ representing vertices). Then Qω(α)
corresponds to “density” of edges and Qω(β) to “den-
sity” of directed triangles. It is then easy to see why
there is, for instance, no distribution with E[Qω(α)] =
0 and E[Qω(β)] = 0.5 (since graphs with no edges ob-
viously cannot have positive density of triangles).

The points corresponding to values of statistics that
correspond to some actual probability distributions
form what is called a relational marginal polytope [8].

Definition 3 (Relational marginal polytope). Let Ω
be a set of possible worlds and Φ = (α1, . . . , αl) be
a list of formulas. We define the relational marginal
polytope RMP(Φ,Ω) w.r.t. Φ as

RMP(Φ,Ω) = {(x1, . . . , xl) ∈ Rl : ∃ prob. distr. on

3Here, we should note that the runtime of these
WFOMC algorithms depends on the parameters of the the-
ory Φ exponentially. However, in many cases, these param-
eters are small compared to size of the domain.

Ω s.t. E[Qω(α1)] = x1 ∧ · · · ∧ E[Qω(αl)] = xl}.

Remark 9. It is not difficult to see that the relational
marginal polytope w.r.t. a given list of formulas (α1,
. . . , αl) can be equivalently defined as the convex hull
of the set {(Qω(α1), . . . , Qω(αl)) : ω ∈ Ω}.

Next we define what it means for a point to be in the
η-interior of a polytope.

Definition 4 (Interiority). Let η > 0, P be a poly-
tope and A=x = c be the maximal linearly independent
system of linear equations that hold for the vertices of
P. A point θ is said to be in the η-interior of P if
{θ′|A=θ′ = c, ‖θ′ − θ‖ ≤ η} ⊆ P.

The reason why we need to consider the system of lin-
ear equations A=x = c in the definition of interiority
is because it may happen that the polytope lives in a
lower dimensional subset of the given space. We note
that interiority, as we defined it, is also often called
relative interiority in the literature.

Remark 10. When we were constructing the dual re-
lational marginal problem, we had to assume that there
is a positive solution that satisfies the constraints of
the primal problem. It is not difficult to see that if
the vector of formula statistics’ estimates θ is in the
η-interior of the respective relational marginal poly-
tope for some η > 0 then such a solution always ex-
ists. To see this, first, notice that an interior point
θ can be repesented as a convex combination θ =∑

x∈{(Qω(α1),...,Qω(αl)):ω∈Ω} ax · x where ax > 0 for all

x ∈ {(Qω(α1), . . . , Qω(αl)) : ω ∈ Ω}. To find a pos-
itive distribution over Ω that satisfies the constraints,
we just need to assign positive probabilities Pω so that
ax =

∑
ω∈Ω:(Qω(α1),...,Qω(αl))=x Pω, which we can al-

ways do.

4 MAIN RESULTS

In this section we describe our main technical re-
sult which is showing that maximum-likelihood weight
learning of 2-variable MLNs can be done in time poly-
nomial in the size of the domain (i.e. the problem is
domain-liftable [13]). As already mentioned in the pre-
vious sections, it has been shown that computing log-
likelihood and its derivatives is domain liftable [13, 14]
but it has not been shown what is the computational
complexity of the complete weight learning problem.

It turns out that it is natural to study the complex-
ity of the weight learning problem in the relational
marginal setting because one of the parameters that
influences runtime is interiority of the vectors which
represent marginal constraints. In particular we have
the following result which provides a polynomial-time
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bound for maximum likelihood weight learning of 2-
variable MLNs.

Theorem 11. Let Φ = {α1, . . . , αl} be a set of
quantifier-free first-order logic formulas, each with at
most 2 variables. Let Φ0 be a set of universally quan-
tified first-order logic sentences, each also with at most
2 variables. Let ΩΦ0

be the set of models of Φ0 over
a given domain ∆. Let ω̂ ∈ Ω be a training exam-
ple. Then there is an algorithm which finds weights of
the MLN M given by formulas Φ such that the log-
likelihood of M given the training example ω̂ is within
ε of the optimum. The algorithm runs in time poly-
nomial in |∆|, 1/ε and 1/η where η is the interiority
of the vector Qω̂(Φ) in the relational marginal polytope
RMP(Φ,ΩΦ0).

At first, one might perhaps wonder why the above re-
sult about maximum-likelihood estimation should de-
pend on interiority of Qω̂(Φ). Consider the following
example: ω̂ represents a complete directed graph (e.g.
using binary relations e/2) and Φ = {e(x, y)}. Then
Qω̂(Φ) = (1) which is clearly on the boundary of the
respective polytope (in this case the polytope is just a
line segment). If we try to optimize likelihood of the
MLN given by Φ, the weight of the formula e(x, y) will
tend to infinity which also means that the optimiza-
tion algorithm will not be able to converge. Thus,
some dependence on interiority is necessary.

While the case from the previous paragraph might be
simple to spot, there are other more tricky cases where,
at first, we might not be able to realize that the weights
will have to be very large. For instance, consider MLNs
given by two formulas, one for edge density and one
for triangle density (as in Example 8). If the training
example ω̂ turned out to represent a graph close to
an extremal graph (see e.g. [3]), e.g. one having close
to maximum possible density of triangles for the given
density of edges, then the learned weights would again
turn out to be very large, but this time because of a
more subtle reason. Again, this is what η-interiority
captures.

Finally, using Theorem 11, the duality of relational
marginal problems and maximum-likelihood estima-
tion in MLNs and a lemma from [11], we can obtain the
next result about complexity of the relational marginal
problems.

Theorem 12. Let Φ, Φ0, ∆ and ΩΦ0
be as in The-

orem 11 (in particular, all formulas in Φ and Φ0

are still required to have at most 2 variables). Let
η > 0 be a real number and θ = (θ1, . . . , θl) be a point
in the η-interior of the relational marginal polytope
RMP(Φ,ΩΦ0

). Then there exists an algorithm which
finds a distribution over ΩΦ0

, represented as an MLN,
whose entropy is within ε > 0 of the maximum and

which satisfies the marginal constraints E(Qω(Φ)) = θ
within

√
ε. The runtime of this algorithm is polyno-

mial in |∆|, 1/η, 1/ε and the number of bits needed to
represent θ.

Remark 13. We have omitted using the term
“domain-liftable” [13] in the description of the above
two results. Here is why. Suppose that we fix a vector
θ and increase the domain size |∆|. It can happen that
θ becomes much closer to the boundary of the polytope
which means that the runtime may increase more than
just polynomially with increasing |∆| because interior-
ity of the vector θ is one of the parameters governing
the runtime. In fact, θ may end up being completely
outside the polytope, rendering the problem unsolvable.
One possible solution is to use interiority w.r.t. the
polytope that we obtain as a limit for |∆| → ∞. It fol-
lows from results in [8] that polytopes over larger do-
mains (but given by the same formulas Φ) are subsets
of polytopes over smaller domains (one can also obtain
bounds on how much smaller the limit polytope will be
compared to some polytope over a finite domain using
Proposition 8 in [8]). It follows that our results imply
domain-liftability of the relational marginal problems
for vectors θ that are in the interior of the respective
limit polytopes (for |∆| → ∞).

We prove Theorem 11 and Theorem 12 in the next
sections.

Outline of the Proof: First, we show how to con-
struct relational marginal polytopes (which turn out
to be needed by the algorithm) in Section 5. Then, in
Section 6, following the approach from [11] we bound
the weights of the MLN which is a solution of the re-
lational marginal problem. We finish the rest of the
proofs in Sections 7 and 8.

5 POLYTOPES FOR 2-VARIABLE
FORMULAS

For our main result, a polynomial-time algorithm for
solving relational marginal problems, we will need to
be able to construct relational marginal polytopes in
time polynomial in the size of the domain ∆. First,
we may notice that the number of possible vectors of
formulas’ statistics given by a fixed set of formulas can
be bounded by a polynomial in ∆.

Remark 14. Let Φ = (α1, . . . , αl) and let Ω be a
set of possible worlds over a domain ∆. Let us de-
fine K(Φ,Ω) = {(Qω(α1), . . . , Qω(αl))|ω ∈ Ω}. Then
|K(Φ,Ω)| ≤

∏
αi∈Φ(|∆|+ 1)|Vars(αi)|, which is polyno-

mial in |∆|.

Since the relational marginal polytope RMP(Φ,Ω) is
equal to the convex hull of K(Φ,Ω), the above remark
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also provides a polynomial bound for the number of
its vertices.

The next proposition is a consequence of an algorithm
that we describe in the appendix.

Proposition 15. Let Φ be a set of quantifier-free first-
order logic formulas, each with at most 2 variables. Let
Φ0 be a set of universally quantified first-order logic
sentences, each also with at most 2 variables. Finally,
let ΩΦ0

be the set of models of Φ0 over a given domain
∆. Then the set of vertices of RMP(Φ,ΩΦ0

) can be
constructed in time polynomial in |∆|.

6 BOUNDING BOX

The main result described in this section is the follow-
ing theorem which allows us to bound the magnitude
of weights in MLNs that we obtain as solutions of rela-
tional marginal problems. This theorem is a relational
counterpart of Theorem 2.7 from [11]. The proof fol-
lows the steps of the respective proof from [11] and
most of the heavy-lifting has already been done there
(however, we do need to generalize their results to our
setting).

Theorem 16. Let Φ be a set of quantifier-free first-
order logic formulas, let Ω be a set of possible worlds
and A=x = c be a maximal system of linearly indepen-
dent equations satisfied by the vertices of the relational
marginal polytope PR = RMP(Φ,Ω). Let θ be a point
in the η-interior of PR. Then there is an optimal so-
lution λ∗ of the dual problem (5) such that A=λ∗ = 0
and any such solution satisfies ‖λ∗‖ ≤ log |Ω|/η.

To prove this theorem we start with some lem-
mas. In what follows, when Φ = (α1, . . . , αl) is a
list of formulas, we will use the notation Qω(Φ) ,
(Qω(α1), . . . , Qω(αl)).

Lemma 1. 4 Let Φ = (α1, . . . , αl), θ = (θ1, . . . , θl)
be a point in the η-interior of the relational marginal
polytope PR = RMP(Φ,Ω) and let λ∗ = (λ∗1, . . . , λ

∗
l )

be the optimal solution to the dual problem (5). Then
for any x ∈ PR: 〈λ∗,x− θ〉 ≤ log |Ω|.

Proof. The entropy of any distribution which is a so-
lution of the relational marginal problem is bounded
by log |Ω|, which is the entropy of the uniform dis-
tribution over Ω. It follows from strong duality that
−L(λ∗) ≤ log |Ω| where L(λ∗) is defined in (5). Hence

−L(λ∗) = −〈λ∗, θ〉+log
∑
ω∈Ω

e〈λ
∗,Qω(Φ)〉 ≤ log |Ω|.

In particular, for every ω ∈ Ω:

−〈λ∗, θ〉+ 〈λ∗, Qω(Φ)〉 ≤ log |Ω|. (7)

4This is a relational counterpart of Lemma 5.1 from [11].

Since x ∈ PR, we can write it as a convex combination
x =

∑
ω∈Ω aω ·Qω(Φ). Using (7) we obtain∑

ω∈Ω

(−aω〈λ∗, θ〉+ aω〈λ∗, Qω(Φ)〉) ≤
∑
ω∈Ω

aω log |Ω|.

Since
∑
ω∈Ω aω = 1 (recall that we represented x as a

convex combination), we obtain: 〈λ∗,x− θ〉 ≤ log |Ω|.

Lemma 2. 5 Let A=x = c be a maximal linearly-
independent system of linear equations which are sat-
isfied by all vertices of the relational marginal polytope
PR = RMP(Φ,Ω). Then, for any d ∈ Rm where m is
the column dimension of A=, L(λ) = L(λ + (A=)Td)
where L is as in (5).

Proof. First, for any ω ∈ Ω: A=Qω(Φ) = c. Second we
can write θ =

∑
ω∈Ω aωQω(Φ), where

∑
ω∈Ω aω = 1.

Next, we have

〈λ+ (A=)Td, θ〉 = 〈λ, θ〉+ 〈(A=)Td, θ〉

= 〈λ, θ〉+
∑
ω∈Ω

aω〈(A=)Td, Qω(Φ)〉

= 〈λ, θ〉+
∑
ω∈Ω

aω〈d, A=Qω(Φ)〉 = 〈λ, θ〉+ 〈d, c〉.

For the dual problem (5), we have

L(λ+ (A=)Td) = 〈λ+ (A=)Td, θ〉

− log
∑
ω∈Ω

e〈λ+(A=)Td,Qω(Φ)〉 = 〈λ, θ〉+ 〈d, c〉

− log
∑
ω∈Ω

e〈d,c〉+〈λ,Qω(Φ)〉

= 〈λ, θ〉 − log
∑
ω∈Ω

e〈λ,Qω(Φ)〉 = L(λ).

Due to the above lemma and since A= represents the
maximal set of linearly independent equalities satisfied
by points of PR, we can restrict ourselves to λ’s that
satisfy A=λ = 0 in the search for the optimal solution
of the dual problem (5).

The next lemma, which we will also need for the proof
of Theorem 16, does not need to be adapted and can
be used for our purposes as is; we refer to [11] for proof.

Lemma 3 (Lemma 5.2 in [11]). Let A=x = c be a
system of linear equations, θ ∈ Rm and η ≥ 0. Let us
define three sets B, Q and Q̃:

B(θ) = {x ∈ Rm|A=x = c, ‖x− θ‖ ≤ η},
5This is a relational counterpart of Lemma 2.5 in [11].
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Q(θ) = {y ∈ Rm|A=y = c, ‖y − θ‖ ≤ 1/η},
Q̃(θ) = {z ∈ Rm|A=z = c,∀x ∈ B(θ) :

〈z− θ,x− θ〉 ≤ 1}.

Then Q = Q̃.

We are now ready to prove Theorem 16.

Proof of Theorem 16. Let λ∗ be an optimal solution
of the dual problem (5) satisfying A=λ∗ = 0. This can
be chosen because of Lemma 2. Let Q(θ), Q̃(θ) and
B(θ) be as in Lemma 3. Let us define

λ̃ =
λ∗

log |Ω|
+ θ.

We will first show that λ̃ ∈ Q̃(θ). We have

A=λ̃ = A= λ∗

log |Ω|
+A=θ = A=θ = c.

Thus, λ̃ ∈ PR. Let x ∈ B. Then we have

〈λ̃− θ,x− θ〉 =
〈λ∗,x− θ〉

log |Ω|
≤ log |Ω|

log |Ω|
= 1

where the inequality follows from Lemma 1. Thus λ̃ ∈
Q̃(θ) = Q(θ) by Lemma 3. From the definition of
Q(θ), we have

1/η ≥ ‖λ̃− θ‖ =

∥∥∥∥ λ∗

log |Ω|

∥∥∥∥ .
It follows that ‖λ∗‖ ≤ log |Ω|/η, finishing the proof.

7 PROOF OF THEOREM 11

In this section we prove Theorem 11 by showing how
to solve the dual problem (5) using the ellipsoid algo-
rithm.

First, in order to run the ellipsoid algorithm, we need a
first-order oracle, i.e. we need a procedure to compute
L(λ) and ∇L(λ). This can be computed by WFOMC
using the encoding from Section 2.5. In particular, as
discussed in Section 2.5, when both Φ and Φ0 contain
formulas with at most 2 variables, we can compute
WFOMC in time polynomial in the size of the domain
|∆|. Hence, in this case we will have a first-order oracle
running in time polynomial in |∆|.

Second, since we have to search for solutions λ∗ sat-
isfying A=λ∗ = 0, where the matrix A= is defined as
in Section 6, we need to be able to compute A=. For
the case when both Φ and Φ0 contain formulas with
at most 2 variables, we can compute the set of vertices

of the relational marginal polytope in time polynomial
in |∆| as discussed in Section 5. Finding the matrix
A= is then a straightforward linear algebraic problem.
One can then show, using the fact that the number of
vertices of the relational marginal polytope is polyno-
mial in |∆| and that the representation of these vertices
is polynomial in |∆| as well, that the number of bits
needed to encode A= and c is also polynomial in |∆|.

Since we have a first-order oracle and we also have
means to compute the matrix A= and the vector c
which together represent the constraints, we can run
the ellipsoid algorithm. However, what remains to be
shown is how long the ellipsoid algorithm will need to
run in order to obtain a solution with value that is no
more than ε from the optimum. We do that next.

Using Theorem 16 and Theorem 1, if we set R =
log |Ω|/η and

β = − ε(
minλ∈K,‖λ‖∞≤R L(λ)−maxλ∈K,‖λ‖∞≤R L(λ)

)
then the ellipsoid algorithm will find a solution of the
dual problem (5) with value within ε from the opti-
mum in time polynomial in logR, l and log (1/β).

Hence we need to bound β. First, since L(λ) ≤ 0, we
can just focus on bounding minλ∈K,‖λ‖∞≤R L(λ). We
have

− L(λ) = 〈λ, θ〉 − log
∑
ω∈Ω

e〈λ,Qω(Φ)〉

≤ |〈λ, θ〉|+

∣∣∣∣∣log
∑
ω∈Ω

e〈λ,Qω(Φ)〉

∣∣∣∣∣ ≤ l log |Ω|
η

+ log

(
|Ω| · exp

(
l
log |Ω|
η

))
≤ (2l + 1)

log |Ω|
η

.

Hence, L(ω) ≥ −(2l + 1) log |Ω|
η and β ≥ εη

(2l+1) log |Ω| .

It follows that the number of WFOMC calls which
the ellipsoid algorithm needs to run is polynomial
in log (log |Ω|/η), log ((2l + 1) log |Ω|/(εη)) and l. Fi-
nally, noting that each of these calls can be performed
in time polynomial in |∆|c and log |Ω|/η (recall that
log |Ω|/η defines the bounding box where we need
to search) and that log |Ω| = O(|∆|c′) finishes the
proof (here the constant c depends on Φ and Φ0 and
the constant c′ depends on the given first-order lan-
guage L).

8 PROOF OF THEOREM 12

Here we prove Theorem 12. For that we also need
the following lemma, which is just a reformulation of
Lemma A.4 from [11] using our notation.

Lemma 4. Let λ∗ be an optimal solution of the dual
problem (5) and let λ be such that L(λ) ≥ L(λ∗) − ε.
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Then

L(λ∗)− L(λ) = DKL(p∗||p) ≤ ε

where p∗ is the MLN given by the formulas from Φ
with weights λ∗ and p is the MLN given by the same
formulas Φ with weights λ.

Next from Pinsker’s inequality we have δTV (p∗, p) ≤√
DKL(p∗||p) where δTV (p∗, p) denotes the total vari-

ation distance of p∗ and p and p and p∗ are as in
Lemma 4. Finally, realizing that |Eω∼p∗ [Qω(Φ)] −
Eω∼p[Qω(Φ)]| ≤ δTV (p∗, p) together with the result
in Theorem 11 and with the duality finishes the proof
of Theorem 12.

9 CONCLUSIONS

We have proved that maximum-likelihood weight
learning of MLNs given by formulas with at most 2
variables can be solved in time polynomial in the size
of the domain ∆. In order to obtain this result, we
framed the learning problem as a relational marginal
problem which allowed us to exploit algorithmic tech-
niques from [11]. Some of the new results that we
obtained in this paper hold for general MLNs, not just
the 2-variable ones. For instance, Theorem 16 holds
for all MLNs. The bounds on the number of steps
of the ellipsoid algorithm following from the results in
Sections 7 and 8 hold for general MLNs as well. We
believe that not only the result but also the techniques
could be useful for SRL.

We should also stress here that the algorithm described
in this paper is meant mostly for theoretical purposes;
it is not the most practical one. A more practical
algorithm could be obtained if we replaced the ellipsoid
algorithm by the projected gradient descent algorithm
and designed a more practical variant of the algorithm
for construction of relational marginal polytopes.
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