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6 Appendix

Proof of modified Proposition 3.1. In this ver-
sion, we assume (w,x, y) is a trajectory of (1) rather
than being a trajectory of (8).

All we need to show is that for any pair of (x, y), there
exist another pair (x̃, Ry), such that they give the same
update. In particular, we set x̃ = ax and show that
there always exists an a ∈ [−1, 1] such that

(y −wTx)x = (Ry −wTax)ax.

This simplifies to

g(a) := (wTx)a2 −Rya+ (y −wTx) = 0. (15)

The discriminant of the quadratic (15) is

R2
y − 4wTx(y −wTx) ≥ R2

y − 4|wTx|
(
Ry + |wTx|

)
=
(
Ry − 2|wTx|

)2 ≥ 0

So there always exists a solution a ∈ R. Moreover,
g(−1) = Ry + y ≥ 0 and g(1) = −Ry + y ≤ 0, so there
must be a real root in [−1, 1].

Proof of Theorem 3.2. We showed in Section 3
that Regime V trajectories are 2D. We also argued
that solutions that reach w? via Regime III–IV are
not unique and need not be 2D. We will now show
that it’s always possible to construct a 2D solution.

We begin by characterizing the set of w? reachable via
Regime III–IV. Recall from Section 3 that the transi-
tion between III and IV occurs when ‖w‖ = R :=

Ry

2Rx
.

If t0 is the time at which this transition occurs, then
for 0 ≤ t ≤ t0, the solution is x = Rx

‖w‖w, which leads

to a straight-line trajectory from w0 to w(t0).

Now consider the part of the trajectory in Regime IV,
where t0 ≤ t ≤ tf . As derived in Section 3, Regime IV

trajectories satisfy ẇ = wTx =
Ry

2 . These lead to
d‖w‖2

dt =
R2

y

2 , which means that ‖w‖ grows at the same
rate regardless of x. If our trajectory reaches w(tf ) =
w?, then we can deduce via integration that

‖w?‖2 − ‖w(t0)‖2 =
R2

y

2 (tf − t0), (16)

Suppose (w(t),x(t)) for t0 ≤ t ≤ tf is a trajectory that
reaches w?. Refer to Figure 8. The reachable set at
time tf is a spherical sector whose boundary requires
a trajectory that maximizes curvature. We will now
derive this fact.

Let θmax be the largest possible angle between w(t0)
and any reachable w(tf ) = w?, where we have fixed tf .
Define θ(t) to be the angle between w(t) and w(tf ).

θ(t0) =

∫ tf

t0

θ̇ dt ≤
∫ tf

t0

|θ̇|dt

III

IV
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Figure 8: If a reachable w? is contained in the concave
funnel shape, which is the reachable set in Regime IV,
it can be reached by some trajectory (w(t),x(t)) lying
entirely in the 2D subspace defined by span{w0,w?}:
follow the max-curvature solution until t1 and then
transition to a radial solution until tf .

An alternative expression for this rate of change is the
projection of ẇ onto the orthogonal complement of w:

|θ̇| =

∥∥ẇ − (ẇT w
‖w‖

)
w
‖w‖

∥∥
‖w‖

=
Ry
∥∥x− Ry

2‖w‖2 w
∥∥

2‖w‖

Where we used the fact that ẇ = wTx =
Ry

2 in
Regime IV. Now,

θmax = max
x:wTx=Ry/2
‖x‖≤Rx

θ(t0)

≤ max
x:wTx=Ry/2
‖x‖≤Rx

∫ tf

t0

Ry
∥∥x− Ry

2‖w‖2 w
∥∥

2‖w‖
dt

≤
∫ tf

t0

√
R2
x −

( Ry

2‖w‖
)2

‖w‖
dt (17)

In the final step, we maximized over x. Notice that the
integrand (17) is an upper bound that only depends
on t0 and ‖w?‖ but not on x. One can also verify that
this upper bound is achieved by the choice

x =
Ry

2‖w‖
ŵ +

√
R2
x −

(
Ry

2‖w‖

)2
w? − (ŵTw?)ŵ

‖w? − (ŵTw?)ŵ‖
.

where ŵ := w/‖w‖ and w? is any vector that satis-
fies (16) with angle θmax with w(t0). Any w? with
this norm but angle θf < θmax can also be reached by
using the max-curvature control until time t1, where

t1 is chosen such that θf =
∫ t1
t0

√
R2

x−
(

Ry
2‖w‖

)2
‖w‖ dt, and

then using x =
Ry

2‖w‖2 w for t1 ≤ t ≤ tf . This piecewise

path is illustrated in Figure 8.

Our constructed optimal trajectory lies in the 2D span
of w? and w0. This shows that all reachable w? can
be reached via a 2D trajectory.


