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A Proofs

A.1 Proof of Lemma 3.4

In parametric minimization problems, such as encountered in the definitions of �-prox and �-envelope, a su�cient
condition for the continuity of the argmin map is given by uniform level boundedness [22, Definition 1.16 and
Theorem 1.17] of the map h : (z, v) 7! f(z) + 1

��(v � z).

Definition A.1 (uniform level boundedness). We say a function h : Rm ⇥ Rm ! R with values h(z, v) is

level-bounded in z locally uniformly in v if for each v̄ 2 Rm
and ↵ 2 R there is a neighborhood V of v̄ along with

a bounded set X ⇢ Rm
such that

{z : h(z, v)  ↵} ⇢ X

for all v 2 V .

In the next lemma we establish the uniform level boundedness of the map h : (z, v, ⇠) 7! f(z)+ 1
��(v� z)�h⇠, zi

from �-prox-boundedness so that [22, Theorem 1.17] can be invoked to assert the continuity of �-prox and �-
envelope. The Lemma is stated in a more general form including an additional linear term h⇠, zi, which is needed
later on in the proof of Theorem 4.3, see Section A.2.

Lemma A.2. Let f : Rm ! R be proper lsc and �-prox-bounded with threshold �f > 0. Then for any � 2 (0,�f ),
the function h : Rm ⇥ Rm ⇥ Rm ! R, defined via

h(z, ⇠, v) := f(z) +
1

�
�(v � z)� h⇠, zi,

is level-bounded in z locally uniformly in (⇠, v).

Proof. We assume the contrary: More precisely let � 2 (0,�f ) and assume that h is not level-bounded in z

locally uniformly in v. On the one hand, this means that there exist v̄, ⇠̄ 2 Rm, ↵ 2 R and sequences v
⌫ ! v̄,

⇠
⌫ ! ⇠̄ and z

⌫ , kz⌫k ! 1 such that

f(z⌫) +
1

�
�(v⌫ � z

⌫)� h⇠⌫ , z⌫i  ↵.

On the other hand, we know that

f(z⌫) +
1

�0�(v
⌫ � z

⌫) � �,

for some �
0
> �, with �

0 2 (0,�f ) and ⌫ su�ciently large. Summing the inequalities yields:

✓
1

�
� 1

�0

◆
�(v⌫ � z

⌫)� h⇠⌫ , z⌫i  ↵� �.

Due to the super-coercivity of �, for ⌫ ! 1 this yields 1  ↵� �, a contradiction.

Now we are ready to prove Lemma 3.4 invoking [22, Theorem 1.17]:

Lemma. Let f : Rm ! R be proper lsc and �-prox-bounded with threshold �f > 0. Then for any � 2 (0,�f ),

P
�
� f and e

�
�f have the following properties:

(i) P
�
� f(v) 6= ; is compact for all v 2 dom e

�
�f = dom f + dom�, whereas P

�
� f(v) = ; for v /2 dom e

�
�f .

(ii) The �-envelope e
�
�f is continuous relative to dom e

�
�f .

(iii) For any sequence v
⌫ ! v̄ contained in dom e

�
�f and z

⌫ 2 P
�
� f(v

⌫) we have {z⌫}⌫2N is bounded and all its

cluster points z̄ lie in P
�
� f(v̄).

Proof. Obviously it holds for the domain that dom e
�
�f = dom f +dom�. In view of Lemma A.2 (with ⇠ = 0) we

assert that h : (z, v) 7! f(z) + 1
��(v � z) is level-bounded in z locally uniformly in v. Then we may invoke [22,

Theorem 1.17] to assert that P�
� f(v) 6= ; is compact for any v 2 dom e

�
�f whereas P�

� f(v) = ; for v /2 dom e
�
�f
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and in addition for any v̄ 2 dom e
�
�f and any sequence z

⌫ 2 P
�
� f(v

⌫) with v
⌫ ! v̄ contained in dom e

�
�f , that

{z⌫}⌫2N is bounded. Furthermore, as � is continuous relative to its domain, we know for some z̄ 2 P
�
� f(v̄) that

h(z̄, ·) is continuous relative to z̄ + dom� containing v̄. Through [22, Theorem 1.17] all cluster points of the
sequence z

⌫ 2 P
�
� f(v

⌫) lie in P
�
� f(v̄) and e

�
�f(v

⌫) ! e
�
�f(v̄) and therefore e

�
�f is continuous at v̄ relative to

dom e
�
�f . Since this holds for all v̄ 2 dom e

�
�f , e

�
�f is continuous relative to dom e

�
�f .

A.2 Proof of Theorem 4.3

In order to prove the desired statement we need the following intermediate result. For the sake of notational
convenience recall the notion of Bregman distances as a short-hand notation for �(w0)��(w)�hr�(w), w0 � wi:
Definition A.3 (Bregman distance). The �-induced Bregman distance B� : Rm ⇥ Rm ! R is defined by

B�(w
0
, w) =

(
�(w0)� �(w)� hr�(w), w0 � wi if w 2 int(dom�)

+1 otherwise.
(19)

Lemma A.4. Let f : Rm ! R proper lsc and �-prox-bounded with threshold �f . In addition assume that f is

finite and prox-regular at z̄ for ȳ 2 @f(z̄) such that the subgradient inequality (11) is satisfied by constants r > 0
and ✏ > 0 and let v̄ 2 z̄ + dom�. Then the following inequality holds for all z 2 Rm

and r1 � max{r,��1
f }

su�ciently large:

f(z) � f(z̄) + hȳ, z � z̄i � r1B�(v̄�·)(z, z̄). (20)

Proof. By prox-regularity of f we know there exist r > 0 and ✏ > 0 such that the subgradient inequality

f(z) � f(z̄) + hȳ, z � z̄i � r

2
kz � z̄k2, (21)

holds for kz � z̄k < ✏. By Assumption (A3) and [4, Proposition 2.10] we have that

B�(v̄�·)(z, z̄) = �(v̄ � z)� �(v̄ � z̄) + hr�(v̄ � z̄), z � z̄i � µ

2
kz � z̄k2, (22)

for some µ > 0. Summing (21) and (22) yields (20), which holds for any z with kz � z̄k < ✏ and r1 � r
µ . To

show the assertion we prove that (20) also holds for any z with kz � z̄k � ✏ for r1 � max{ r
µ ,�

�1
f } su�ciently

large. By �-prox-boundedness it holds for � 2 (0,�f ) and v̄ 2 dom e
�
�f that +1 > e

�
�f(v̄) > �1. We have

f(z) � e
�
�f(v̄)�

1

�
�(v̄ � z), (23)

showing, that the desired inequality (20) is implied by

e
�
�f(v̄)�

1

�
�(v̄ � z) � f(z̄) + hȳ, z � z̄i � r1B�(v̄�·)(z, z̄),

which is equivalent to

(r1 � �
�1)B�(v̄�·)(z, z̄) � f(z̄)� e

�
�f(v̄) + hȳ, z � z̄i+ 1

�
�(v̄ � z̄)� 1

�
hr�(v̄ � z̄), z � z̄i ,

and (using Cauchy-Schwarz) implied by

(r1 � �
�1)

B�(v̄�·)(z, z̄)

kz � z̄k �
f(z̄)� e

�
�f(v̄) +

1
��(v̄ � z̄)

kz � z̄k + kȳ � �
�1r�(v̄ � z̄)k. (24)

Due to the super-coercivity of � (24) holds for z with kz � z̄k � � for some � > 0 su�ciently large. To make
(24) also hold for z with ✏  kz � z̄k < � we can choose r1 > max{r,��1

f } su�ciently large as B�(v̄�·)(z, z̄) is
bounded away from zero, due to the strict convexity of �(v̄ � ·).

Throughout the proof we work with graphical localizations of set-valued mappings F , which are constructed
graphically by intersecting the graph of F with some neighborhood of some reference point (z̄, ȳ) 2 gphF :
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Definition A.5 (graphical localization). For F : Rm ◆ Rn
and a pair (z̄, ȳ) 2 gphF , a graphical localization

of F at z̄ for ȳ is a set-valued mapping T such that

gphT = (U ⇥ V ) \ gphF

for some neighborhoods U of z̄ and V of ȳ, so that

T (z) :=

(
F (z) \ V if z 2 U,

; otherwise.
(25)

In the proof of Theorem 4.3, we shall invoke the following generalized implicit function theorem specialized
from [11, Theorem 2B.7], originally due to Robinson [20] for analyzing the solutions of parametric variational
inequalities.

Theorem A.6 (generalized implicit function theorem). Consider a function G : Rm⇥Rm ! Rm
and a set-valued

map T : Rm ◆ Rm
with (v̄, z̄) 2 int domG and 0 2 G(v̄, z̄) + T (z̄), and suppose that

clipv(G; (v̄, z̄)) := lim sup
v,v0!v̄
z!z̄
v 6=v0

kG(v, z)�G(v0, z)k
kv � v0k  � < 1.

Let H : Rm ! Rm
be a strict estimator of G w.r.t. z uniformly in v at (v̄, z̄) with constant µ, i.e.,

clipz(e; (v̄, z̄))  µ < 1 for e(v, z) = G(v, z)�H(z).

Suppose that (H + T )�1
has a Lipschitz continuous single-valued localization around 0 for z̄ with modulus  and

µ < 1. Then the solution mapping

S : v 2 Rm 7! {z 2 Rm : 0 2 G(v, z) + T (z)}

has a Lipschitz continuous single-valued localization around v̄ for z̄ with modulus
�

1�µ .

We are now ready to prove the desired statement Theorem 4.3:

Theorem. Let f : Rm ! R proper lsc and �-prox-bounded with threshold �f . Let v̄ 2 z̄ + dom�. Then for any

� 2 (0,�f ) su�ciently small and f finite and prox-regular at z̄ for ȳ 2 @f(z̄) with

ȳ =
1

�
r�(v̄ � z̄)

the following statements hold true:

(i) P
�
� f is a singled-valued, Lipschitz map near v̄ such that z̄ = P

�
� f(v̄) and

P
�
� f(v) = (I +r�

⇤ � �T )�1(v), (26)

where T is the f -attentive ✏-localization of @f near (z̄, ȳ), i.e. the set-valued mapping T : Rm ◆ Rm
defined

by T (z) := {y 2 @f(z) : ky � ȳk < ✏} if kz � z̄k < ✏ and f(z) < f(z̄) + ✏, and T (z) := ; otherwise.

(ii) e
�
�f is Lipschitz di↵erentiable around v̄ with

re
�
�f(v) =

1

�
r�(v � z). (27)

Proof. (i) Due to the prox-regularity at z̄ for ȳ with constants ✏ > 0 and r > 0 and the �-prox-boundedness of f
with threshold �f we can invoke Lemma A.4 to assert that for some � 2 (0,min{�f , r

�1}) su�ciently small the
following inequality holds globally for all z 6= z̄:

f(z) +
1

�
�(v̄ � z) > f(z̄) +

1

�
�(v̄ � z̄) + hȳ, z � z̄i � 1

�
hr�(v̄ � z̄), z � z̄i . (28)
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By assumption ȳ = 1
�r�(v̄ � z̄) showing that

f(z0) +
1

�
�(v̄ � z

0) > f(z̄) +
1

�
�(v̄ � z̄),

for any z
0 6= z̄. Therefore we can assert P�

� f(v̄) = z̄.

Due to the �-prox-boundedness of f and the coercivity of � we can invoke Lemma A.2 to assert that h(z, v) :=
f(z) + 1

��(v � z) is level-bounded in z locally uniformly in v. By Lemma 3.4 it follows that P�
� f(v) 6= ; for any

v 2 dom e
�
�f . Furthermore, we assert, that for any sequence z⌫ 2 P

�
� f(v

⌫), v⌫ ! v̄ we have {z⌫} is bounded and

all its cluster points lie in P
�
� f(v̄) = z̄, meaning z

⌫ ! z̄ and e
�
�f(v

⌫) ! e
�
�(v̄). In addition, we have f(z⌫) ! f(z̄)

as e��f(v
⌫) = f(z⌫) + 1

��(v
⌫ � z

⌫) ! e
�
�f(v̄) = f(z̄) + 1

��(v̄ � z̄). Overall this shows, that for any v, su�ciently

near v̄ we have z 2 P
�
� f(v), kz � z̄k < ✏, |f(z) � f(z̄)| < ✏ and k 1

�r�(v � z) � ȳk < ✏, due to the continuity of

r� on a neighborhood of v̄ � z̄. From applying Fermat’s rule [22, Theorem 10.1] to P
�
� f(v) we obtain

1

�
r�(v � z) 2 @f(z),

and we can assert that 1
�r�(v � z) 2 T (z) via the arguments above. This shows that

; 6= P
�
� f(v) ⇢

✓
T � 1

�
r�(v � ·)

◆�1

(0), (29)

where @f is replaced by T . It is straightforward to verify, using the fact (r�)�1 = r�
⇤ from Lemma 3.2, that

✓
T � 1

�
r�(v � ·)

◆�1

(0) = (I +r�
⇤ � �T )�1(v).

We proceed showing that (I + r�
⇤ � �T )�1 is a single-valued Lipschitz map in a neighborhood of v̄. Via the

inclusion above this means that P�
� f = (I +r�

⇤ � �T )�1 on this neighborhood.

To this end, consider the function h : Rm⇥Rm⇥Rm ! R defined via h(v, ⇠, z) := f(z)+ 1
��(v�z)�h⇠, zi. In view

of Lemma A.2 we assert that h(v, ⇠, z) is level-bounded in z locally uniformly in (v, ⇠). Through [22, Theorem
1.17] we know that for any sequence ⇠⌫ ! 0 with infz2Rm h(v̄, ⇠⌫ , z) < 1 there is z⌫ 2 argminz2Rm h(v̄, ⇠⌫ , z) 6= ;
with z

⌫ ! z̄ = argminz2Rm h(v̄, 0, z) = P
�
� f(v̄) and infz2Rm h(v̄, ⇠⌫ , z) ! infz2Rm h(v̄, 0, z) = e

�
�f(v̄).

From applying Fermat’s rule [22, Theorem 10.1] to the minimization problem above we know that ⇠⌫ + 1
�r�(v̄�

z
⌫) 2 @f(z⌫) and for ⌫ su�ciently large we have that k⇠⌫+ 1

�r�(v̄�z
⌫)� ȳk  ✏ due to the continuity of r� on a

neighborhood of v̄� z̄. In addition, we have f(z⌫) ! f(z̄) as infz2Rm h(v̄, ⇠⌫ , z) = f(z⌫)+ 1
��(v̄�z

⌫)�h⇠⌫ , z⌫i !
e
�
�f(v̄) = f(z̄) + 1

��(v̄ � z̄). Overall this means that for any ⇠ su�ciently near 0 we have:

⇠ 2 T (z)� 1

�
r�(v̄ � z),

for some z near z̄, and @f is interchangeable with T .

Now pick any (z1, y1), (z2, y2) 2 gphT . Then it follows from (11) that

f(z2) � f(z1) +
⌦
y
1
, z

2 � z
1
↵
� r

2
kz2 � z

1k2, (30)

f(z1) � f(z2) +
⌦
y
2
, z

1 � z
2
↵
� r

2
kz1 � z

2k2, (31)

and furthermore, due to Assumption (A3) and [4, Proposition 2.10] we have that

B�(v̄�·)(z
2
, z

1) = �(v̄ � z
2)� �(v̄ � z

1) +
⌦
r�(v̄ � z

1), z2 � z
1
↵
� µ

2
kz2 � z

1k2.

for some µ > 0. Then we have

�(v̄ � z
2) � �(v̄ � z

1)�
⌦
r�(v̄ � z

1), z2 � z
1
↵
+

µ

2
kz2 � z

1k2, (32)

�(v̄ � z
1) � �(v̄ � z

2)�
⌦
r�(v̄ � z

2), z1 � z
2
↵
+

µ

2
kz1 � z

2k2. (33)
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Summing the four inequalities yields for ⇠1 := y
1 � 1

�r�(v̄ � z
1) and ⇠

2 := y
2 � 1

�r�(v̄ � z
2):

⌦
z
1 � z

2
, ⇠

1 � ⇠
2
↵
� (µ� � r)kz1 � z

2k2, (34)

Consequently, the map T � 1
�r�(v̄ � ·) is (µ� � r)-strongly monotone.

Define H(z) := � 1
�r�(v̄� z), G(v, z) := � 1

�r�(v� z) and e(v, z) := G(v, z)�H(z). Then the above argument

implies that ⇠ 7! (T +H)�1 (⇠) is a single-valued, (µ� � r)�1-Lipschitz map in a neighbourhood of 0 such that
0 2 T (z̄) + G(v̄, z̄). Due to Assumption (A3) and [4, Proposition 2.10] r� is Lipschitz on a neighbourhood of

v̄ � z̄ 2 int dom� and we may conclude that clipv(G; (v̄, z̄)) and clipz(e; (v̄, z̄)) are finite. This implies that H

is a strict estimator of G w.r.t. z uniformly in v at (v̄, z̄) 2 int domG. Invoking Theorem A.6, we assert that
v 7! {z 2 Rm : 0 2 G(v, z) + T (z)} has a single-valued, Lipschitz localization around v̄ for z̄. Since z̄ = P

�
� f(v̄)

is single-valued at v̄ and for any v near v̄ and z 2 P
�
� f(v) it holds that z is near z̄, we may conclude that

P
�
� f(v) = {z 2 Rm : 0 2 G(v, z) + T (z)} is single-valued and Lipschitz on a neighborhood of v̄.

(ii) Let (z, v), (z0, v0) be su�ciently close to (z̄, v̄) with z = P
�
� f(v), z

0 = P
�
� f(v

0). Then, by Fermat’s rule
[22, Theorem 10.1] it holds y 2 @f(z) such that y = 1

�r�(v � z). Furthermore, by assumption the subgradient
inequality (11) holds true at (z, y) 2 gphT . This means in particular that y is a proximal subgradient [22,
Definition 8.45] of f at z. In view of [22, Proposition 8.46 (e)], we assert y 2 @̂f(z). Thus (and using the
di↵erentiability of � on dom�) one can derive

e
�
�f(v

0)� e
�
�f(v) = f(z0)� f(z) +

1

�
�(v0 � z

0)� 1

�
�(v � z)

� hy, z0 � zi+ o(kz0 � zk) + 1

�
hr�(v � z), (v0 � v)� (z0 � z)i+ o(k(v0 � v)� (z0 � z)k).

(35)

Using the conclusion from (i) that v 7! z is a Lipschitz map near v̄ there is some ↵ such that

kz0 � zk  ↵kv0 � vk.

This shows that o(k(v0 � v)� (z0 � z)k) + o(kz0 � zk) = o(kv0 � vk) and we get from (35) that

e
�
�f(v

0)� e
�
�f(v)�

1

�
hr�(v � z), v0 � vi � o(kv0 � vk). (36)

On the other hand, we have

e
�
�f(v

0) = inf
z00

f(z00) +
1

�
�(v0 � z

00)  f(z) +
1

�
�(v0 � z). (37)

Due to the di↵erentiability of �, we have

�(v0 � z) = �(v � z) + hr�(v � z), v0 � vi+ o(kv0 � vk). (38)

This yields

e
�
�f(v

0)� e
�
�f(v)  f(z) +

1

�
�(v0 � z)� f(z)� 1

�
�(v � z)

=
1

�
hr�(v � z), v0 � vi+ o(kv0 � vk). (39)

Combining (36) and (39), we conclude that e
�
�f is di↵erentiable at v and 1

�r�(v � z) = re
�
�f(v). Since

furthermore r� is Lipschitz around v̄ � z̄ it holds that re
�
�f is the composition of two locally Lipschitz maps

and therefore Lipschitz around v̄.
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[2] A. Auslender. Optimisation: Méthodes Numériques. Masson, 1976.

[3] H. H. Bauschke, J. M. Borwein, and P. L. Combettes. Bregman monotone optimization algorithms. SIAM
Journal on Control and Optimization, 42(2):596–636, 2003.

[4] H. H. Bauschke and A. S. Lewis. Dykstras algorithm with Bregman projections: A convergence proof.
Optimization, 48(4):409–427, 2000.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[6] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014.

[7] Y. Censor and S. A. Zenios. Proximal minimization algorithm with D-functions. Journal of Optimization

Theory and Applications, 73(3):451–464, 1992.

[8] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier. Deep relaxation: partial di↵erential
equations for optimizing deep neural networks. Research in the Mathematical Sciences, 5(3):30, 2018.

[9] P. L. Combettes and N. N. Reyes. Moreau’s decomposition in Banach spaces. Mathematical Programming,
139(1-2):103–114, 2013.

[10] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
SIAM Journal on Optimization, 29(1):207–239, 2019.

[11] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings: A View From Variational

Analysis. Springer, New York, 2009.

[12] E. Laude, T. Wu, and D. Cremers. A nonconvex proximal splitting algorithm under Moreau-Yosida regu-
larization. In Artificial Intelligence and Statistics (AISTATS), 2018.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[14] C. Lescarret. Applications “prox” dans un espace de Banach. Comptes Rendus de l’Académie des Sciences

de Paris Série A, 265:676–678, 1967.

[15] A. S. Lewis, D. R. Luke, and J. Malick. Local linear convergence for alternating and averaged nonconvex
projections. Foundations of Computational Mathematics, 9(4):485–513, 2009.

[16] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace Hilbertien. Comptes Rendus

de l’Académie des Sciences de Paris Série A, 255:2897–2899, 1962.
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