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A Proof of Theorem 3

We first prove Algorithm [1|is (e, d)-DP if we change
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the variance of z; to be 07 =
some constant cs.

It is easy to see that SGLD in Algorithm [I] consists
of a sequence of updates for the model parameter 6.
Each update corresponds to a random mechanism M;
defined in Theorem thus we will first derive the
moments accountant for each iteration. In each iter-
ation, the only data access is ;. ; Gi(d;) in Step 6.
Therefore, in the following, we only focus on the inter-
action between ), ; §:(d;) and the noise z;, which is

essentlallyﬂ e ZlEJ gi(d;) + z¢, where g = 7/n; * g.
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and the variance of z; can be rewritten as o? =

(P L2n?t'/3 /72) I} Then we have:
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To simplify the notation, we let 7? =

)+ N (0,7 1)

If we use the notatlons from Lemma [2] and let f(d;) =
Lgt(di) and 02 = 7?t'/3, we can calculate the upper
bound for the log moment of the privacy loss random
variable for the t*" iteration to be

a(\) < tTV3EAN+1) /7

as long as the conditions in Lemma[2] are satisfied, that
is 7?t1/3 > 1 and the mini-batch sampling probability
q < W. Later we will derive the corresponding
bounds in terms of ;.

Using the composability property of the moments ac-
countant in Theorem (1} over T iterations, the log mo-
ment of the privacy loss random variable is bounded
by

!

< EEAN+ 1) /i

t=1

According to the tail bound property in Theorem
d is the minimum of exp (ar(A) — Ae) wr.t. A To
guarantee (¢, 0)-DP, it suffices that

In this paper, we only consider the case for which we
choose priors that do not depend on the data, as is common
in the Bayesian setting.

$Later we will show the optimal decreasing ratio for the
stepsize is /3.

T
S EHEANF 1)/ < Ae/2,

t=1

exp(—Ae/2) <6

(2)

We also require that our choice of parameters satisfies
Lemma 2] Consequently, we have

A < it 3 log(1/qit %) < i log(1/qii®)  (3)

Since S°,_, /3 = O(T?/3), we can use a similar tech-
niqug | as in |Abadi et al.| (2016) to find explicit con-
stants ¢; and ¢y such that when € = clq2T2/3 and 7 =

VT2 10g(1/5)
CQM the conditions (2} are satisfied. If

we plug in 7 and ¢, we have proved that Algorithm [I]

is (¢,0)-DP when z; ~ N(0, caL T2/: 3\/[; log(1/6) 2[)

For the second step of the proof, we prove that Al-
gorithm (1| is (e,d)-DP when the original variance

of z; is used, i.e., 07 = %. This is straightfor-
ENt™1/3
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ward because when 7y <

2/3,1/3
LT §N2 log(1/9) n? < n:/N as long as the stepsize

1y is positive. Addlng more noise decreases the privacy
loss. To satisfy (€, d)-DP, it suffices to set the variance
of z; as n;/N, which gives the original Algorithm
a variant of the standard SGLD algorithm with de-
creasing stepsize. This finishes the proof for the third
condition in Theorem 3.

Now we prove the first and second conditions in The—
orem 3. Lemma [2| requires that ¢ > 1 and ¢ < 160,
where 02 = 7?t'/3 by definition. This is equivalent to

7?tY/3 > 1 and g < ﬁ. If we plug in the formula

N = ﬁ, this simplifies to 7, < 7%
This completes the proof.

and N > 256L2

B Proof of Theorem {4

Claim: Under the same setting as Theorem 3| but using
a fixed-stepsize 1, = n, Algorithm 1| satisfies (e, §)-DP
2

whenever 7 < for another constant c.

eN
c2L2Tlog(1/6)

Proof The only change of the proof for fixed stepsize
is that the expression for the variance of the Gaussian

noise z; becomes o? = 13 L*n? /72 for fixed stepsize.

We still apply Theorem [I] and Lemma 2 to find the
required conditions for (e, §)-DP:

Tq* N g < Xe/2

exp(—Ae/2) < 6, A < nZlog(1/qmo)

TFurther explained in Section |C|of the SM.
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Using the method described in the previous section,
one can find c3 and ¢4 such that when e = c3¢*>T and

q+/log(1/9)

Ny = C4g———— satisfy the above conditions. Then
if we plug in 1y and ¢, and compare it to n/N, it
is easy to see Algorithm [I] satisfies (e, d)-DP when

n < 2L2T10g(1/5) u

C Calculating Constants in Moment
Accountant Methods

For calculating the constants c¢; and c¢o, which

is a part of the moment accoutant method, we
refer to https://github.com/tensorflow/models/
tree/master/research/differential_privacy/
privacy_accountant m as an implimentation of
the moment accountant method. A comprehensive
description for the implimentation can be found int
Abadi et al.| (2016).

This code allows one to calculate the corresponding €(d)
given d(€),q, T, no using numerical integration. Once
€(9) is determined, it is easy to calculate ¢; and cq for
evaluating the upper bound for the stepsize.

D Assumptions on SG-MCMC
Algorithms

For the diffusion in , we first define the generator £
as:
A 1 1 * 2

L= 5VY-F+59(0)9(0)": D%, (4)
where v is a measurable function, D¢ means the k-
derivative of 1, * means transpose. a-b £ a” b for
two vectors a and b, A : B £ trace(A” B) for two
matrices A and B. Under certain assumptions, there

exists a function, ¢, such that the following Poisson
equation is satisfied Mattingly et al.| (2010]):

Ly=¢—¢, ()

where ¢ £ f ¢(0)p(dO) denotes the model average, with
p being the equlhbrlum distribution for the diffusion
(1), which is assumed to coincide with the posterior
distribution p(@|D). The following assumptions are
made for the SG-MCMC algorithms (Vollmer et al.,
2016; |Chen et al., [2015]).

Assumption 1 The diffusion s ergodic. Further-
more, the solution of exists, and the solution func-
tional v satisfies the following properties:
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e ¢ and its up to Sth-order derivatives D, are
bounded by a function V, i.e., |DFv|| < CxVP* for
k= (07 172a3)) Ckapk > 0.

o The expectation of V on {x;} is bounded:
sup; EVP(x;) < oo.

oV 18 smooth such that
Sup,eo,1) VP (sx+(1—35)y) <

CV(x)+VP(y)), Vvx € R™y € R"p <
max{2py} for some C > 0.

E Proof of Proposition

Claim: Under Assumption [I] in the section [D] the
MSE of SGLD with a decreasing stepsize sequence

E2Nt~1/3
{m < 2L2T2/51og(1/9)

a constant C independent of {n,T,7} and a constant

. N2
I'pr depending on T and U(+), as E (¢L - (;5)
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} as in Theorem [3|is bounded, for

where 7jg £
Proof

First, we adopt the MSE formula for the decreasing-
step-size SG-MCMC with Euler integrator (1-st order
integrator) from Theorem 5 of|Chen et al.| (2015]), which
is written as

E@Vﬁ)<C@2mwmw+4ﬁ3§W
(6)
where Sp £ Zthl n:, and AV, is a term related to gy,

which, according to Theorem 3 of |Chen et al.| (2017)),
can be simplified as

E AV
(N-7)N?2 [ 1
7,7 Z<j
_ 2
éupt ; (7)
T
where a;; = Vg logp(d; |6;).

Let I'j; £ max, I';. Substituting into (6)), we have

E(b—4) < ®)
ZtT n; N _ 2 1 (ZtT 77?) 2
(2?@2 (T 1) N-Ty + EtTm + (Z?m)
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Now, if we assume 79 = then we rewrite

0= n0t71/3T72/3'

Note Zt P
(8), we have:

P
c2L2log(1/6)’

1 —=T?*!. Plug this into the bound in
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F  Generalization Bound

Following [Raginsky et al. (2017), we need to make
the following assumptions to derive our generalization
bound. Actually, some of these assumptions are related
to Assumption [I] Interested readers are encouraged to
refer Section 9 of [Vollmer et al.| (2016) for details.

Assumption 2 Assume the likelihood function satis-

fies:

A.1 Let 0y be the initial value. There exists A,L > 0
such that

logp(d |6p)| < A,  |Velogp(d|6)| <L, Vd

A.2 For some M >0, Vdy,ds
[Velogp(di |[0) — Ve logp(d2 [0)]| < M [|d; — da|
A.8 For somem >0 and b >0,

(d,Vglogp(d|0)) > m|d|> —b, Vd,@

A.4 There exists a constant A € [0, 1), such that, for
each d and VO

E[|Velogp(d|8) — VoU(0)]] < 2A (M?]6]* + B?)
A.5 Let py be the distribution density of the initial 0,
Ko 2 log/e”e‘lzpo(G)dH < oo

In Raginsky et al.| (2017)), the inversed temperature
parameter 3 is required to be larger than or equal to
max{1,2/m}. In our setting, 5 = 1. Consequently, we

require % < 1, which is m > 2. Thus A.3 of the above
assumption turns into

(d,Vglogp(d|0)) >2|d|* —b, Vd,6

Furthermore, in Proposition [7] the interval of the small
constant w is

we (O min{ e 2O‘*/(TH))})

el SO

where A, is the uniform spectral gap defined as

[Veg(0)|*dr
[ llg(@)|*dm

g¢o/)<mﬂ—o},

where 7 is the stationary probability measure of the
diffusion defined on the training data. )\i might scale
exponentially w.r.t. the dimension r of 6 in general,
but also can be made dimension-free, for example, in

the entropy-SGD objective (Chaudhari et al.| (2017)).

Proof [Sketch Proof of Proposition [7] First, from The-
orem 1 in |[Raginsky et al| (2017)), for w satisfying @[),
taking the inversed temperature parameter § to be 1,
we have the generalization error bound

A 2 1nf in f{ g € CHR™) N L*(m),

E]:(éT)*f*
(r+ 1)2 1/4 1 (r+ 1)2
< N 7 _
O( . A% log — 4w | + N + rlog2

(T+1)

4
provided T = Q( ) and 7 < (%) :

Here O(+) and Q(+) hlde dependence on the parameters
A, L,m,b, M, kg. Together with the stepsize condition
to preserve DP in Theorem [4] we get that the stepsize

4
should satisfies n < min { (1og(uf/w))

log®

EN
’ ¢2L2T log(1/d) (-

Further hiding dependency on r, A and A, (as we only
wants to investigate the bound w.r;t. T, 7 and N), we
have

N . 1 1
EF(0r) — F <O(logw+w+N) . (10)
Since T x —=¢ log 2 we can simplify the above equa-
tion as

. 1
EF(0r) — F* <O (T1/5w4/5 + w4 N) .

To represent the bound without w, let z = %, m = z*.
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From T = Aw—ﬂ log® % we have

mes", = 5A 5me
4 4
=-m=W(—T
s =WiggT)

5 4 1/5
1 (54, \'°
log— = -W(—=T
8, <4W(5A )>
Substituting the formulas for w and log% into ((10))

and omitting constants independent of T results in the
corresponding bound specified in Proposition [7} |
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