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A Proof of Theorem 3

We first prove Algorithm 1 is (ε, δ)-DP if we change
the variance of zt to be σ2

t =
c22L

2T 2/3t1/3 log(1/δ)
ε2N2 η2

t I for
some constant c2.

It is easy to see that SGLD in Algorithm 1 consists
of a sequence of updates for the model parameter θ.
Each update corresponds to a random mechanismMi

defined in Theorem 1, thus we will first derive the
moments accountant for each iteration. In each iter-
ation, the only data access is

∑
i∈Jt g̃t(di) in Step 6.

Therefore, in the following, we only focus on the inter-
action between

∑
i∈Jt g̃t(di) and the noise zt, which is

essentially‡ ηt
τ

∑
i∈Jt ḡt(di) + zt, where ḡ = τ/ηt ∗ g̃.

To simplify the notation, we let η̃2 =
σ2
t τ

2

L2η2t t
1/3 ,

and the variance of zt can be rewritten as σ2
t =

(η̃2L2η2
t t

1/3/τ2)I§. Then we have:

ηt
τ

∑
i∈Jt

ḡt(di) + zt =
ηt
τ

(∑
i∈Jt

ḡt(di) +N(0, (σ2
t τ

2/η2t )I)

)

=
ηtL

τ

(
1

L

∑
i∈Jt

ḡt(di) +N(0, η̃2t1/3I)

)

If we use the notations from Lemma 2 and let f(di) =
1
L ĝt(di) and σ2 = η̃2t1/3, we can calculate the upper
bound for the log moment of the privacy loss random
variable for the tth iteration to be

α(λ) ≤ t−1/3q2λ(λ+ 1)/η̃2

as long as the conditions in Lemma 2 are satisfied, that
is η̃2t1/3 ≥ 1 and the mini-batch sampling probability
q < 1

16η̃t1/6
. Later we will derive the corresponding

bounds in terms of ηt.

Using the composability property of the moments ac-
countant in Theorem 1, over T iterations, the log mo-
ment of the privacy loss random variable is bounded
by

α(λ) ≤
T∑
t=1

(t−1/3)q2λ(λ+ 1)/η̃2 .

According to the tail bound property in Theorem 1,
δ is the minimum of exp (αM(λ)− λε) w.r.t. λ. To
guarantee (ε, δ)-DP, it suffices that
‡In this paper, we only consider the case for which we

choose priors that do not depend on the data, as is common
in the Bayesian setting.

§Later we will show the optimal decreasing ratio for the
stepsize is t1/3.

T∑
t=1

(t−1/3)q2λ(λ+ 1)/η̃2 ≤ λε/2, exp(−λε/2) ≤ δ ,

(2)

We also require that our choice of parameters satisfies
Lemma 2. Consequently, we have

λ ≤ η̃2t1/3 log(1/qη̃2t1/3) ≤ η̃2 log(1/qη̃2) (3)

Since
∑T
t=1 t

−1/3 = O(T 2/3), we can use a similar tech-
nique¶ as in Abadi et al. (2016) to find explicit con-
stants c1 and c2 such that when ε = c1q

2T 2/3 and η̃ =

c2
q
√
T 2/3 log(1/δ)

ε , the conditions (2) (3) are satisfied. If
we plug in η̃ and q, we have proved that Algorithm 1
is (ε, δ)-DP when zi ∼ N(0,

c22L
2T 2/3t1/3 log(1/δ)

ε2N2 η2
t I).

For the second step of the proof, we prove that Al-
gorithm 1 is (ε, δ)-DP when the original variance
of zt is used, i.e., σ2

t = ηt
N . This is straightfor-

ward because when ηt < ε2Nt−1/3

c22L
2T 2/3 log(1/δ)

we have
c22L

2T 2/3t1/3 log(1/δ)
ε2N2 η2

t < ηt/N as long as the stepsize
ηt is positive. Adding more noise decreases the privacy
loss. To satisfy (ε, δ)-DP, it suffices to set the variance
of zi as ηt/N , which gives the original Algorithm 1,
a variant of the standard SGLD algorithm with de-
creasing stepsize. This finishes the proof for the third
condition in Theorem 3.

Now we prove the first and second conditions in The-
orem 3. Lemma 2 requires that σ ≥ 1 and q < 1

16σ ,
where σ2 = η̃2t1/3 by definition. This is equivalent to
η̃2t1/3 ≥ 1 and q < 1

16η̃t1/6
. If we plug in the formula

ηt = N
t1/3η̃2L2 , this simplifies to ηt ≤ N

L2 and ηt > q2N
256L2 .

This completes the proof.

B Proof of Theorem 4

Claim: Under the same setting as Theorem 3, but using
a fixed-stepsize ηt = η, Algorithm 1 satisfies (ε, δ)-DP
whenever η < ε2N

c2L2Tlog(1/δ) for another constant c.

Proof The only change of the proof for fixed stepsize
is that the expression for the variance of the Gaussian
noise zt becomes σ2

t = η2
0L

2η2
t /τ

2 for fixed stepsize.
We still apply Theorem 1 and Lemma 2 to find the
required conditions for (ε, δ)-DP:

Tq2λ2/η2
0 ≤ λε/2

exp(−λε/2) ≤ δ, λ ≤ η2
0 log(1/qη0)

¶Further explained in Section C of the SM.
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Using the method described in the previous section,
one can find c3 and c4 such that when ε = c3q

2T and

η0 = c4
q
√

log(1/δ)

ε satisfy the above conditions. Then
if we plug in η0 and q, and compare it to η/N , it
is easy to see Algorithm 1 satisfies (ε, δ)-DP when
η < ε2N

c24L
2T log(1/δ)

.

C Calculating Constants in Moment
Accountant Methods

For calculating the constants c1 and c2, which
is a part of the moment accoutant method, we
refer to https://github.com/tensorflow/models/
tree/master/research/differential_privacy/
privacy_accountant ‖ as an implimentation of
the moment accountant method. A comprehensive
description for the implimentation can be found int
Abadi et al. (2016).

This code allows one to calculate the corresponding ε(δ)
given δ(ε), q, T, η0 using numerical integration. Once
ε(δ) is determined, it is easy to calculate c1 and c2 for
evaluating the upper bound for the stepsize.

D Assumptions on SG-MCMC
Algorithms

For the diffusion in (1), we first define the generator L
as:

Lψ ,
1

2
∇ψ · F +

1

2
g(θ)g(θ)∗ : D2ψ , (4)

where ψ is a measurable function, Dkψ means the k-
derivative of ψ, ∗ means transpose. a ·b , aT b for
two vectors a and b, A : B , trace(AT B) for two
matrices A and B. Under certain assumptions, there
exists a function, φ, such that the following Poisson
equation is satisfied Mattingly et al. (2010):

Lψ = φ− φ̄ , (5)

where φ̄ ,
∫
φ(θ)ρ(dθ) denotes the model average, with

ρ being the equilibrium distribution for the diffusion
(1), which is assumed to coincide with the posterior
distribution p(θ|D). The following assumptions are
made for the SG-MCMC algorithms (Vollmer et al.,
2016; Chen et al., 2015).

Assumption 1 The diffusion (1) is ergodic. Further-
more, the solution of (5) exists, and the solution func-
tional ψ satisfies the following properties:

‖This is under the Apache License, Version 2.0

• ψ and its up to 3th-order derivatives Dkψ, are
bounded by a function V, i.e., ‖Dkψ‖ ≤ CkVpk for
k = (0, 1, 2, 3), Ck, pk > 0.

• The expectation of V on {xl} is bounded:
supl EVp(xl) <∞.

• V is smooth such that
sups∈(0,1) Vp (sx+ (1− s)y) ≤
C (Vp (x) + Vp (y)), ∀x ∈ Rm,y ∈ Rm, p ≤
max{2pk} for some C > 0.

E Proof of Proposition 5

Claim: Under Assumption 1 in the section D, the
MSE of SGLD with a decreasing stepsize sequence
{ηt < ε2Nt−1/3

c22L
2T 2/3 log(1/δ)

} as in Theorem 3 is bounded, for
a constant C independent of {η, T, τ} and a constant

ΓM depending on T and U(·), as E
(
φ̂L − φ̄

)2

≤ C
(

2

3

(
N

n
− 1

)
N2ΓMT

−1 +
1

3η̃0
+ 2η̃2

0T
−2/3

)
.

where η̃0 , ε2

c22L
2 log(1/δ)

.

Proof

First, we adopt the MSE formula for the decreasing-
step-size SG-MCMC with Euler integrator (1-st order
integrator) from Theorem 5 of Chen et al. (2015), which
is written as

E
(
φ̂L − φ̄

)2

≤ C

(
T∑
t=1

η2
t

S2
T

E ‖∆Vt‖2 +
1

ST
+

(
∑T
t=1 η

2
t )2

S2
T

)
,

(6)

where ST ,
∑T
t=1 ηt, and ∆Vt is a term related to g̃t,

which, according to Theorem 3 of Chen et al. (2017),
can be simplified as

E |∆Vl|2

=
(N − τ)N2

τ

 1

N2

∑
i,j

EαTliαlj −
2

N(N − 1)

∑
i≤j

EαTliαlj


,

(N − τ)N2

τ
Γt , (7)

where αli = ∇θ log p(di |θ`).

Let ΓM , maxt Γt. Substituting (7) into (6), we have

E
(
φ̂L − φ̄

)2

≤ (8)

C

 ∑T
t η

2
t(∑T

t ηt

)2

(
N

τ
− 1

)
N2ΓM +

1∑T
t ηt

+

(∑T
t η

2
t

)2

(∑T
t ηt

)


https://github.com/tensorflow/models/tree/master/research/differential_privacy/privacy_accountant
https://github.com/tensorflow/models/tree/master/research/differential_privacy/privacy_accountant
https://github.com/tensorflow/models/tree/master/research/differential_privacy/privacy_accountant
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Now, if we assume η̃0 = ε
c22L

2 log(1/δ)
, then we rewrite

ηt = η0t
−1/3T−2/3.

Note
∑T
t t

p ≈ 1
p+1T

p+1. Plug this into the bound in
(8), we have:

E
(
φ̂L − φ̄

)2

≤

C

 ∑T
t η

2
t(∑T

t η
)2

(
N

τ
− 1

)
N2ΓM +

1∑T
t ηt

+

(∑T
t η

2
t

)2

(∑T
t ηt

)2


≤C

(
2

3

(
N

τ
− 1

)
N2ΓMT

−1 +
1

3η̃0
+ 2η̃2

0T
−2/3

)

F Generalization Bound

Following Raginsky et al. (2017), we need to make
the following assumptions to derive our generalization
bound. Actually, some of these assumptions are related
to Assumption 1. Interested readers are encouraged to
refer Section 9 of Vollmer et al. (2016) for details.

Assumption 2 Assume the likelihood function satis-
fies:

A.1 Let θ0 be the initial value. There exists A,L ≥ 0
such that

|log p(d |θ0)| ≤ A, ‖∇θ log p(d |θ0)‖ ≤ L, ∀d

A.2 For some M > 0, ∀d1,d2

‖∇θ log p(d1 |θ)−∇θ log p(d2 |θ)‖ ≤M ‖d1−d2‖

A.3 For some m > 0 and b ≥ 0,

〈d,∇θ log p(d |θ)〉 ≥ m ‖d‖2 − b, ∀d,θ

A.4 There exists a constant ∆ ∈ [0, 1), such that, for
each d and ∀θ

E [‖∇θ log p(d |θ)−∇θU(θ)‖] ≤ 2∆
(
M2‖θ‖2 +B2

)
A.5 Let p0 be the distribution density of the initial θ,

κ0 , log

∫
e‖θ‖

2

p0(θ)dθ <∞

In Raginsky et al. (2017), the inversed temperature
parameter β is required to be larger than or equal to
max{1, 2/m}. In our setting, β = 1. Consequently, we

require 2
m ≤ 1, which is m ≥ 2. Thus A.3 of the above

assumption turns into

〈d,∇θ log p(d |θ)〉 ≥ 2 ‖d‖2 − b, ∀d,θ

Furthermore, in Proposition 7, the interval of the small
constant ω is

ω ∈
(

0,min{ m

4M2
, eΩ(λ∗/(r+1))}

)
, (9)

where λ∗ is the uniform spectral gap defined as

λ∗ , inf
d∈X

inf

{∫
‖∇θg(θ)‖2dπ∫
‖g(θ)‖2dπ

: g ∈ C1(Rr) ∩ L2(π),

g 6= 0,

∫
g(θ)dπ = 0

}
,

where π is the stationary probability measure of the
diffusion defined on the training data. 1

λ∗
might scale

exponentially w.r.t. the dimension r of θ in general,
but also can be made dimension-free, for example, in
the entropy-SGD objective Chaudhari et al. (2017).

Proof [Sketch Proof of Proposition 7] First, from The-
orem 1 in Raginsky et al. (2017), for ω satisfying (9),
taking the inversed temperature parameter β to be 1,
we have the generalization error bound

EF(θ̂T )−F∗

≤O
(

(r + 1)2

λ∗

(
∆1/4 log

1

ω
+ ω

)
+

(r + 1)2

λ∗N
+ r log 2

)
,

provided T = Ω
(

(r+1)
λ∗ω4 log5 1

ω

)
and η ≤

(
ω

log(1/ω)

)4

.
Here O(·) and Ω(·) hide dependence on the parameters
A,L,m, b,M, κ0. Together with the stepsize condition
to preserve DP in Theorem 4, we get that the stepsize

should satisfies η ≤ min

{(
ω

log(1/ω)

)4

, ε2N
c2L2T log(1/δ)

}
.

Further hiding dependency on r, ∆ and λ∗ (as we only
wants to investigate the bound w.r,t. T , η and N), we
have

EF(θ̂T )−F∗ ≤ O
(

log
1

ω
+ ω +

1

N

)
. (10)

Since T ∝ 1
ω4 log5 1

ω , we can simplify the above equa-
tion as

EF(θ̂T )−F∗ ≤ O
(
T 1/5ω4/5 + ω +

1

N

)
.

To represent the bound without ω, let x = 1
ω , m = x4.
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From T = A 1
ω4 log5 1

ω we have

T = Ame
4
5m, ⇒ 4

5A
T =

4

5
me

4
5m

⇒4

5
m = W (

4

5A
T )

⇒ω = exp

{
−
(

5

4
W (

4

5A
T )

)1/5
}

⇒ log
1

ω
=

(
5

4
W (

4

5A
T )

)1/5

Substituting the formulas for ω and log 1
ω into (10)

and omitting constants independent of T results in the
corresponding bound specified in Proposition 7.
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