
Projection Free Online Learning over Smooth Sets

Kfir Y. Levy Andreas Krause
ETH Zurich ETH Zurich

Abstract

The projection operation is a crucial step in
applying Online Gradient Descent (OGD) and
its stochastic version SGD. Unfortunately, in
some cases, projection is computationally de-
manding and inhibits us from applying OGD.
In this work, we focus on the special case
where the constraint set is smooth and we
have an access to gradient and value oracles of
the constraint function. Under these assump-
tions we design a new approximate projection
operation that necessitates only logarithmi-
cally many calls to these oracles. We further
show that combining OGD with this new ap-
proximate projection, results in a projection-
free variant that recovers the standard rates
of the fully projected version. This applies
to both convex and strongly-convex online
settings.

1 Introduction

Over the last decade, the Online Gradient Descent
(OGD) method introduced by Zinkevich (2003) and
its stochastic version SGD have become the methods
of choice both in practical machine learning tasks as
well as in theory. Usually, OGD/SGD is constrained
to choosing points among a set K. This induces sim-
ple solutions (e.g., solutions with low norm or low
rank), and enables to establish generalization bounds
for SGD (Shalev-Shwartz et al., 2009; Cesa-Bianchi
et al., 2004). Therefore, in every step, OGD/SGD ap-
ply a projection step onto the constraint set K. In this
paper, we adopt the setup of Mahdavi et al. (2012),
and focus on constraints of the following form,

K := {x ∈ Rd : h(x) ≤ 0} , (1)

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

where h : Rd 7→ R is a smooth convex function, and
assume that we may query the gradients/values of h(·).
The projection operation requires to find a point in K
which is closest in `2 norm to a given point outside K.
This translates to a quadratic optimization problem
over K. Unfortunately, in some situations, this prob-
lem is computationally demanding and even impracti-
cal. One relevant example is the case when we have
a quadratic constraint of the form h(x) = x>Ax − b,
where x ∈ Rd, A ∈ Rd×d, and b ∈ R (A is a PSD ma-
trix). A projection in this case requires to factorize the
matrix A which necessitates O(d3) operations. This
cost is unacceptable in large scale scenarios.

There are roughly two approaches to avoid using pro-
jections. The first approach is originally related to
Frank and Wolfe (1956). Such FW methods assume an
access to a linear optimization oracle over K. There is
a large body of work on how to employ such oracles
in order to ensure convergence in the stochastic and
online optimization settings (Hazan and Kale, 2012;
Garber and Hazan, 2013; Lan and Zhou, 2016). On
the downside, a linear oracle is not always easy to com-
pute. Concretely, in the case of quadratic constraints,
linear optimization might be as time consuming as full
projection. Moreover, the online FW version (Hazan
and Kale, 2012) obtains suboptimal regret guarantees
compared to projected OGD1.

The second approach, which was originally suggested in
Mahdavi et al. (2012) is to solve a primal dual problem
that is related to the original optimization problem,
while applying only a single/few projections. This
work assumes that K is of the form of Eq. (1)2, and
requires a single query to the gradients of h(·) in each
round. On the downside, it does not apply to the online
learning setting, but rather to the stochastic and offline
optimization settings. Moreover, this approach still

1Note that in the case of polytope constraints it was
shown in Garber and Hazan (2013) how to achieve the
same regret bounds as of projected OGD while using a FW
style procedure. Nevertheless, their result does not capture
smooth sets.

2The approach of Mahdavi et al. (2012) actually allows
h(·) to be non-smooth.

Projection Free Online Learning over Smooth Sets

requires to compute a single/few projections, which
might be prohibitive in large scale problems with, e.g.,
quadratic constraints.

Contribution: We present a different approach to-
wards projection free online convex optimization prob-
lems. We assume a constraint K in the form of Eq. (1),
and devise a method that recovers the standard re-
gret rates of O(

√
T) and O(log T) in the settings of

online convex (Zinkevich, 2003) and strongly-convex
(Hazan et al., 2007) optimization. Our approach does
not require any projections, but rather requires loga-
rithmically many queries to the gradients and values
of h(·) in each round.

Concretely, in the case of stochastic/online optimiza-
tion with quadratic constraints, i.e., h(x) = x>Ax− b;
our method has a computational cost of O(d2 log(T)T)
over all T rounds (related to the cost of computing
values and gradients of h(·)). Conversely, all other
approaches, including full projections, FW (Hazan
and Kale, 2012) and (Mahdavi et al., 2012) require
O(d3 + d2T) operations, since they need to factorize
A.

At the heart of our method is a new approximate
projection procedure which we call FAstProj. This
procedure is an efficient substitute to the full projection,
and is guided by a simple geometric intuition. Note
that the regret bounds that we recover depend on a
curvature parameter, which encapsulates the geometry
of K. We further comment that our results immediately
translate into stochastic optimization guarantees by
standard online to batch conversion, (Cesa-Bianchi
et al., 2004).

Related work: Kalai and Vempala (2005) were the
first to provide a projection free online learning method.
Similarly to FW, their algorithm employs a linear opti-
mization oracle which they combine with an appropri-
ate noise perturbation. Nevertheless, their results are
restricted to linear loss functions. The general convex
case was tackled by Hazan and Kale (2012), which
offered an online FW variant, though with subopti-
mal regret guarantees. Later, for the case of polytope
constraints, Garber and Hazan (2013) offered a FW
variant that achieves the optimal regret rates.

Lan and Zhou (2016) and Lan et al. (2017) developed
a FW method that obtains the optimal rates in the
convex and strongly-convex stochastic optimization set-
tings. Their ideas were further developed in Hazan
and Luo (2016) who devised a variance reduced FW
versions. In the broader context of machine learning
and optimization, we have recently witnessed an exten-
sive investigation of FW methods. This was done, e.g.,
in Jaggi (2013); Lacoste-Julien et al. (2013); Garber
and Hazan (2015); Lacoste-Julien and Jaggi (2015);

Garber and Meshi (2016); Garber (2016); Allen-Zhu
et al. (2017), among other works.

Mahdavi et al. (2012) discuss the stochastic convex set-
ting and show how to obtain the standard convergence
rates using only single/few projections. Conversely to
FW methods, Mahdavi et al. (2012) do not assume
the availability of a linear optimization oracle. Instead
they assume that K is given in the form of Eq. (1),
and query the gradients of h(·) in each round. Their
technique relies on primal-dual machinery. This idea
was later developed by Cotter et al. (2016); Chen et al.
(2016); Yang et al. (2017) to tackle the cases of large
number of constraints as well as to the offline setting.
However, all of these works: (i) require at least one
projection, and (ii) are inappropriate to handle the
online setting.

Finally, we remark that interior point methods are
appropriate to solving constrained convex problems
without projecting, (Nesterov and Nemirovskii, 1994).
Nevertheless, these methods are too costly in high
dimensions. Interestingly, Abernethy et al. (2012) com-
bine interior point mechanism in solving online learning
problems.

2 Setting and Preliminaries

Notation: ‖ · ‖ denotes the `2 norm, and [T] :=
{1, . . . , T}. Given two vectors x, y ∈ Rd then [x, y]
denotes the line segment between them. For a set
K ⊂ Rd its diameter is defined as D = supx,y∈K ‖x−y‖.
We also denote by ∂K and int(K) the boundary and
interior of K.

Online Learning: We consider a repeated game of
T rounds between a player and an adversary, at each
round t ∈ [T],

1. player chooses a point xt ∈ K.
2. adversary chooses a loss function ft : K 7→ R.

3. player suffers a loss ft(xt) and receives ft(·) as a
feedback.

In the OCO (Online Convex Optimization) framework
we assume that the decision set K is convex and that
all loss functions are convex. We will also discuss the
case where losses are strongly-convex.

We measure the performance of the player using the
regret which is the difference between the cumulative
loss of the player and the cumulative loss of the best
point in hindsight,

RegretT :=

T∑
t=1

ft(xt)− min
w∗∈K

T∑
t=1

ft(w
∗) .

Kfir Y. Levy, Andreas Krause

The player aims at minimizing her regret, and we are
interested in players that ensure o(T) regret for any loss
sequence that the adversary may choose. In this paper
we focus on first order online methods, i.e., methods
which only require to query the gradients of the loss
functions as a feedback.

Projected OGD: The projected OGD algorithm is
a well known method in online learning. The update
rule of OGD is of the following form,

xt+1 = ΠK(xt − ηt∇ft(xt))

where,

∀z ∈ Rd; ΠK(z) := arg min
y∈K

‖y − z‖ .

Thus, in each round OGD updates its predictions in the
direction opposite to the gradient ∇ft(xt), and then
projects onto K. Later, we will present online meth-
ods of the same form which utilize a cheap projection
procedure instead of ΠK(·).
Smooth sets: As previously mentioned we focus on
convex compact sets of the following form,

K := {x ∈ Rd : h(x) ≤ 0} . (2)

where h : Rd 7→ R is a smooth convex function. In case
K is of the above form and h(·) is βh-smooth we will
relate to K as a βh-smooth set. Note that whenever we
relate to K in this paper we assume it has a from as
in Eq. (2) (we will not always mention h(·), and relate
to K and h(·) interchangeably). We assume to have an
access for both value and gradient oracles of h(·), i.e.,
we may query the value and gradient of h at any point
x ∈ Rd.

Next we define H-strongly-convex and β-smooth func-
tions. A function f : K 7→ R is H-strongly convex over
K if ∀x, y ∈ K,

f(y) ≥ f(x) +∇f(x)>(y − x) +
H

2
‖x− y‖2 .

A function f : K 7→ R is β smooth over K if ∀x, y ∈ K,

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖x− y‖2 .

Preliminaries:

Definition 2.1. Given a closed convex set K and x ∈
∂K, n is a normal vector to K in x if,

n · (y − x) ≤ 0; ∀y ∈ K .

If, in addition, ‖n‖ = 1 we say that n is a unit normal
vector.

The following lemma characterizes the normal vectors
of convex sets in the form of Eq. 2,

Lemma 2.1. Let K be a convex set (Eq. (2)) and
x ∈ ∂K, then ∇h(x) is a normal vector to K in x.

Given a βh-smooth convex and compact set K = {x ∈
Rd : h(x) ≤ 0}, we shall now define a geometric quan-
tity that measures how “pointy" is K,
Definition 2.2 (Curvature). Given a βh-smooth con-
vex and compact set K and x ∈ ∂K we define the Local
Curvature (LC) of K in x as follows,

µx := βh/‖∇h(x)‖ .

We also define the Global Curvature (GC) of K as
follows, µ := maxx∈∂K µx . 3

Intuitively, if the gradients on the boundary are very
small, then the shape of ∂K will be more “pointy" and
the curvature µ will be larger. Note that the above
definition is not necessarily equivalent to the definition
of curvature from differential geometry. Interestingly,
both definitions coincide in the case where K is the `2
ball (i.e., h(x) = ‖x‖2 −R2). In this case, µ = 0.5/R,
where R is the radius.

In this paper, we assume that µ is upper bounded. This
assumption is equivalent to the assumptions made by
Mahdavi et al. (2012); Chen et al. (2016); Yang et al.
(2017). Concretely, in these works it is assumed that
minx∈∂K ‖∇h(x)‖ ≥ B which immediately translates
to an upper bound on µ, i.e., µ ≤ βh/B.

3 Fast Approximate Projection

Here we introduce our FAstProj (Fast Approximate
Projection) procedure. This algorithm requires loga-
rithmically many calls to a value and gradient oracles
for h(·) in order to provide an approximate projection
onto K.

Algorithm description: Our FAstProj procedure
is given in Alg. 1. Let us first describe it using Fig-
ure 1. Given x ∈ K, v ∈ Rd this procedure finds an
approximate projected point, Π̃K(x+ v) ∈ K.
In the case where x + v belongs to K our method
returns x+ v. The interesting case is when x+ v /∈ K.
In this case, our method first finds x̃, which is a point
where the segment (x, x + v] intersects with ∂K (see
Fig. 1), and we also define ṽ := x + v − x̃. At this
point, our method computes the unit normal vector
to K in x̃, n (represented by the orange dashed line)

3Note that given a small enough ε > 0 we can similarly
define, µ(ε) := maxx:h(x)∈[−ε,0] βh/‖∇h(x)‖. For ε = 0 this
coincides with the above definition.

Projection Free Online Learning over Smooth Sets

Algorithm 1 Fast Approximate Projection (FAstProj)
Input: x ∈ K, v ∈ Rd
Output: approximate projection of x+ v onto K
If x+ v ∈ K, then output Π̃K(x+ v) = x+ v
Else
Find x̃ ∈ (x, x+ v] ∩ ∂K, and let ṽ ← x+ v − x̃
(find O(‖v‖2)-approximately using bisection)

Calculate n = ∇h(x̃)/‖∇h(x̃)‖
Let v̂ ← ṽ − (n · ṽ)n
Compute α = min{α ≥ 0 : x̃+ v̂ − αn ∈ K}
(find O(‖v‖2)-approximately using bisection)

Output: Π̃K(x+ v) = x̃+ v̂ − αn
EndIf

and computes v̂ (the dashed blue arrow) which is the
projection of ṽ onto the linear subspace orthogonal to
n. Next our method finds the first point where the ray
{x̃ + v̂ − αn : α ≥ 0} intersects with K and outputs
this point as the approximated projection Π̃K(x + v)
(the red point in the figure).

Let us provide some intuition behind our method. Re-
call the full projection operation Π(x+ v) will find a
point in K which is closer to x + v rather than any
other point in K. Our approximate procedure tries to
do so efficiently while suffering an additional approxi-
mate term. Concretely, note that since n is the normal
vector to K in x̃, intuitively the point x̃+ v̂ is closer to
x+ v rather than any other point in K, i.e.,
‖(x+ v)− (x̃+ v̂)‖ ≤ ‖(x+ v)− y‖; ∀y ∈ K .

which is exactly what the full projection is trying to
obtain. Note however, that the point x̃ + v̂ is not
necessarily in K. Fortunately by starting at x̃+ v̂, we
can search in the direction opposite to n and find a
point Π̃K(x + v) ∈ K that is close enough to x̃ + v̂.
By close enough, we mean that for smooth sets the
following applies,

‖Π̃K(x+ v)− (x̃+ v̂)‖ ≤ µ‖v‖2 .
Using the triangle inequality, we conclude that,

‖(x+v)−Π̃K(x+v)‖ ≤ ‖(x+v)−y‖+µ‖v‖2; ∀y ∈ K .
So compared to the full projection we suffer an addi-
tional additive term of µ‖v‖2.
Now, consider a gradient update rule with approximate
projection, xt+1 := Π̃K(xt − ηt∇f(xt)). In this case
the additive term is µ‖v‖2 := µη2t ‖∇f(xt)‖2, and as
we show later on, this term still enables to extract the
standard regret guarantees in the convex and strongly-
convex online settings (while suffering larger constants
which depend on the geometry of K).
The next theorem provides us with the formal guaran-
tees of FAstProj (Alg. 1).

x

x̃

x + v

K

x̃ + v̂

⇧̃K(x + v)

v̂

Figure 1: Approximate Projection.

Theorem 3.1. Let K be a βh-smooth and convex set
with a Global Curvature of µ, and diameter D. Then
upon invoking FAstProj (Alg. 1) with x ∈ K and v ∈ Rd
such that ‖v‖ ≤ 0.5/µ it outputs a point Π̃K(x+v) ∈ K,
such that the following holds,

∀y ∈ K, ‖Π̃K(x+ v)− y‖ ≤ ‖(x+ v)− y‖+ µ‖v‖2
(3)

Algorithm 1 requires O(log(1/‖v‖))+log(1+‖v‖)) calls
to a value and gradient oracle for h(·).

Efficient implementation: Clearly, we can not com-
pute the exact values x̃ and α. Instead, we compute
these values up to sufficient accuracy. Next we describe
how to achieve an accuracy of ε with only log(1/ε) calls
to gradient and value oracles for h(·).
First, let us focus on finding x̃, which is equivalent to
finding an arbitrary root of the equation h(x) = 0 in
the segment (x, x+v]. Since h(x) ≤ 0 and h(x+v) > 0,
we can use bisection in order to find a point which is
ε close the exact value of x̃ using O(log(1/ε)) calls to
the value of h(·) (note that even if h(x) = 0 we can
still use bisection, we elaborate on this in the full proof
of the theorem).

In order to find α, assume for now that we are given a
point z ∈ K∩{x̃+ v̂−αn : α ≥ 0}. In this case, clearly
h(z) ≤ 0 and h(x̃ + v̂) > 0, and both points z, x̃ + v̂,
are on the ray {x̃+ v̂−αn : α ≥ 0}. Therefore, we can
again use bisection in order to find a point ε close to
the optimal α using O(log(1/ε)) calls to the value of
h(·). The question now is: how to come up with a point
z ∈ K ∩ {x̃+ v̂ − αn : α ≥ 0}? In the full proof of the
theorem, we show how the problem of finding such z
translates to approximately solving a one dimensional
convex optimization problem. The latter can be done
by convex bisection4 (Juditsky, 2015), which requires
O(log(1 + ‖v‖)) calls to a gradient oracle of h(·).

4Convex bisection is, in a sense, the one-dimensional

Kfir Y. Levy, Andreas Krause

Taking an accuracy parameter of ε ≤ O(‖v‖2) is suffi-
cient in order to maintain the guarantees of Theorem 3.1
(although with slightly worse constants).

3.1 Proof of Theorem 3.1

Here we provide a proof sketch of Theorem 3.1. First,
let us introduce our main technical lemma,
Lemma 3.1. Let K be a βh-smooth and convex set
with a Global Curvature of µ, and diameter D. Also
let x ∈ ∂K and nx := ∇h(x)/‖∇h(x)‖, and let v ∈ Rd
such that v ·nx = 0, and ‖v‖ ≤ 0.5/µ. Then there exists
0 ≤ α ≤ µx‖v‖2 ≤ µ‖v‖2 such that x + v − αnx ∈ K.
Moreover, for any ∆α ∈ [0, 4

5µ], the point x+ v − (α+

∆α)nx ∈ K.

Proof Sketch of Theorem 3.1. The Theorem is imme-
diate in case that x + v ∈ K since then Π̃K(x + v) =
x+ v ∈ K. Next we focus on the case where x+ v /∈ K.
In this case x̃ ∈ ∂K with a normal vector n and v̂ is
orthogonal to n (by definition of v̂). In addition, ‖v̂‖ ≤
‖v‖ ≤ 0.5/µ, and we can therefore apply Lemma 3.1
(taking x↔ x̃ and v ↔ v̂), implying,

‖Π̃K(x+ v)− (x̃+ v̂)‖ = α ≤ µ‖v̂‖2 ≤ µ‖v‖2 . (4)

where we have used Π̃K(x+ v) := x̃+ v̂−αnx together
with ‖nx‖ = 1. We also used the definition of α in
Alg. 1, which together with Lemma 3.1 implies that
α ≤ µ‖v̂‖2.
Next notice that x+v = x̃+ṽ, and that the dependence
of FAstProj (Alg. 1) in ṽ is only through v̂ (which is
the projection of ṽ onto the linear space orthogonal to
n). Thus, the following holds,

Π̃K(x+ v) = Π̃K(x̃+ ṽ) = Π̃K(x̃+ v̂) . (5)

Also, using the definition of x̃, n, as well as the the
smoothness of K it can be shown that (see Fig. 1),

∀y ∈ K, ‖(x̃+ v̂)− y‖ ≤ ‖(x̃+ ṽ)− y‖ = ‖(x+ v)− y‖ .
(6)

Combining Equations (4), (5), (6), implies that ∀y ∈ K,

‖Π̃K(x+ v)− y‖
= ‖Π̃K(x̃+ v̂)− y‖
≤ ‖(x̃+ v̂)− y‖+ ‖(x̃+ v̂)− Π̃K(x̃+ v̂)‖
≤ ‖(x+ v)− y‖+ µ‖v‖2 .

version of the ellipsoid method. The idea is that in the
1 dimensional convex case the sign of the gradient at a
point x “tells" us whether the global optimum is larger or
smaller than x. Thus, using gradient information we can
use bisection in order to approximately find the optimum.

3.1.1 Proof Sketch of Lemma 3.1

Next we provide a proof sketch of Lemma 3.1. To
simplify the exposition we will only sketch a part of
the proof (see the appendix for the full details).

Proof Sketch of Lemma 3.1. Lemma 3.1 is a direct con-
sequence of the following three lemmas.

Lemma 3.2. Under the same assumptions of
Lemma 3.1. If ‖v‖ ≤ 0.5/µ, and if there exists α ≥ 0
such that x+ v − αnx ∈ ∂K then the following holds,

α ≤ µx‖v‖2 ≤ µ‖v‖2 . (7)

where µx := βh/‖∇h(x)‖ is the Local Curvature at x
(see Def. 2.2).

Lemma 3.3. Under the same assumptions of
Lemma 3.1. If ‖v‖ ≤ 0.5/µ, then there exists α ≥ 0
such that x+ v − αnx ∈ ∂K.

Lemma 3.4. Under the same assumptions of
Lemma 3.1. If ‖v‖ ≤ 0.5/µ, then there exists α ≥ 0
such that x+ v− (α+ ∆α)nx ∈ K for any ∆α ∈ [0, 4

5µ].

In the appendix, we prove Lemma 3.2 and then use it
in order to prove Lemma 3.3; both are then used to
prove Lemma 3.4.

Next we provide a proof sketch for Lemma 3.2.
Concretely, we will show that if there exists α ≥ 0 such
that x+ v − αnx ∈ ∂K then the following holds,

α ≤ µx‖v‖2 ≤ µ‖v‖2 . (8)

Indeed let us denote z := x + v − αnx and assume
z ∈ ∂K. Using the βh smoothness of h(·) yields,

0 = h(z)− h(x) ≤ ∇h(x) · (z − x) +
βh
2
‖x− z‖2

= −α‖∇h(x)‖+
βh
2

(
‖v‖2 + α2

)
(9)

where we use h(x) = h(z) = 0 (since x, z ∈ ∂K), as well
as, nx := ∇h(x)/‖∇h(x)‖, and v · nx = v · ∇h(x) = 0.

Now Eq. (9) is a quadratic inequality in α, and is
equivalent to the following,

α ≤ ‖∇h(x)‖
βh

(
1−

√
1− β2

h‖v‖2
‖∇h(x)‖2

)
(10)

Using ‖v‖ ≤ 0.5/µ and recalling the definitions of µx,
µ allows to derive Eq. (8) from Eq. (10).

Projection Free Online Learning over Smooth Sets

4 Regret Guarantees

Here we establish the guarantees of the online gradient
descent (OGD) method when we apply FAstProj rather
than the full projection. As we show in Theorems 4.1,
and 4.2, this OGD version preserves the well known
regret rates of O(

√
T) and O(log T) in the convex and

strongly-convex settings. Our bounds are worse by a
multiplicative factor compared to projected OGD.

4.1 Convergence Guarantees

In this section, we assume the online convex optimiza-
tion setting (see Section 2), where we receive a a se-
quence of convex functions loss {ft : K 7→ R}t∈[T].
We also assume bounded gradients, i.e., ∀t ∈ [T], x ∈
K; ‖∇ft(x)‖ ≤ G.
Consider the following OGD version combined with
FAstProj (Alg. 1) rather than exact projection,

∀t ∈ [T]; xt+1 = Π̃K(xt − ηt∇gt) . (11)

where gt := ∇f(xt) .

Recall the definition of regret,

RegretT :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) .

The following two theorems establish the regret guaran-
tees of this algorithm in the convex and strongly-convex
cases.

Theorem 4.1. Assume that K is a βh smooth convex
set with bounded diameter D. Upon invoking the OGD
algorithm with FAstProj (Eq. (11)) and taking an ar-
bitrary x1 ∈ K, and ηt = D

G(1+2µD)
√
t
, the following

holds,

RegretT ≤ O
(

(1 + µD)GD
√
T
)
.

The next theorem asserts the guarantees in case that
all loss function {ft}t∈[T] are H-strongly-convex.
Theorem 4.2. Assume that K is a βh smooth convex
set with bounded diameter D. Upon invoking the OGD
algorithm with FAstProj (Eq. (11)) and taking an ar-
bitrary x1 ∈ K, and ηt = (2µG+Ht)

−1, the following
holds,

RegretT ≤ O
(
G2(1 + µD)

H
log T

)
.

Notice that in both cases our bounds are worse by a
multiplicative factor of O(µD) compared to projected
OGD.

Invariance of µD: Before we go on to the proofs we
show that the µD factor is invariant with respect to
a very natural quantity. Concretely, consider convex
constraints of the form KC = {x ∈ Rd : c(x) ≤ C}
where c(·) is a homogeneous of degree 2 smooth convex
function, and C > 0.

Proposition 4.1. As long as KC is non-empty then
the factor µD of KC is invariant w.r.t. C.

By homogeneous of degree 2 we mean that ∀ρ ∈
R; c(ρx) = ρ2c(x). Note that for such functions, it can
be shown that ∇c(ρx) = ρ∇c(x). In order to see why
the proposition holds, consider KC and KρC for some
ρ > 0. Due to homogeneity of degree 2, the boundary
of KρC is a √ρ scaled version of the boundary of KC .
Thus, diameter(KρC) =

√
ρ · diameter(KρC), and also,

minx∈∂KρC ‖∇c(x)‖ =
√
ρ ·minx∈∂KC ‖∇c(x)‖. Since

the smoothness of the body KC (equivalently smooth-
ness of c(x)− C) does not change C, this implies that
the µD factor for KC and KρC is the same.

The above assumptions on c(·) hold for quadratic con-
straints, i.e., c(x) = x>Ax, as well as for squared `p
norms, i.e., c(x) = ‖x‖2p with p ∈ (1,∞).

4.2 Applications: Quadratic Constraints

Consider a quadratic constraint: h(x) = ‖Ax− y‖2 −
b, where x ∈ Rd, y ∈ Rm, b ∈ R, and A ∈ Rm×d.
Such constraints are prevalent in optimization and
machine learning. Concrete examples include training
Kernelized SVMs (where h(x) = x>Kx− b, and K is
the kernel matrix), and compressive sensing (Candès
and Wakin, 2008).

Next, we show that for quadratic constraints, the
curvature µ is upper bounded and we can there-
fore apply our approach. Clearly, the smoothness of
h(·) is equal to the largest eigenvalue of A>A, i.e.,
βh = λmax(A>A). Also, as Yang et al. (2017) shows
minx:h(x)=0 ‖∇h(x)‖ ≥

√
bλmin(AA>). This immedi-

ately implies that µ = λmax(A>A)/
√
bλmin(AA>), and

µD ≤ λmax(A>A)/
√
λmin(AA>).

4.3 Proof of Theorem 4.1

Proof of Theorem 4.1. First note that due to the
choice of learning rate then for any t ∈ [T],

‖ηtgt‖ ≤
D

2µD
· ‖gt‖
G
√
t
≤ 0.5/µ .

The above enables to apply Theorem 3.1 which implies
that ∀x ∈ K,

‖Π̃K(xt − ηtgt)− x‖ ≤ ‖(xt − ηtgt)− x‖+ µη2t ‖gt‖2

Kfir Y. Levy, Andreas Krause

Taking the square of the above we get,

‖Π̃K(xt − ηtgt)− x‖2 (12)

≤ ‖(xt − ηtgt)− x‖2 + µ2η4t ‖gt‖4

+ 2‖(xt − ηtgt)− x‖ · µη2t ‖gt‖2

≤ ‖(xt − ηtgt)− x‖2 + µ2η4tG
4 + 2(D + ηtG)µη2tG

2

≤ ‖(xt − ηtgt)− x‖2 + µ2η4tG
4 + (2µD + 1)η2tG

2

(13)

where we used ‖gt‖ ≤ G, ‖xt − x‖ ≤ D and ηtG ≤
0.5/µ.

We continue similarly to the classical OGD proof. For
any t ∈ [T] we may use the above to show the following
for any x ∈ K,

‖xt+1 − x‖2

= ‖Π̃K(xt − ηtgt)− x‖2

≤ ‖(xt − ηtgt)− x‖2 + µ2η4tG
4 + (2µD + 1)η2tG

2

≤ ‖xt − x‖2 − 2ηtgt · (xt − x) + η2t ‖gt‖2

+ µ2η4tG
4 + (2µD + 1)η2tG

2

Re-arranging the above and using ‖gt‖ ≤ G we get,

gt · (xt − x) ≤ 1

2ηt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+

1

2
µ2η3tG

4 + ηt(µD + 1)G2

By convexity ft(xt)− ft(x) ≤ ∇f(xt) · (xt − x). Using
this and summing the above inequality over all rounds
we conclude that ∀x ∈ K,
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

≤
T∑
t=1

‖xt − x‖2
2

(
1

ηt
− 1

ηt−1

)
+G2(1 + µD)

T∑
t=1

ηt

+
G4µ2

2

T∑
t=1

η3t

≤ D2

2ηT
+G2(1 + µD)η1

T∑
t=1

1√
t

+
G4µ2η31

2

T∑
t=1

1

t3/2

≤ ((1 + µD)/2 + 2)GD
√
T + C .

here in the first line we denote η0 = ∞, the second
line uses diam(K) = D and ηt ≤ ηt−1. The last line
uses

∑T
t=1 1/

√
t ≤ 2

√
T , and

∑T
t=1 1/t3/2 ≤ 3. Also

C := 3
2Gµ

2D3/(1 + µD)3.

4.4 Proof of Theorem 4.2

Proof. First note that due to the choice of learning
rate then for any t ∈ [T],

‖ηtgt‖ =
‖gt‖
2µG

≤ 0.5/µ .

The above enables to apply Theorem 3.1 which implies
that ∀x ∈ K,

‖Π̃K(xt − ηtgt)− x‖ ≤ ‖(xt − ηtgt)− x‖+ µη2t ‖gt‖2

Similarly to the proof of Theorem 4.1 , we take the
square of the above which gives,

‖Π̃K(xt − ηtgt)− x‖2

≤ ‖(xt − ηtgt)− x‖2 + µ2η4tG
4 + (2µD + 1)η2tG

2 .
(14)

Using the above it follows that for any x ∈ K,

‖xt+1 − x‖2 = ‖Π̃K(xt − ηtgt)− x‖2

≤
(
‖xt − x‖2 − 2ηtgt · (xt − x) + η2tG

2
)

+ µ2η4tG
4 + (2µD + 1)η2tG

2 .

Re-arranging we get:

gt · (xt − x) ≤ 1

2ηt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+ ηtG

2(1 + µD) +
η3t
2
µ2G4

Combining the above with the H-strong-convexity of
ft’s and summing over all rounds we conclude that,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

≤
T∑
t=1

‖xt − x‖2
2

(
1

ηt
− 1

ηt−1
−H

)

+G2(1 + µD)

T∑
t=1

ηt + µ2G4
T∑
t=1

η3t
2

≤ µD2G+
G2(1 + µD)

H
(1 + log T) +

2µ2G4

H3
.

where we denote η0 =∞. The last line uses 1
ηt
− 1
ηt−1

=

H; ∀t ≥ 2, and ‖xt − x‖ ≤ D, as well as,

T∑
t=1

ηt ≤
T∑
t=1

1/Ht ≤ (1 + log T)/H ,

and also,

T∑
t=1

η3t ≤
T∑
t=1

1/(Ht)3 ≤ 2/H3 .

Projection Free Online Learning over Smooth Sets

4.5 Complexity of FAstProj for OGD

As we discuss in the introduction, FAstProj requires
O(log(T)) calls to a gradient+value oracles for h(·) in
each round of OGD. Here we explain the reason for
that.

Theorem 3.1 tells us that FastProj requires
O(log(1/‖v‖2)+log(1+‖v‖2)) calls to a gradient+value
oracle at each round. Note that in Theorems 4.1 and 4.2
we take v = η∇ft(xt). Since the gradient magnitude
is bounded by G, the complexity term log(1 + ‖v‖2)
is bounded by a constant, i.e., log(1 + (ηG)2). Note
however that when ‖v‖ is very small then the other
term might explode. Fortunately, we can ignore rounds
where ‖∇ft(xt)‖ ≤ 1/T and still maintain regret guar-
antees up to an additive constant factor5. Meaning we
only have to make gradient update and call FastProj
procedure when ‖v‖ = ‖η∇ft(xt)‖ ≥ Ω(1√

TT
). In this

case the first term in complexity, log(1/‖v‖2), is upper
bounded by O(log(T)).

5 Conclusion

We presented a new approach towards projection-free
online learning, which recovers the same rates as the
fully projected version. While we have mainly focused
on projections for first order online methods, second
order online methods, e.g., Online Newton Step (Hazan
et al., 2007), require more complex projections, which
take a data dependent condition matrix into account.
It will be interesting to extend our approach to this
case.

Acknowledgement

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme grant
agreement No. 815943, as well as from the ETH Zurich
Postdoctoral Fellowship and Marie Curie Actions for
People COFUND program.

References

J. D. Abernethy, E. Hazan, and A. Rakhlin. Interior-
point methods for full-information and bandit online
learning. IEEE Transactions on Information Theory,
58(7):4164–4175, 2012.

5In the online setting, when the gradients ‖∇ft(xt)‖ is
smaller than 1/T , then ignoring the update in these rounds
(i.e. not performing any update) only affects the regret by a
constant. This means that regret guarantees for the convex
and strongly-convex cases remain O(

√
T) and O(log T).

Z. Allen-Zhu, E. Hazan, W. Hu, and Y. Li. Linear
convergence of a frank-wolfe type algorithm over
trace-norm balls. In Advances in Neural Information
Processing Systems, pages 6192–6201, 2017.

E. J. Candès and M. B. Wakin. An introduction to com-
pressive sampling. IEEE signal processing magazine,
25(2):21–30, 2008.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the
generalization ability of on-line learning algorithms.
IEEE Transactions on Information Theory, 50(9):
2050–2057, 2004.

J. Chen, T. Yang, Q. Lin, L. Zhang, and Y. Chang. Op-
timal stochastic strongly convex optimization with a
logarithmic number of projections. 2016.

A. Cotter, M. Gupta, and J. Pfeifer. A light touch for
heavily constrained sgd. In Conference on Learning
Theory, pages 729–771, 2016.

M. Frank and P. Wolfe. An algorithm for quadratic
programming. Naval Research Logistics (NRL), 3
(1-2):95–110, 1956.

D. Garber. Faster projection-free convex optimization
over the spectrahedron. In Advances in Neural In-
formation Processing Systems, pages 874–882, 2016.

D. Garber and E. Hazan. Playing non-linear games with
linear oracles. In Foundations of Computer Science
(FOCS), 2013 IEEE 54th Annual Symposium on,
pages 420–428. IEEE, 2013.

D. Garber and E. Hazan. Faster rates for the frank-
wolfe method over strongly-convex sets. In Inter-
national Conference on Machine Learning, pages
541–549, 2015.

D. Garber and O. Meshi. Linear-memory and
decomposition-invariant linearly convergent condi-
tional gradient algorithm for structured polytopes. In
Advances in Neural Information Processing Systems,
pages 1001–1009, 2016.

E. Hazan and S. Kale. Projection-free online learning.
In Proceedings of the 29th International Coference
on International Conference on Machine Learning,
pages 1843–1850. Omnipress, 2012.

E. Hazan and H. Luo. Variance-reduced and projection-
free stochastic optimization. In International Confer-
ence on Machine Learning, pages 1263–1271, 2016.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret
algorithms for online convex optimization. Machine
Learning, 69(2-3):169–192, 2007.

M. Jaggi. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In ICML (1), pages 427–435,
2013.

A. Juditsky. Convex optimization ii: Algo-
rithms. https://ljk.imag.fr/membres/Anatoli.

https://ljk.imag.fr/membres/Anatoli.Iouditski/cours/convex/chapitre_22.pdf
https://ljk.imag.fr/membres/Anatoli.Iouditski/cours/convex/chapitre_22.pdf

Kfir Y. Levy, Andreas Krause

Iouditski/cours/convex/chapitre_22.pdf,
November 2015.

A. Kalai and S. Vempala. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

S. Lacoste-Julien and M. Jaggi. On the global linear
convergence of frank-wolfe optimization variants. In
Advances in Neural Information Processing Systems,
pages 496–504, 2015.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and
P. Pletscher. Block-coordinate frank-wolfe optimiza-
tion for structural svms. In ICML 2013 International
Conference on Machine Learning, pages 53–61, 2013.

G. Lan and Y. Zhou. Conditional gradient sliding for
convex optimization. SIAM Journal on Optimization,
26(2):1379–1409, 2016.

G. Lan, S. Pokutta, Y. Zhou, and D. Zink. Conditional
accelerated lazy stochastic gradient descent. In In-
ternational Conference on Machine Learning, pages
1965–1974, 2017.

M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi.
Stochastic gradient descent with only one projec-
tion. In Advances in Neural Information Processing
Systems, pages 494–502, 2012.

Y. Nesterov and A. Nemirovskii. Interior-point polyno-
mial algorithms in convex programming, volume 13.
Siam, 1994.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Srid-
haran. Stochastic convex optimization. In COLT,
2009.

T. Yang, Q. Lin, and L. Zhang. A richer theory of
convex constrained optimization with reduced pro-
jections and improved rates. In International Confer-
ence on Machine Learning, pages 3901–3910, 2017.

M. Zinkevich. Online convex programming and gener-
alized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine
Learning (ICML-03), pages 928–936, 2003.

https://ljk.imag.fr/membres/Anatoli.Iouditski/cours/convex/chapitre_22.pdf

	Introduction
	Setting and Preliminaries
	Fast Approximate Projection
	Proof of Theorem 3.1
	Proof Sketch of Lemma 3.1

	Regret Guarantees
	Convergence Guarantees
	Applications: Quadratic Constraints
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Complexity of FAstProj for OGD

	Conclusion

