Adaptive Estimation for Approximate k-Nearest-Neighbor Computations

A PROOFS OF LEMMAS AND
FACTS

A.1 Proof of Lemma @

The proof is very similar to the proof of Lemma 2 of
Heckel et al! (2018). There are several cases of ¢; and
ba to consider. We will show each by contradiction,
starting with the assumption that the termination con-
dition is false and both Epaq(q1) and Epaq(b) do not
occur, all under the event &,. Let Eg0a(%) denote the
complement of £,,4(%). It also will be useful to define
the quantity

(15)

mo = arg max oy

i€{(k+1),...,(k+h)}

such that by = argmax;c,, 4,3 ®i-

i. When ¢1 < k and by > k+h, we have by Ego0a(q1)
that

67ql tag < Czh +3ag, <7 (16)

and similarly that @,2 —p, > by Egood(b2).

Since dg, — g, > dm, — Qm,, we have that
c?qz — g, > 7 in both the case that by = my
and by = q2. Together, this implies that the ter-
mination condition (4)) is true, which violates our

assumption.

ii. When ¢; < k and ﬁ: < by < k + h, we have first
by Egood(q1) that dg, + 3aq, <. Starting from
here, and using the definition of g1, we have for
all 7 € Sclosea

i (17)

Now we let A denote dgi14+n — di. By def-
inition of by, using Egood(b2), we have that
a; <A/dforall je §middle U{g2}. Then we can
start from v > Jql + o, to conclude that for all

ES S‘\middle U{g},

Y > dg, +ag
(1) ~
> q2 alh
~ A
> ¢I2_Z
~ A
> i
A
>dj—0£]—f

iii.

iv.

(18)

where (i) comes from our assumption that the ter-
minating condition (H) is false. Combining (E)
and (@% along with v+ A/2 =djy14+n, we ob-
tain that dgy14p > d; for all ¢ € Su {q2}, which
is a contradiction, since there can be at most k+h
values of d; that are smaller than diy145-

When k < g1 < k+ h and by > k + h, the case is
similar to the previous case, except that we need
to bound «; for i € Smidale in a different way.
By Ego0d(b2), dg, > dp,, and ap, > ag,, we have

analogously to (E), for all 7 € (SA'far,

v < dy, — 3,
< C/l\tlz — Qg — 2,
S dl — 2ab2. (19)
Equivalently, d; > v + 2a3,. Since there are
n —k — h values of ¢ for which this inequality
holds, it must hold for dx414r, SO we obtain
dit14n =7 _ A

(67 < -4 =

T2 @)

By definition of by, a; < A/4 for all i € Smiddle U
{¢2}, and a contradiction can be reached similarly
as in case |i.

For the case when both q1,b3 € {k+1,...,k+h},

we first show that at least one of v < dg, + oy, or

v > c?qz — 0y, is true. To see this, first suppose the
former is false. Then using that the terminating
condition ({)) is false, we have

Y > d!h + Qg > dqz — Qgy- (21)

Now that we know that at least one of these
inequalities holds, and we proceed similarly for
each. First suppose that the former inequality,
v < dg, + ag,, holds. Using that by Ez0da(g1) and
Egood(b2) we have o; < A/4 for all ¢ € {g1,¢2} U

Smiddle, we have that, for all i € {q1, ¢2} USmiddle,

7<dQ1+aQ1
S&\i—'—am
<di+ o +ag,

A
<d; + —.
= ,+2

We also have for all j € §far that

Y <dg + g

< dQ2 — Qgy + Qg + Qqy
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de_aj—i_alh—’_ath
<dj+ag, +ag,

A
<d;+ 5 (23)

Combining (@) and (@), we have that d; > dj
for all i € {¢q1} U Smiddle U Star, which is a contra-

diction, since at most n — k values of ¢ can satisfy
this inequality.

The case that v > c?qz — 0y, is entirely analogous.

v. When ¢ > k + h or by < k, we can make sim-
ilar arguments to the previous cases to reach a
contradiction.

A.2 Proof of Fact B

First, when ¢ < k, we have

d d;
< k+14+h + 44 <

< 5 <7, (24)

where the last inequality uses d; < dj, 80 Epad(i) does
not occur. This is similarly shown for ¢ > k + h. For
k < i< k+ h, that E,.q(¢) does not occur follows im-
mediately from a; <A /8 <A /4.

A.3 Proof of Fact E

Recalling that o;(u) = 4/ M, at a;(u) =A;/8
we have that u = 2(A;/8)728(u,d’), so we need to
bound the greatest fixed point u* of

Flu) = 2(A:/8)7?B(u, ).
Let Uy = 2(A1/8)7

oy 2(Ai/8)73(2)
Flu) = ulog(1.12u)
< 20,/8)(2)
~ 2(A;/8)7?log((1.12)2(A;/8)~2)
2
= Tog(1.12)32)
< 1. (25)

2 and note that for all u > uo,

The second inequality holds because A; < 2. Suppose

that u* > ug. Using Taylor’s theorem, we have that
for some z > wuy,
fluo) = f(u") + f'(2)(uo — u*)

=u" (1= f'(2)) + uof'(2). (26)

Then
o T0) ~ uof(2)
1= f(2)
S (o)
- f'(uo) 2
So, we can bound the greatest fixed point of f as
* [ (uo)

- B(2(A;/8)72,8")
= 2(A;/8)* max {1’ 1—2/log((1.12)32) }

= ClAi_zﬁ(Q(Ai/S)_Q,(S/), (28)
where ¢; = 128/(1 — 2/1log((1.12)32)). Since T; <
u* 4+ 1, letting co = ¢ + 1,

_ n.((1.12)128

Then for ¢ sufficiently large,

7, < clog | 5)1°g(21°§§2m Do @)

B ADDITIONAL THEOREM
PROOF DETAILS

In this section we provide details on bounding
> iesy ) Ev [Ni] that we omitted in the proof of The-
orem . We consider the set M = {¢1,..., 011} C
& (v) and construct an alternative distribution v’ such
that under that distribution M C Sa(¢'). Then under
V', if A succeeds, then at most h elements of S (v') can
be in S , meaning that at least one element of M is not
in § and that £ does not occur. So, if A succeeds with
probability at least 1 —§, then both P, [£] > 1—§ and
P, [5] < J.

Our alternative distribution v/ is defined as

Vk4+1+h
Vl{ _ +1+h>
Vi,

Again, to avoid ties, for £ € M, one should take v, =
Vi+14h +€ and let € — 0, but we omit this detail. The
remainder of the arguments are entirely analogous to
the case shown previously, giving us the bound

> EN,

1€81(v)

i1eM

otherwise.

> log = Z 8 dpagn(l — dk+1+h).
26 (di — dis140)?



