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Abstract

The importance of survival analysis in many
disciplines (especially in medicine) has led to
the development of a variety of approaches to
modeling the survival function. Models con-
structed via various approaches offer different
strengths and weaknesses in terms of discrim-
inative performance and calibration, but no
one model is best across all datasets or even
across all time horizons within a single dataset.
Because we require both good calibration and
good discriminative performance over differ-
ent time horizons, conventional model selec-
tion and ensemble approaches are not appli-
cable. This paper develops a novel approach
that combines the collective intelligence of dif-
ferent underlying survival models to produce
a valid survival function that is well-calibrated
and offers superior discriminative performance
at different time horizons. Empirical results
show that our approach provides significant
gains over the benchmarks on a variety of
real-world datasets.

1 Introduction

Survival analysis (time-to-event analysis) plays an im-
portant role in many disciplines and especially in
medicine, which is the focus of the paper. The im-
portance of survival analysis has prompted the develop-
ment of a variety of approaches to model the survival
function (the probability of surviving past a given time
as a function of the covariates). Parametric and semi-
parametric approaches construct models that rely on
specific assumptions about the true underlying distribu-
tion; non-parametric approaches take a more agnostic
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point of view to construct models that rely on (variants
of) familiar machine learning methods. The models
produced by these various approaches offer different
strengths and weaknesses in terms of both discrimi-
native performance and calibration, and their relative
performance varies across different datasets and at
different time horizons within a single dataset. In par-
ticular, no single model is best across all datasets, and
frequently no single model is best across all time hori-
zons within a single dataset. This presents a challenge
to familiar methods of model selection or ensemble
creation. An additional challenge is that survival anal-
ysis needs to yield good performance at different time
horizons while providing a valid and well-calibrated
survival function; this makes the conventional model
selection or ensemble methods actually inapplicable.

The usefulness of a survival model should be assessed
both by how well the model discriminates among pre-
dicted risks and by how well the model is calibrated.
The necessity of keeping both criteria in mind is illus-
trated by the case of heart transplantation, which is
the treatment of last resort for patients with end-stage
heart failure. Successful transplantation can mean
many additional years of life for such patients, but
there are many more patients in need of transplants
than there are available donor hearts. So, it is impor-
tant to correctly discriminate/prioritize recipients on
the basis of risk. However, if the risk predictions of
a given model are not well calibrated to the truth –
i.e. if there is poor agreement between predicted and
observed outcomes – then the model will have little
prognostic value for clinicians.

This paper offers a novel approach that addresses these
challenges. Our approach combines the collective in-
telligence of different underlying survival models to
produce a valid survival function that is both discrimi-
native and well-calibrated. Because we piece together
these underlying models according to (endogenously
determined) weights that vary over time, we refer to
our construction as temporal quilting, and to the re-
sultant model as a Survival Quilt. An illustration of



Temporal Quilting for Survival Analysis

Figure 1: A toy example of temporal quilting with prescribed weights for survival models inM = {Cox,RSF,CISF}
at t1, t2, and t3. A risk function is constructed by stitching together the weighted increment functions of each
survival model between two adjacent time horizons.

temporal quilting (for given weights) is provided in
Figure 1. The core part of our method is an algorithm
for configuring the weights sequentially over a (perhaps
very fine) grid of time intervals. To render the problem
tractable, we apply constrained Bayesian Optimization
(BO) [1], which models the discrimination and cali-
bration performance metrics as black-box functions,
whose input is an array of weights (over different time
horizons) and whose output is the corresponding per-
formance achieved. Based on the constructed array of
weights, our method makes a single predictive model –
a Survival Quilt.

Our empirical results demonstrate that Survival Quilts
provide significant performance gains over the underly-
ing models (which we take as benchmarks) on a variety
of real-world survival datasets. Because our approach
automatically finds (an approximation to) the best
temporal quilting of the underlying survival models, it
provides a way to free clinicians from the concern of
choosing one particular survival model for each dataset
and for each time horizon of interest.

2 Related Work

Different approaches, ranging from statistical methods
to machine learning based methods, have been pro-
posed for survival analysis. One approach employs
(semi-)parametric models that are constructed on the
basis of assumptions on the true underlying distribu-
tion. This includes i) survival models based on the Cox
proportional hazard (Cox-PH) assumption [2], and a
variety of extensions [3, 4, 5] and ii) the accelerated
failure time (AFT) model based on the Weibull distri-
bution, and extensions [6, 7]. Other approaches employ
nonparametric models, including i) ensembles of sur-
vival trees constructed via bagging [8, 9] or boosting

[10], and ii) deep learning methods [11]. In general,
nonparametric models provide better survival predic-
tions than do (semi-)parametric models when the true
underlying distribution is unknown or is mis-specified.
However, nonparametric models often yield inaccurate
predictions at time horizons for which the number of
subjects in the dataset who are “at risk” is small [12].

As we have noted in the Introduction, methods based
on model selection and ensemble creation that are
familiar for classification problems (including the Auto-
ML framework [13, 14]) do not extend to the survival
setting because we need to construct a valid survival
function that provides good discriminative performance
at different time horizons and is also well-calibrated.
Our work is most closely related to a model based on
stacking [15], which estimates an optimally weighted
combination of different survival models on the ba-
sis of calibration performance. However, in order to
produce a valid survival function, that model requires
the weights to be independent of time. By contrast,
our approach exploits weights that depend on time to
provide a valid survival function that is well-calibrated
and achieves superior discriminative performance at
different time horizons. To the best of our knowledge,
this paper is the first that combines different survival
models in a time-dependent manner to provide both
discriminative and prognostic power.

3 Problem Formulation

For convenience, we couch our description in the medi-
cal setting, although our approach is entirely applicable
to any time-to-event problem. In our setting, some pa-
tients experience the event of interest (e.g. death) and
some are censored (lost to follow-up). The data for
an individual patient i therefore consists of a vector
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Figure 2: A schematic depiction of Survival Quilts and its pattern optimization at step k. Survival Quilts provide
risk functions that are constructed on the basis of the final quilting pattern W∗

K . Here, colored boxes are the
three main components of our method and dotted lines imply feedback loops for sequential computations.

of covariates xi ∈ X (X is the space of all covariates),
either a time-to-event, Ti ∈ R+, or a time-to-censoring,
Ci ∈ R+ (both from the initial moment of observation),
and an indicator ∆i = I(Ti < Ci); ∆ = 1 if the patient
experienced the event of interest and ∆ = 0 if the pa-
tient was right-censored. Note that censoring provides
the information that the patient had not experienced
the event (e.g. was alive) up to time Ci. We are given
data for N patients so the entire time-to-event dataset
is D = {(xi,∆iTi + (1−∆i)Ci,∆i)}Ni=1.

Our goal is to estimate the risk function R : X ×R+ →
[0, 1]

R(t|x) = P(T ≤ t|x), (1)

which is the probability of the event occurring at or
before time t given the covariates x. (Equivalently, we
could estimate the survival function S : X×R+ → [0, 1];
S(t|x) = P(T > t|x) = 1−R(t|x) is the probability of
the event occurring after time t, given covariates x.)

Since we aim at finding the best predictive model among
the set of all models that provide well-calibrated risk
functions, it is natural to formulate the optimization
problem as maximizing discriminative performance sub-
ject to a constraint on calibration. If we write R for
the set of all risk functions, f(·) for a metric of discrim-
inative performance, and g(·) as a metric of calibration,
then our problem is to find the risk function R∗ ∈ R
that solves the following maximization problem:

max
R∈R

f(R)

s.t. g(R) ≤ c,
(2)

where c > 0 is some prescribed tolerance of predictive
error. (In the experiments reported below, we take
f and g to be the time-dependent C-index and Brier
Score, respectively, but other metrics could be used.)

4 Survival Quilts

As noted in the introduction, the existing survival
models may fail to capture the true survival behavior
in different settings and over different time horizons.
(See also the discussion in Section 5.) Survival Quilts
address both these failings by forming time-varying
ensembles of different survival models.

Table 1: List of survival models used in Survival Quilts

Cox-PH model AFT model Survival Forest
Cox Weibull RSF

CoxRidge LogNormal CISF
CoxBoost Exponential

Given a time-to-event dataset D and a set of survival
models M e.g., M = {Cox,Weibull,RSF, · · · }, (a full
list of survival models used in this paper is provided
in Table 1), our method outputs a predictive model –
a Survival Quilt – that provides a valid risk function.
A Survival Quilt is constructed endogenously from the
data following three steps. The first step is temporal
quilting which constructs valid risk functions for a given
array of weights (a quilting pattern) for survival models
in M over time horizons. The second step models the
performance of these risk functions as black-box func-
tions and applies constrained BO to (approximately)
optimize the quilting pattern. The final step splits the
time horizons in order to insure robustness of the (ap-
proximately optimized) quilting pattern. A schematic
overview of our method is illustrated in Figure 2; de-
tails of each of these steps are described in the following
subsections.

4.1 Temporal Quilting: Constructing a New
Risk Function

Constructing a survival model entails learning a risk
function that spans a continuum of time horizons. We



Temporal Quilting for Survival Analysis

do not treat predictions at each time horizon as sepa-
rate problems, but rather provide a natural construct
for the entire risk function; risk predictions at past time
horizons are carried forward to future time horizons
to provide a consistent risk function. More specifi-
cally, given an increasing sequence of time horizons
T = {t0 = 0, t1, · · · , tK}, we first break down the risk
functions provided by each survival model in M into
pieces by focusing on the increment between two adja-
cent time horizons, tk−1 and tk for k = 1, · · · ,K. We
then assemble the pieces in a quilting pattern that, on
each time interval, assigns weights to each of the incre-
ment functions of the underlying survival models and
then sums the weighted combination of the increment
functions over time.

We define the increment function of model m ∈M on
the interval [a, b], given covariate x, to be

im(a, b|x) = Rm(b|x)−Rm(a|x), (3)

where Rm is the risk function issued by model m ∈M.
Because Rm is non-decreasing on the interval [a, b],
im is non-decreasing and non-negative on the interval
[a, b]. Let w be a |M|-dimensional weight vector, where
w[m] ∈ [0, 1] indicates the weight for model m and∑

m∈Mw[m] = 1. Given w, the weighted increment
function on the interval [a, b] is defined to be

Iw(a, b|x) =
∑

m∈M
w[m] · im(a, b|x). (4)

Then, given weights w1, . . . ,wk and a time t ∈
[tk−1, tk], we set

R0(t|x) =

k−1∑
`=1

Iw`
(t`−1, t`|x) + Iwk

(tk−1, t|x), (5)

where the first term is the aggregate risk up to time
tk−1 and the second term is the incremental from time
tk−1 to time t ∈ [tk−1, tk]. Now, we define the risk
function at time t to be

R(t|x) = min
{

1, R0(t|x)
}
. (6)

A few words of explanation may be useful.

• Note that Rm(0|x) = 0 (patients are alive at
the beginning of the observation period) so that
im(0, t|x) = Rm(t|x). Hence, if t ∈ [0, t1], then
R(t|x) =

∑
m∈Mw1[m] ·Rm(t|x).

• R0 might exceed 1, in which case it could not be
a valid risk function. (The probability that the
event has occurred cannot exceed 1.) Hence, we
truncate by setting R = min{1, R0}.

• Because the weighted increment functions are non-
decreasing and non-negative, the functions R0, R
are also non-decreasing – hence R is a valid risk
function.

We frequently refer to the array of weights WK =
(w1, · · · ,wK) as a quilting pattern; we refer to the
construction above as temporal quilting. Figure 1 illus-
trates a quilting pattern and the resulting risk function
constructed via temporal quilting.

4.2 Quilting Pattern Optimization via BO

Let WK = (w1, · · · ,wK) be a quilting patterns (con-
figuration of weights); write Wk = (w1, · · · ,wk) for
the configuration up to time t. Our approach is to find
the best risk function R that can be formed as in (6).
Because R is completely defined by the configuration
of weights, this amounts to finding the best quilting
pattern W∗

K – i.e., the quilting pattern that solves the
following maximization problem:

max
WK

f(WK)

s.t. g(WK) ≤ c,
(7)

where c > 0 is the prescribed tolerance of predictive
error. In (7), we take the function f to be the average
of functions fk that are the metric of time-dependent
discriminative performance at tk (see the definition
below in (11)); similarly we take the function g to
be the average of functions gk that are the metric
of time-dependent calibration performance at tk (see
the definition below in (12)). Formally, f(WK) =
1
K

∑K
k=1 fk(Wk) and g(WK) = 1

K

∑K
k=1 gk(Wk).

Since the objective and constraint functions in (7) have
no analytic form, we treat them as black-box functions
f, g : [0, 1]K×|M| → R. That is, given a quilting pat-
tern WK , we can only evaluate the noisy versions of f

and g which are given by 1
J

∑J
j=1 Lf (WK ;D(j)

tr ,D
(j)
va )

and 1
J

∑J
j=1 Lg(WK ;D(j)

tr ,D
(j)
va ), respectively. Here,

Lf and Lg are the empirical values for the given per-

formance metrics f and g, respectively, and D(j)
tr and

D(j)
va denote training and validation splits of D in the

j-th fold of J-fold cross-validation.

To search for the optimal quilting pattern W∗
K , we

use Bayesian optimization (BO) and solve a black-box
optimization problem under a black-box constraint [1].
The BO algorithm specifies a Gaussian process (GP)
prior on f and g as

f ∼ GP(µf (WK), κf (WK ,W
′
K))

g ∼ GP(µg(WK), κg(WK ,W
′
K))

(8)

where µf (WK) and µg(WK) are the mean functions,
encoding the expected performance of different quilting
patterns, and κf (WK ,W

′
K) and κg(WK ,W

′
K) are the

covariance kernels [16], encoding the similarity between
different quilting patterns for f and g, respectively. We
refer to the optimization problem in (7) as the Quilting
Pattern Composition Problem (QPCP).
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4.3 Sequential BO for QPCP

The functions f, g are defined over a space of dimension
D = K × |M|. Note that D is large even for relatively
small sets M of underlying survival models and a rel-
atively coarse grid of time horizons; e.g. D = 80 if
|M| = 8 (as in our experiments) and K = 10. (In prac-
tice, it seems desirable to allow the grid of time horizons
to be much finer than this; e.g. if the most distant
horizon is 10 years we might want the grid to consist of
40 quarters or 120 months or perhaps even something
finer. Moreover, although here we use only eight un-
derlying models, it might well be desirable to use many
more models – and one of the virtues of our approach
is that this is possible.) This high-dimensionality ren-
ders standard GP-based BO infeasible because both
the sample complexity of nonparametric estimation of
the functions f, g and the computational complexity
of maximizing the acquisition function are exponential
in D [17, 14]. For these reasons, we propose instead
a sequential greedy algorithm that incrementally se-
lects a time horizon and performs constrained BO on
that time horizon. (For a more detailed discussion of
the computational complexity, see the Supplementary
Material.)

Let W∗
k−1 = (w∗1, · · · ,w∗k−1) be the configuration of

weights found through step k−1 (i.e., the time horizon
tk−1). Following the greedy approach, we find the
weights at step k (i.e., the time horizon tk) by solving
the following BO:

max
wk

fk(wk; W∗
k−1)

s.t. gk(wk; W∗
k−1) ≤ c,

(9)

where we have written wk; W∗
k−1 as shorthand for

(w∗1, · · · ,w∗k−1,wk). We have chosen this notation
to emphasize that W∗

k−1 is fixed so fk, gk depend
only on wk. BO specifies GP priors on fk and gk
as fk ∼ GP(µfk(wk; W∗

k−1), κfk(wk,w
′
k; W∗

k−1)) and
gk ∼ GP(µgk(wk; W∗

k−1), κgk(wk,w
′
k; W∗

k−1)). From
this point forward we simplify notation by omitting
the dependence on W∗

k−1.

4.3.1 Black-box Constrained BO

At step k, to solve the black-box constrained BO in
(9), we approximate the problem by an augmented
Lagrangian framework as proposed in [18]. In particu-
lar, (9) can be relaxed to minimizing the augmented
Lagrangian problem given by

L(wk;λ, ρ) =− fk(wk) + λ · (gk(wk)− c)

+
1

ρ
max(0, gk(wk)− c)2,

(10)

where ρ > 0 and λ ≥ 0 indicate a penalty parameter
and a Lagrange multiplier, respectively.

Algorithm 1 Augmented Lagrangian optimization

Initialize: λ(0) ≥ 0, ρ(0) > 0, and w
(0)
k

for n = 1, 2, · · · , nmax do

Find w
∗(n)
k that approximately solve (10)

Update λ(n) ← max
(

0, λ(n−1) + 1

ρ(n−1) (gk(w
∗(n)
k )− c)

)
Update w†k ← w

∗(n)
k

if gk(w†k) ≤ c then
Update ρ(n) ← ρ(n−1)

else
Update ρ(n) ← 1

2
ρ(n−1)

end if
end for

An efficient algorithm in [19] transforms the original
constrained problem into a sequence of subproblems:
at the n-th subproblem, we find a weight vector at

tk, which is denoted as w
(n)
k , by solving (10) given

ρ(n−1) and λ(n−1). After finding a candidate solution

w
∗(n)
k , the penalty parameter and approximate La-

grange multipliers are updated and the process repeats
until termination conditions are satisfied. We denote
the final output of the constrained BO at step k by
w†k. (Throughout the experiments, we set the terminal

condition to be satisfaction of the constraint by w†k
or n reaching the maximum number of subproblems
nmax.) Algorithm 1 gives the specific updates utilized
in this paper.

4.3.2 Endogenous Time Horizon Splitting

In principle, we could always use w†k to extend the se-
quence of weights. However, doing so would make the
construction fragile because the optimal weights might
become over-fitted. In order to make the construction
more robust, we introduce a required margin of im-
provement δ > 0; if using w†k to extend the sequence
of weights leads to an improvement in discriminative
performance of at least δ, we set w∗k = w†k; otherwise
we set w∗k = w∗k−1. In the former case, tk represents
an endogenously learned split in the time horizon – a
time when the quilting pattern changes. The overall
process of our method is illustrated in Algorithm 2.
(The overall computational complexity of training our
method (off-line) and predicting new risk functions
(on-line) is provided in the Supplementary Material.)

5 Experiments

In this section, we present discriminative performance
results in comparison to competitive baseline algo-
rithms on six real-world time-to-event datasets. We
set K = 50 and ∆t = Tmax

K where Tmax indicates the
maximum of time-to-event and time-to-censoring in
each dataset. Throughout the evaluation, we report
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Table 2: Descriptive statistics on the six real-world datasets. Mean (standard deviation) times in days are
provided for the time-to-event/censoring.

Statistics
Datasets

MAGGIC SUPPORT METABRIC UNOS-I UNOS-II BPD
No. Patients 5000 9105 1981 792 5000 2510

Events 1827 (36.5%) 6201 (68.1%) 888 (44.8%) 363 (45.8%) 2395 (47.9%) 1999 (79.6%)
Censored 3173 (63.5%) 2904 (31.9%) 1093 (55.2%) 429 (54.2%) 2605 (52.1%) 511 (20.4%)

Time-to-Event 885.3 (957.0) 206.0 (321.9) 2318.5 (1613.8) 141.0 (213.9) 2161.3 (2084.0) 613.5 (853.0)
Time-to-Censoring 927.7 (1032.4) 1060.3 (516.1) 3464.8 (1773.7) 327.6 (380.5) 2733.1 (2151.8) 1331.8 (1407.9)
No. Features 33 42 21 16 50 48

Algorithm 2 Sequential BO for QPCP

Initialize: W∗
0 = ∅, δ > 0, and ∆t > 0

for k = 1, 2, · · · ,K do
Set tk ← tk−1 + ∆t

Obtain w†k from Algorithm 1 with W∗
k−1 and tk

if fk(w†k)− fk(w∗k−1) > δ then

Update w∗k ← w†k
else

Update w∗k ← w∗k−1

end if
Set W∗

k ← (w∗1 ,w
∗
2 , · · · ,w∗k)

end for

results using the average of 5 random 80/20 train/test
splits.

5.1 Experimental Setup

5.1.1 Survival Models

The survival models that are used for constructing
Survival Quilts and for the comparisons are listed
below along with description of the implementations
used to compute them: the standard Cox-PH model
(Cox) [2] and the modification with ridge regression
(taking α = 1) (CoxRidge) are implemented with
Python package scikit-surv; the survival regres-
sion models using the Weibull (Weibull), Log-normal
(LogNormal) and Exponential (Exponential) distri-
butions are implemented with R package survival;
the Cox-PH model with the component-wise likelihood-
based boosting algorithm [4] (CoxBoost) is imple-
mented with R package CoxBoost with 500 iterations;
the bagging-based Random Survival Forest [8] (RSF)
is implemented with the R package RandomForestSRC

with 1000 trees; and the Conditional Inference Survival
Forest [9] (CISF) is implemented with the R package
pec with 1000 trees.

5.1.2 Performance Metrics

As discussed above, we assess the predictions of all the
survival models with respect to how well the predictions
discriminate among individual risks and how accurate
the predictions are. As the metric of discriminative

power, we use the time-dependent concordance index
(C-index) [20], defined by

C(t)=P(R(t|xi)>R(t|xj)|∆i =1, Ti≤ t, Ti<Tj).
(11)

As the metric of calibration, we use the Brier Score
(BS) [21] which is the mean square error adjusted for
the survival setting:

BS(t) = E
[
(1(Ti ≤ t)−R(t|xi))

2
]
. (12)

These metrics can be evaluated over different time
horizons and are adjusted for censoring as defined in
[20] and [21].

5.2 Datasets

We conducted experiments to investigate the perfor-
mance of Survival Quilts on six real-world medical
datasets from a variety of clinical settings: a preventive
care database on chronic heart failure (MAGGIC)
[22], a study to understand seriously ill hospitalized
adults (SUPPORT) [23], a study on breast cancer sub-
groups (METABRIC) [24], databases on heart trans-
plant management for patients (UNOS-I) wait-listed
for transplantation and on patients who underwent a
heart transplant (UNOS-II)1, and preventative care
records on bipolar disorder (BPD) [25]. In Table 2,
we provide a summary of these time-to-event datasets.
(The detailed descriptions on the datasets are provided
in the Supplementary Material.)

5.3 Performance Evaluation

In Tables 3 - 5, we report the discriminative perfor-
mance of the various survival models for the MAGGIC,
SUPPORT, and METABRIC datasets at three differ-
ent time horizons, representing the 25%, 50%, and
75%-quantiles of time-to-event. (In view of space con-
straints, we provide the discriminative performances
for the other datasets in the Supplementary Material.)
We emphasize that the time horizons used for test-
ing are different from the time horizons that are used
in the construction of Survival Quilts, so we are not
prejudicing the evaluations in our favor.

1Available at https://www.unos.org/data/

https://www.unos.org/data/
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Table 3: C-index (mean±std) for the MAGGIC dataset
at different time horizons. Blue highlighting indicates
that the Brier Score constraints are satisfied.

Models
Time-Horizons (quantiles)
25% 50% 75%

Best benchmark RSF RSF RSF
Cox 0.709±0.01∗ 0.694±0.02∗ 0.679±0.01∗
CoxRidge 0.711±0.01∗ 0.695±0.02∗ 0.679±0.01∗
Weibull 0.710±0.01∗ 0.695±0.02∗ 0.679±0.01∗
LogNormal 0.719±0.02∗ 0.699±0.01∗ 0.676±0.01∗
Exponential 0.708±0.02∗ 0.695±0.02∗ 0.679±0.01∗
CoxBoost 0.707±0.02∗ 0.689±0.02∗ 0.672±0.01∗
RSF 0.755±0.02 0.725±0.01 0.692±0.01†
CISF 0.740±0.02 0.708±0.01∗ 0.683±0.01∗

Survival Quilts
exog. K=1 0.761±0.02 0.730±0.01 0.701±0.00
exog. K=2 0.759±0.02 0.731±0.01 0.702±0.00
exog. K=3 0.758±0.02 0.731±0.01 0.702±0.00
endogenous 0.764±0.02 0.735±0.01 0.705±0.00

∗ indicates p-value < 0.01
† indicates p-value < 0.05

Overall, several things are important to note: i) the
best performing benchmarks are different across the
datasets and time horizons, ii) not all of the bench-
marks satisfy the Brier Score constraints; i.e., they are
not sufficiently well-calibrated, iii) in most cases the
performance of Survival Quilts is better than that of
the best benchmark, and the improvement is statisti-
cally significant over most of the benchmarks, and iv)
in some cases (i.e., the UNOS-II and BPD datasets),
the performance of Survival Quilts coincides with the
best benchmark because it gives full weight to that
benchmark.

5.3.1 Endogenous Time-Horizon Splits

To illustrate the impact of choosing the quilting pat-
terns endogenously, we call attention to Figure 3. The
discriminative performance of RSF and CISF usually
decreases at longer time horizons. In large part this
is because RSF and CISF are nonparametric models
and do less well over time horizons in which the num-
ber of patients at risk and the number of events are
smaller. In contrast, the discriminative performances of
the (semi-)parametric models decrease less over longer
time horizons. Because our method constructs quilt-
ing patterns that change over time, it is able to give
greater weight to models whose increments of risk pre-
dictions provide good discriminative performance in
different time horizons. For example, in the SUPPORT
dataset, the weights on RSF and CISF decrease and
the weights on the Cox, CoxRidge and LogNormal
increase at around t = 100 because the performance
of RSF and CISF degrade earlier and more abruptly
compared to that of Cox, CoxRidge, and LogNormal.
(Corresponding figures for the other datasets are in the
Supplementary Materials.)

Tables 3 - 5 compare the performance of Survival Quilts

Table 4: C-index (mean±std) for the SUPPORT
dataset at different time horizons. Blue highlighting
indicates that the Brier Score constraints are satisfied.

Models
Time-Horizons (quantiles)
25% 50% 75%

Best benchmark RSF CISF CISF
Cox 0.786±0.01∗ 0.750±0.01∗ 0.726±0.01∗
CoxRidge 0.786±0.01∗ 0.750±0.01∗ 0.727±0.01∗
Weibull 0.778±0.01∗ 0.745±0.01∗ 0.724±0.01∗
LogNormal 0.797±0.01∗ 0.759±0.01∗ 0.731±0.01†
Exponential 0.772±0.01∗ 0.742±0.01∗ 0.722±0.01∗
CoxBoost 0.785±0.01∗ 0.745±0.01∗ 0.719±0.01∗
RSF 0.849±0.02 0.784±0.01 0.740±0.01
CISF 0.847±0.02 0.787±0.01 0.741±0.01

Survival Quilts
exog. K=1 0.842±0.02 0.782±0.01 0.743±0.01
exog. K=2 0.843±0.02 0.781±0.01 0.742±0.01
exog. K=3 0.846±0.01 0.784±0.01 0.743±0.01
endogenous 0.851±0.02 0.789±0.01 0.750±0.01

∗ indicates p-value < 0.01
† indicates p-value < 0.05

Table 5: C-index (mean±std) for the METABRIC
dataset at different time horizons. Blue highlighting
indicates that the Brier Score constraints are satisfied.

Models
Time-Horizons (quantiles)
25% 50% 75%

Best benchmark CISF RSF CISF
Cox 0.663±0.02∗ 0.676±0.01∗ 0.669±0.01†
CoxRidge 0.674±0.03∗ 0.682±0.01∗ 0.674±0.01†
Weibull 0.660±0.02∗ 0.673±0.01∗ 0.668±0.01∗
LogNormal 0.679±0.02∗ 0.686±0.01∗ 0.673±0.01†
Exponential 0.661±0.02∗ 0.674±0.01∗ 0.670±0.01†
CoxBoost 0.674±0.03∗ 0.676±0.01∗ 0.668±0.01∗
RSF 0.757±0.04 0.741±0.03 0.694±0.02
CISF 0.758±0.02 0.739±0.01 0.698±0.01

Survival Quilts
exog. K=1 0.753±0.03 0.739±0.02 0.698±0.02
exog. K=2 0.752±0.03 0.740±0.02 0.698±0.02
exog. K=3 0.752±0.04 0.739±0.02 0.693±0.02
endogenous 0.761±0.03 0.744±0.02 0.701±0.02

∗ indicates p-value < 0.01
† indicates p-value < 0.05

against the benchmarks at three time horizons. To high-
light the gain achieved by our endogenous construction,
we also provide the performance of Survival Quilts con-
structed using exogenous time horizons. When K = 1,
we are using weights that do not vary with time as an
alternative of the time-independent stacking [15]; for
K = 2, 3, we have chosen exogenous time horizons with
very coarse grids. As seen in the tables, the endoge-
nous construction of Survival Quilts provides the best
performance because it chooses the time intervals en-
dogenously and allows for different weights in different
time intervals. In the tables, we highlight in blue the
results for models and time horizons in which the Brier
Score constraints are satisfied; note that satisfaction of
the constraints changes over different horizons. (The
values for the Brier Scores are provided in the Sup-
plementary Material.) Asterisks and daggers indicate
that the performance improvements of Survival Quilts
are statistically significant at the 0.01 and 0.05 levels,
respectively.
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(a) Discriminative performance

(b) Quilting Pattern

Figure 3: Discriminative performance and quilting pat-
terns over time for the SUPPORT dataset. The dotted
black lines depict the 25%, 50%, and 75%-quantiles of
time-to-event.

5.4 Effect of Constrained BO

In this subsection, we address the effect of using con-
strained BO and how the optimal weight vector, w†k,
changes as the number of BO iterations increases. Fig-
ure 4 illustrates the change in augmented Lagrangian
objective in (10) and the change in time-dependent
Brier-Score, gk, with setting k = 1 for the MAGGIC
dataset. As seen in the figure, if a strict constraint c
is chosen (e.g., c = thres 3 in the figure), the optimal
weights for the first two subproblems of (10) do not
satisfy the Brier Score constraint. Thus, our BO solves
the next subproblem with updated λ and ρ, which in
turn gives more weight to the calibration performance
than in the previous subproblems. In this example, the
optimal weight of the third subproblem satisfies the
Brier Score constraint and, thus, is selected as w†1.

Table 6 shows the optimal weight vector w†k that is
chosen as we set a stricter constraint as illustrated in
Figure 4. As seen in the table, Survival Quilts puts
more weights on the Cox-PH based methods (Cox,
CoxRidge, and CoxBoost), and Exponential when the
constraint in (10) is less strict. However, with stricter
constraints, our method reduces weights on the Cox-PH

Figure 4: Illustration of change in the augmented La-
grangian objective (10) and Brier Score (g) with respect
to the number of BO optimization iterations. The stars
mark the minimal point of the objective for each sub-
problem. We set the maximum number of subproblems,
nmax, and the number of BO steps to 3 and 100, re-
spectively. The constrained BO is solved at the time
horizon t1 for the MAGGIC dataset.

Table 6: Optimal weights, w†1 with varying Brier Score
constraints in Figure 4.

Models
Brier Score Constraint

thres 1 thres 2 thres 3
Cox 0.07 0 0

CoxRidge 0.06 0.04 0
Weibull 0 0.14 0.15

LogNormal 0 0.21 0.20
Exponential 0.19 0 0
CoxBoost 0.02 0 0

RSF 0.35 0.42 0.44
CISF 0.31 0.19 0.21

based methods and Exponential, and instead assigns
higher weights on Weibull and LogNormal.

6 Conclusion

This paper offers a novel approach to survival anal-
ysis that creates time-varying ensembles of existing
survival models that we call Survival Quilts. Survival
Quilts exploit existing models by giving them greater
weight in time intervals where these models provide
better incremental performance and lesser weight in
time intervals where these models provide less good
incremental performance. The superiority of Survival
Quilts over previous survival models is demonstrated
over six real-world datasets. One of the virtues of our
approach is that we can adapt to use other survival
models as those become available and prove their value.
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