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A Theory Details

In this appendix, we give a complete exposition and
proof of Lemma 1 and use it to prove Theorem 2 from
Section 3. We also discuss a subtlety regarding the size
of stable blocks, and show that adding perturbations
to the node costs seems necessary to prove Lemma 1.

A.1 Proofs of Lemma 1 and Theorem 2

We now more formally develop the connection between
the block dual (5) and block stability. To begin, the
pairwise dual of the LP (3) is given by:
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This can be derived by introducing Lagrange multipli-
ers 7 on the two consistency constraints for each edge
(u,v) € F and each i € L:

Z$uv(l,j) = x,(j) Vj
wa(i,j) = a,(i) Vi

A dual point 7 is said to be locally decodable at a node
w if the cost terms

0u(i)+ D Nu(i)

viuveR

have a unique minimizing label 7. This dual P has the
following useful properties for studying persistency of
the LP (3):

Property 1 (Strong Duality). A solution n* to the
mazimization (4) has P(n*) = Q(z), where x is a so-
lution to the pairwise LP (3). Here Q(x) is the ob-
Jjective function of (3); this is identical to Q from (2)
when x is integral.

Property 2 (Complementary Slackness, Sontag et al.
(2012) Theorem 1.2). If x is a primal solution to the
pairwise LP (3) and there exists a dual solution n* that
is locally decodable at node u to label i, then x,(i) = 1.
That is, if the dual solution n* is locally decodable at
node u, the primal solution x is not fractional at node
u.

Property 3 (Strict Complementary Slackness, Sontag
et al. (2012) Theorem 1.3). If the LP (3) has a unique,
integral solution x, there exists a dual solution n* to
(4) that is locally decodable to x.

In particular, Property 2 says that to prove the primal
LP is persistent at a vertex u, we need only exhibit a

dual solution n* to (4) that is locally decodable at u to
g(u), where g is an integer MAP solution. Properties 1
and 3 will be useful for proving results about a different
Lagrangian dual that relaxes fewer constraints, which
we study now.

Given a partition V' = (51,...S5p) (henceforth a
“block decomposition”), we may consider relaxing

fewer consistency constraints than (4) does, to form
a block dual.
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maXZmln Z Z w(1) + Zéuv(i) A 0)
uESy i€L v:(u,w)EEy
+ Y Oy (0 9)
quEsb 2,7
+ Z HllIl uvl.]) 6 ()_6vu(.7))
uwveEy J

(11)

subject to the following constraints for all b €

{1,...,B}:
S k) =

ah (i) > 0,
> b, (4,5) = b (i)

This is simply a more general version of the dual (5),
written for an arbitrary partition V' = (Si,...,S5B).
Here the consistency constraints are only relaxed for
edges in Ey (boundary edges, which go from one block
to another). The dual subproblems in the first term
of (11) are LPs on each block, where the node costs of
boundary vertices are modified by the block dual vari-
ables §. For any §, we can define the reparametrized
costs 09 as

Yu e Sy, Vie L

Yu € Sy Vi € L. (12)
V(u,v) € Es,, Vi € L,
Y(u,v) € Eg,, ¥j € L.

05 (Z) _ {eu(l) + Zv:(u,v)eEa 51“1(7’) E'(’LL, 'U) € Ly
“ 0

(1) otherwise
so the block dual objective can also be written as
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When there is only one block, equal to V', the block
dual is equivalent to the primal LP (3). When every
vertex is in its own block, the block dual is equivalent
to the pairwise dual (4).

The following propositions allow us to convert between
solutions of the pairwise dual (4) and the generalized
block dual (11).

Proposition 1. Let n* be a solution to (4). Let 0* be
the restriction of n* to the domain of B; that is, 0.,
is defined only for pairs uwv, vu such that (u,v) € Eg
or (v,u) € Ep:

Oy (%)

Then §* is a a solution to (11).

= 77271(2) (U,U) € Ea or (’U,’LL) € Ea

This proposition gives a simple method for converting
a solution to pairwise dual P to a solution to the block
dual B: simply restrict it to the domain of B. As we
explain in Appendix B, this allows us to avoid ever
solving the block dual directly; we simply solve the
pairwise dual once, and can then easily form a block
dual solution for any set of blocks.

Proof. Tt is clear that 6* defined in this way is dual-
feasible (there are no constraints on the ¢’s). We show
that B(6*) > P(n*). Let = be a primal LP solution.
Because B(0) < Q(x) for any dual-feasible § (this is
easy to verify), and P(n*) = Q(z) (Property 1), this
implies B(0*) = Q(z). 0* must then be a solution for
the block dual B. Note that this proof also implies
strong duality for the block dual.

To see that B(6*) > P(n*), one could observe intu-
itively that B is strictly more constrained than P un-
less every vertex is its own block; since the subprob-
lems are all minimization problems, the optimal objec-
tive of B will be higher. More formally, consider two
adjacent nodes a and b in the pairwise dual P. The
terms corresponding to a in b in P can be written as:
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where N(u) is the set of vertices adjacent to u. The
x terms written here do not appear in (4) because the
minimum choice at a single vertex u can clearly be
chosen by x,(i) = 1 for a label ¢ that minimizes the
reparametrized potential, but we have left them in for
convenience (under the constraint that >, z, (i) = 1).

By the convexity of min, the value of the objective
above is at most
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.
Adding a new constraint to this minimization problem
can only increase the objective value, so the value of

the objective above is at most the value of:
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subject to the constraints ; zq(i, ) = wa(i) for all
i and ), qp(i,j) = xp(j) for all j. Now the vertices
a and b have been combined into a block. One can
continue in this way, enforcing consistency constraints
within blocks, until arriving at:
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where the minimizations over z® on the right-hand-
side are subject to the constraints (12). The left-hand
side is P(n*). The expression on the right hand side
is precisely the objective of B(d*), since we defined §*
as the restriction of n* to edges in Ey. This completes
the proof. O

Corollary 2 (Strong duality for block dual). If x is a
primal solution and 6* is a solution to the block dual,

B(5*) = Q(a).

So we are able to easily convert between a pairwise
dual solution and a solution to the block dual. This
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will prove convenient for two reasons: there are many
efficient pairwise dual solvers, so we can quickly find
n*. Additionally, we can solve the pairwise dual once
and convert the solution n* into solutions 6* to the
block dual for any block decomposition without hav-
ing to recompute a solution. As we mentioned above,
this will allow us to quickly test different block decom-
positions.

The following proposition allows us to convert a solu-
tion to the block dual to a pairwise dual solution.

Proposition 2. Let 6* be a solution to the block dual
(11). Recall that each subproblem of the block dual is
an LP of the same form as (3). So we can consider
the pairwise dual P defined on this subproblem. For
block b, let n° be a solution to the pairwise dual defined
on that block’s (reparametrized) subproblem. That is,

o = max 3 min | 6, (i) + > i)+ 65, (1)
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Then the point n* defined as
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is a solution to (4).

(u,v) € Eg, or (v,u) € Eg,
(u,v) € Eg or (v,u) € Ey

Given a solution §* to the block dual, we use Propo-
sition 2 to extend it to a solution to the pairwise dual
defined on the full instance; combining §* with pair-
wise dual solutions on the subproblems induced by §*
and the block decomposition gives an optimal n*.

Proof. This is immediate from strong duality of the
pairwise dual and the block dual (Property 1 and
Corollary 2, respectively). O

With this proposition, we are finally ready to prove
Lemma 1.

Proof of Lemma 1. We are given a Potts instance
(G,0,w,L). Let 0* be a solution to (11) with §; = S
and So = V'\ S. We know the sub-instance

((Sv ES)795* |57w‘Es’ L)

is (2,1)-stable. Let gs be the exact solution to the
instance ((S, Es), 0 |s,w|gs, L). If g is the exact so-
lution for (G, 0, w, L), gs may or may not be the same
as g|s. For this Lemma, they need not be equal, and
we just work with gs. Because of the (2, 1)-stability,

Theorem 1 implies that gg is the unique solution to
the following LP:

T ) SUAGIHORS ) S A )
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s.t. Zmﬁ(i):l, YueV, Viel
A

> Ty (i,9) =25 (i) V(u,w) € B, Viel,
Xiwau(isg) = 27 (j) V(u,w) € B, Vj € L,
x3 (i) >0, Yu eV, i€ L.

z3 (i,7) >0, V(u,v) € E, i, j € L.

This LP is simply the pairwise LP (3) defined on
((S,Es),0° |s,w|gs, L). Strict complementary slack-
ness (Property 3) implies that the pairwise dual prob-
lem defined on ((S, Es),0° |5, w|gs, L) has a solution
n° that is locally decodable to gg. That is, there is
some ng with

nS = max Z miin <9u (i) + Z Nuo (1) + Z 0 (Z))
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and for all u € S,

arg min <9u(i) Y M)+ 5Zv(i)> = {9s(u)}.
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In other words, gs(u) is the unique minimizer of the
modified node costs at u € S. By Proposition 1, we
can extend 1° and 0* to a solution n* to the pair-
wise dual (4) defined on (G,0,w,L). This extended
solution is locally decodable to gs on S by construc-
tion. If z is a solution to the primal LP (3) defined
on (G, 0,w, L), complementary slackness (Property 2)
implies that z,(gs(u)) =1 for all w € S. That is, the
LP solution z is equal to gg on S. O

Nothing special was used about the block decompo-
sition (S,V \ S), and indeed Lemma 1 also holds for
an arbitrary decomposition (51, ... Sp); if the instance
restricted to a block S, is (2, 1)-stable after its node
costs are perturbed by a solution §* to the block dual
(11), the primal LP is equal on Sj to the exact solution
of that restricted instance.

It is clear from Lemma 1 that if the solutions gg to the
restricted instances are equal to g|g (the exact solution
to the full problem, restricted to S), the primal LP z
is persistent on S (this is formalized in Corollary 1).
This is why Theorem 2 requires that the restricted
instance is stable with solution g|g.

Proof of Theorem 2. Note that a block dual solution
0* is a valid €*-bounded perturbation of # by the choice
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Node Costs

1 1 u > 0 €
v 0 oo ¢
W € 0 oo

1

Figure 4: Instance where each node belongs to a block
that is (0o, 00)-stable when the node costs are not per-
turbed. The LP solution is fractional everywhere.

of €* and Definition 4. Because we have assumed in the
statement of the theorem that the solution gg to the
restricted instance is equal to the restricted solution
gls, the result follows directly from Lemma 1. O

A.2 Do we need dual variables?

A simpler definition for block stability would be that
a block S is stable if the instance

((Sv ES)a 0|va|Es7 L)

is (2,1)-stable. Unfortunately, this is not enough to
guarantee persistency. Consider the counterexample
in Figure 4.

The optimal integer solution g labels v and w with
label 2, and v with label 1, for a total objective of 2.
The optimal LP solutions assigns weight 0.5 to each
label with non-infinite cost, for a total objective of
3(1+¢€) < 2 for any ¢ < . Define the block de-
composition S; = {u}, S; = {v}, S3 = {w}. Note
that each block has a unique optimal solution given by
the minimum-cost label, and that these labels match
the ones assigned in the combined optimal solution g.
Every vertex in this instance therefore belongs to an
(00, 00)-stable block, according to the simpler defini-
tion, but the LP is not persistent anywhere. It is rela-
tively straightforward to check that this instance does
not satisfy Definition 5 or the conditions of Lemma 1.

A.3 Stable block size

Assume the pairwise dual solution n* is locally de-
codable on vertex u to the label g(u), where g is the
exact solution. Then the reparametrized node costs
0. (1) = 0u(i) + > e n(u) Maw(@) have a unique mini-
mizing label i. Now consider solving the block dual
(11) when S, = {u} is a block with just one vertex,
u. Around block Sy, 07,(i) = 1!, (i) is a solution to
the block dual (see Proposition 1). But this means
that S, is a (0o, 00)-stable block with the modified
node costs (there are no edges to perturb, and the
node costs have a unique minimizer). In this way, it is
trivial to give a stable block decomposition any time
the LP (3) is persistent on a node u—simply add u

2 \U}/ € @2—7@

Figure 5: Potts model instance with both stable and
tree structure.

Node Costs
1 2 3 Node | Opt. Label

u 0 0 2 u 1
v 0 oo o0 v 1
w 0 0 2 w 1
X 2 0 2 X 2
y 2 0 2 y 2
Z 0 1 1 Z 2

(a) Original node costs 6 (b) Exact solution g

Figure 6: Details for the instance in Figure 5. The
strictly positive values € and v are both taken suffi-
ciently small.

to its own block. However, it is not possible a pri-
ori to find stable blocks of size greater than one, and
we show in Section 5 that many such blocks exist in
practice. These practical instances therefore exhibit
structure that is more special than persistency: large
stable blocks are not to be expected from persistency
alone, and their existence implies persistency.

A.4 Combining stability with other structure

Consider the instance in Figure 5. The tables in Figure
6 give the original node costs 6 and the exact solution
g for this instance. The objective of g is 1 + 2¢. The
pairwise LP (3) is persistent on this instance. How
can we explain that? The instance is not (2, 1)-stable:
when the weight between y and z is multiplied by %,
the optimal label for z switches from 2 to 1. However,
if we take € to be very small, the blocks S = {u, v, w}
and T = {x,y, z} seem loosely coupled, and the strong
node costs and connections in S suggest it might have
some stable structure. Unfortunately, the block T is
not stable for the same reason that the overall instance
is not stable. However, this block is a tree!

It is fairly straightforward to verify that 6* given by

0ue = (6,0,0) 65, = (—€,0,0)
5::13; = (67070) Oy = (—6,0,0)

yw

is a solution to the block dual with blocks {S,T}. In-
deed, Figure 7 shows the node costs % updated by
this solution. If we solve the LP on each modified
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Node Costs

1 2 3
u € 0 1
v 0 oo o0
w € 0 1
X 2—e 0 2
y 2—e 0 2
Z 0 1 1

Figure 7: Updated node costs 6%

block, ignoring the edges between S and T, we get an
objective of 2¢ for S and an objective of 1 for T'. Be-
cause this matches the objective of the original exact
solution g, we know in this case that §* must be opti-
mal for the block dual. It can then be shown that the
modified block

((Sa ES),GS* |va‘Esv L)

is (2,1)-stable: when all the weights of edges in Eg
become 1 instead of 2, the solution is still to label
w and w with label 1 for sufficiently small ¢ and e.
Similarly, the block

((T7 ET)>96* |T7w|ETa L)

is a tree with a unique integer solution; because the
pairwise LP relaxation is tight on trees (Wainwright
and Jordan, 2008), this implies by Property 3 that
there is a pairwise dual solution to this restricted in-
stance that is locally decodable. Put together, these
two results explain the persistency of the pairwise LP
relaxation on the full instance by applying different
structure at the sub-instance level.

B Experimental Details

In this appendix, we provide more details and addi-
tional discussion regarding the algorithms and experi-
ments in Sections 4 and 5.

B.1 Explaining Algorithm 2

We briefly give more details on the steps of Algorithm
2. One key point is that we can efficiently compute
block dual solutions with very little extra computa-
tion per outer iteration of the algorithm. We effec-
tively only need to solve a dual problem once; we can
then easily generate block dual solutions for any block
decomposition for all subsequent iterations. In prac-
tice, we simply find a pairwise dual solution n* using
the MPLP algorithm (Globerson and Jaakkola, 2008),
then use Proposition 1 to convert it to a solution of the
generalized block dual (11) for a given decomposition.

Algorithm 3: BlockStable(g, 3,7) (optimized)
. SE, S with (9).

Given g, create blocks (S7, ..

Initialize K' = |L|.

Find a solution n* to (4).

forte{l,...,M} do

Initialize S{T1 = ().

Compute 6* for (S,...5%.,St) using n* and
Proposition 1.

Form Z = ((V,E\ Ep),0° , w|p\ g,, L) using 6*
and (7).

Set (f1,...fKt, f+) = CheckStable(g, 3,) run on
instance Z.

forbe{l,...,K" x} do

Compute Va = {u € Sf| fp(u) # g(u)}.

Set S{tt =S\ Va

Set SiTt = SHHLU V.

if b = % then
Set R = St \ Va.
1 1
Let (S, -, SKil 1) = BFS(R) be

the p connected components in R that
get the same label from g.
Set Kt = Kt 4+ p.
end

end
end

Additionally, we can avoid the expensive component of
the inner loop of the algorithm (solving CheckStable
for each block b). To parallelize CheckStable with-
out any additional work, we modify the node costs
of each block using the solution ¢* to the generalized
block dual, then remove all the edges in Ey. We can
then solve the ILP (8) used in CheckStable with one
“objective constraint” for each block. The objective
function of (8) decomposes across blocks once Ey is
removed. This approach avoids the overhead of explic-
itly forming and solving the ILP (8) for each block,
which is especially helpful as the number of blocks
grows large. These optimizations are summarized in
Algorithm 3.

B.2 Object Segmentation
Setup: Markov Random Field

We use the formulation of Alahari et al. (2010). The
graph G is a grid with one vertex for each pixel in
the original image; the edges connect adjacent pixels.
In this model, the node costs 6 are set according to
Shotton et al. (2006); they are based on the location
of the pixel in the image, the color values at that pixel,
and the local shape and texture of the image. Shotton
et al. (2006) learn these functions using a boosting
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method. The edge weights w(u,v) are set as:

_ —9(u,v)? 1
wlu, v) = A+ Az exp ( 202 ) dist(u, v)’

where g(u,v) is the RGB value difference between pixel
locations v and v, and dist(u, v) is the spatial distance
between those pixel locations. We follow Alahari et al.
(2010) and set A\; = 5, Ay = 100, and o = 5. This
setup yields an instance of a Potts model (UNIFORM
METRIC LABELING), so we can proceed with our al-
gorithms. Many vertices of the object segmentation
instances appear to belong to large stable blocks. Un-
like with stereo vision, we were able to use the full
instances in our experiments, which, as we observed in
Section 5, could contribute to the quality of our results
for segmentation. Each instance has 68,160 nodes and
either five or eight labels. The LP is persistent on
100% of the nodes for all three instances.

B.3 Stereo Vision

Setup: Markov Random Field

To begin, we let the graph G be a grid graph where
each node corresponds to a pixel in L. We then need
to set the costs 6,(i) for each u, i, and the weights
w(u,v) for each edge (u,v) in the grid. This is where
the domain knowledge enters the problem. For a pixel
u, we set its cost 0,(i) for disparity 4 as:

0u(i) = (I1(u) = Ir(u— 1)) (13)

Here I, and I are the pixel intensity functions for the
images L and R, respectively, and the notation u — ¢
shifts a pixel location u by ¢ pixels to the left. That is,
if u corresponds to location (h, w), u—i corresponds to
location (h,w—1). If the difference (13) is high, then it
is unlikely that pixel u actually moved ¢ pixels between
the two images. On the other hand, if this difference
is low, disparity ¢ is a plausible choice for pixel u. In
our experiments, we use a small correction to (13) that
accounts for image sampling (Birchfield and Tomasi,
1998); this correction is also used by Boykov et al.
(2001) and Tappen and Freeman (2003).

We can set the weights using a similar intuition. If u
and v are neighboring pixels and I (u) is similar to
Ip,(v), then w and v probably belong to the same ob-
ject, so they should probably get the same disparity
label. In this case, the weight between them should be
high. On the other hand, if Iy, (u) is very different from
Iy, (v), v and v may not belong to the same object, so

3We use pre-built object segmentation models from the
OpenGM Benchmark that are based on the models of (Ala-
hari et al., 2010): http://hciweb2.iwr.uni-heidelberg.
de/opengm/index.php?10=benchmark

they should have a low weight—they may move differ-
ent amounts between the two images. To this end, we

set
w(,v) = {P % a(w) = L) <T
s otherwise.

In our experiments, we follow Tappen and Freeman
(2003) and set s = 50, P = 2, T = 4. This setup gives
us a Potts model instance (G, 0, w, L).



