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Abstract

Concerns related to data security and con-
fidentiality have been raised when applying
machine learning to real-world applications.
Differential privacy provides a principled and
rigorous privacy guarantee for machine learn-
ing models. While it is common to inject
noise to design a model satisfying a required
differential-privacy property, it is generally
hard to balance the trade-off between privacy
and utility. We show that stochastic gradi-
ent Markov chain Monte Carlo (SG-MCMC)
— a class of scalable Bayesian posterior sam-
pling algorithms — satisfies strong differential
privacy, when carefully chosen stepsizes are
employed. We develop theory on the perfor-
mance of the proposed differentially-private
SG-MCMC method. We conduct experiments
to support our analysis, and show that a stan-
dard SG-MCMC sampler with minor modifica-
tion can reach state-of-the-art performance in
terms of both privacy and utility on Bayesian
learning.

1 Introduction

Utilizing large amounts of data has helped machine
learning algorithms achieve significant success in many
real-world applications. However, such work also raises
privacy concerns. For example, a diagnostic system
based on machine learning algorithms may be trained
on a large quantity of patient data, such as medical
images. It is important to protect training data from
adversarial attackers (Shokri et al., 2017). However,
even the most widely-used machine learning algorithms
may implicitly memorize the training data (Papernot
et al., |2016), meaning that the learned model parame-
ters implicitly contain information that could violate
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the privacy of training data. Such algorithms may be
readily attacked (Fredrikson et all 2015)).

The above potential model vulnerability can be ad-
dressed by differential privacy (DP), a general notion
of algorithm privacy (Dwork, 2008} [Dwork et al., [2006]).
This approach is designed to provide a strong privacy
guarantee for general learning procedures, such as sta-
tistical analysis and machine learning algorithms, that
involve private information.

Among the popular machine learning models, Bayesian
inference has realized significant success recently, due to
its capacity to leverage expert knowledge and manifest
uncertainty estimates. Notably, the recently developed
stochastic gradient Markov chain Monte Carlo (SG-
MCMC) technique enables scalable Bayesian inference
for large datasets. While there have been many ex-
tensions of SG-MCMUC, little work has been directed
at studying the privacy properties of such algorithms.
Specifically, [Wang et al.| (2015) showed that an SG-
MCMC algorithm with appropriately chosen stepsizes
preserves differential privacy. In practice, however,
their analysis requires the stepsize to be extremely
small to limit the risk of violating privacy. Such a
small stepsize is not practical for sampling models with
non-convex posterior distribution landscapes, which
is the most common case in recent machine learning
models. More details of this issue are discussed in

Section [B.1]

On the other hand, |Abadi et al.| (2016)) introduced
a new privacy-accounting method, which allows one
to keep better track of the privacy loss (defined in
Section for iterative algorithms. Further, they
proposed a differentially-private stochastic gradient de-
scent (DP-SGD) method for training machine learning
models privately. Although they showed a significant
improvement in calculating the privacy loss, there is no
theory showing that their DP-SGD has a guaranteed
performance under privacy constraints.

In this paper we show that using SG-MCMC for sam-
pling large-scale machine learning models is sufficient to
achieve differential privacy with small privacy budgets.
Specifically, we combine the advantages of the afore-
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mentioned works, and prove that SG-MCMC methods
naturally satisfy the definition of differential privacy,
even without changing their default stepsize and num-
bers of iterations, thus allowing both good utility and
privacy in practice.

2 Preliminaries

We denote an input database with N data points as
X =(dy,...,dy) € XN, where d; € X. The parame-
ters of a model are denoted as 8 € R", e.g., the weights
of a deep neural network.

2.1 Differential Privacy

The concept of DP was proposed by [Dwork| (2008]) to
describe the privacy modeling property of a randomized
mechanism (algorithm) on two adjacent datasets. Here
two datasets X and X' are called adjacent if they only
differ by one record, e.g., d; # d} for some 4, where
d; € X and d] € X".

Definition 1 (Differential Privacy) For any pair
of adjacent datasets X and X', a randomized mecha-
nism M : XN — Y mapping from data space to its
range Y satisfies (e, 0)-differential privacy if for all
measurable S C range(M) and all adjacent X and X',
we have

Pr(M(X)e8) <ePr(M(X')eS8S)+4d

where Pr(e) denotes the probability of event e, and €
and § are two positive real numbers that indicate the loss
of privacy. When 6 = 0, we say M has e-differential
privacy.

Differential privacy places constraints on the difference
between the output distributions of two adjacent inputs
X and X’ by a random mechanism. If we assume that
X and X’ only differ by one record d;, by observing the
output, any outside attackers are not able to recognize
whether the output has resulted from X and X', as
long as € and § are small enough (making these two
probabilities close to each other). Thus, the existence
of the record d; is protected. Since the record in which
the two datasets differ by is arbitrary, the privacy pro-
tection is applicable for all records. To better describe
the randomness of M’s output with inputs X and X',
we define the privacy loss below.

Definition 2 (Privacy Loss) Given a randomized
mechanism M and a pair of adjacent datasets X and
X', let aux denote any auziliary input independent of
X or X'. For an outcome o € Y from the mechanism
M, the privacy loss at o is defined as:

PriM(aux, X) = o]
PriM(aux, X") = o]

cloy M, aux, X, X') 2 log

It can be shown that the (e,0)-DP is equivalent to
the tail bound of the distribution of its corresponding
privacy loss random variable (Abadi et al., [2016]) (see
Theorem [1|in the next section), thus this random vari-
able is an important tool for quantifying the privacy
loss of a mechanism.

2.2 Moments Accountant Method

To achieve differential privacy, random noise is in-
troduced to hide the existence of a particular data
point. For example, Laplace and Gaussian mechanisms
(Dwork et al.,|2014]) add i.7.d. Laplace random noise and
Gaussian noise, respectively, to a finite vector. While a
large amount of noise makes an algorithm differentially
private, it may sacrifice the utility of the algorithm.
Therefore, in such paradigms, it is important to calcu-
late the smallest amount of noise that is required to
achieve a certain level of differential privacy.

The moments accountant method proposed in (Abadi
et all 2016]) keeps track of a bound on the moments
of the random variables defined below. As a result, it
allows one to calculate the amount of noise needed to
ensure the privacy loss under a given threshold.

Definition 3 (Moments Accountant) Let M
XN = Y be o randomized mechanism, and let X and
X' be a pair of adjacent datasets. Let aux denote any
auziliary input that is independent of both X and X'.
The moments accountant parameterized by A > 0 is
defined as ap(N) 2 max am(N;aux, X, X'), where
aux, X, X’

am (N aux, X, X') £ log E[exp(Ac(M, aux, X, X"))] is
the log of the moment generating function at \.

Theorem 1 (Abadi et al.| (2016)))
[Composability] Suppose that M consists of a
sequence of adaptive mechanisms My, ..., My, where
M; H;;ll Vi x X = Y;, and Y; is the range of the
ith mechanism, i.e., M = My o---o My, with o the
composition operator. Then, for any \, we have

k

where the input for an, is defined as all an; ’s outputs,
{0}, for j < i; and apr takes Mls output, {o;} for
1 < k, as the auxiliary input.

[Tail bound] For any € > 0, the mechanism M is
(e,8)-DP for § = I)?\(li%l exp (aam(A) — Ae).
>

For the remainder of this paper, for simplicity we only
consider mechanisms that output a real-valued vector.
That is, M : XN — RP. Using the properties above,
the following lemma about the moments accountant
has been proven in (Abadi et al., [2016):



Bai Li, Changyou Chen, Hao Liu, Lawrence Carin

Lemma 2 Suppose that f : XN — RP with ||f(.)|l2 <
1. Let 0 > 1 and J is a mini-batch sample with sam-
pling probability q, i.e., ¢ = & with minibatch size of T.
If ¢ < ﬁ, for any positive real number A < ¢%In q%,
the mechanism M(X) =3, f(d;) + N(0,0°1) sat-
isfies

PAN+1)
(1 —q)o?

Remark 1 Since q is often a small number, we use

am(A) < +0(¢%)

the approximate bound ap(N) < w i the rest
of this paper. In our experiments, the exact bound is
numerically calculated based on the code from [Abadi
et al| (2016)

2.3 Stochastic Gradient Markov Chain
Monte Carlo

SG-MCMC is a family of scalable Bayesian sampling
algorithms, developed recently to generate approximate
samples from a posterior distribution p(8]X), with 6 a
model parameter vector. They are discretized numer-
ical approximations of continuous-time It6 diffusions
(Chen et al.l |2015; [Ma et al., |2015), whose station-
ary distributions are designed to coincide with p(6]X).
Formally, an It6 diffusion is written as

with ¢ the time index; @; € RP represents the full
variables in a system, where typically @; O 0, (thus
p > r) is an augmentation of the model parameters;
and W; € RP is p-dimensional Brownian motion. Func-
tions F' : RP — RP and g : R? — RP*P are assumed
to satisfy the Lipschitz continuity condition (Ghosh)
2011). For example, the stochastic gradient Langevin
dynamic (SGLD) algorithm defines ® = 6, and
F(©,) = —VeU(6), g(©;) = V21,, where U(0) &
—logp(0) — Zfil log p(d; |@) denotes the unnormal-
ized negative log-posterior, and p(0) is the prior distri-
bution of 8. which defines ® = (0,q), and F(O;) =
( —Bq—qVQU(H) ) 9(8) = @( 3 I(:l ) for a
scalar B > 0; q is an auxiliary variable known as
the momentum (Chen et al., [2014; Ding et al., [2014).
Similar formulae can be defined for other SG-MCMC
algorithms, such as the stochastic gradient thermostat
(Ding et al.,[2014)), and other variants with Riemannian
information geometry (Patterson and Teh| [2013; Ma
et al., 2015; |Li et al., 2016).

To make the algorithms, for example SGLD, scalable
in a large-datasetting, i.e., when N is large, an unbi-
ased version of VgU(6) is calculated with a random
subset of the full data, denoted VU (6) and defined as

VolU(0) = Vlogp(0) + o > a,eslogp(d; |0), where J
is a random minibatch of the data with size 7 (typically
T K N).

Algorithm 1 SGLD with Differential Privacy

Require: Data X of size N, size of mini-batch 7, num-
ber of iterations T', prior p(0), privacy budget €, do,
gradient norm bound L. A decreasing/fixed-step-
size sequence {n;}. Set t = 1.

1: for t € [T] do
2:  Take a random sample J; with sampling proba-
bility ¢ = 7/N. For each i in Jy:

Calculate g¢(d;) < Vlog¢(6:|d;)

Clip norm: g;(d;) < g:(d;)/ max (1, 7‘|gt(gi)“2>

Sample each coordinate of z; iid from N (0, %)

Update 011 — 0, —

Nt (%p(g) + % ZieJ,, gt(di)) + 2z

7:  Return ;47 as a posterior sample (after burn
in).
8: end for
9: Compute the overall privacy cost (e, d) using the
moment accountant method. Ensure ¢ < ¢p and
0 < dg.
10: Output Oy ;.

We typically adopt the popular Euler method to solve
the continuous-time diffusion by an n-time discretiza-
tion (stepsize being 7). The Euler method is a first-
order numerical integrator, thus inducing an O(n) nu-
merical error (Chen et al., 2015). Algorithm [1] illus-
trates the application of the SGLD algorithm with the
Euler integrator for differential privacy, which is almost
the same as the original SGLD, except that there is
a gradient norm clipping in Step 4 of the algorithm.
The norm-clipping step ensures that the computed
gradients satisfy the Lipschitz condition, a common
assumption on loss functions in a differential-privacy
setting (Song et al., [2013; [Bassily et al., |2014; Wang
et all |2015). The reasoning is intuitive: since differen-
tial privacy requires the output to be non-sensitive to
any changes on an arbitrary data point, it is thus cru-
cial to bound the impact of a single data point to the
target function. The Lipschitz condition is easily met
by clipping the norm of a loss function, a common tech-
nique for gradient-based algorithms to prevent gradient
explosion (Pascanu et al, 2013). Note the clipping is
introduced only for practical reasons. The Lipschitz
property is typically assumed in SG-MCMC for the
feasibility of theoretical analysis |Chen et al.| (2015]),
thus no clipping is needed under the Lipschitz assump-
tion. Consequently, the only difference between our
DP version of SGLD and standard SGLD is the choice
of stepsize sequence, necessary to maintain the DP
property. More details are discussed in Section [3.2]
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3 Privacy Analysis for Stochastic
Gradient Langevin Dynamics

We first develop theory to prove Algorithm [1]is (e, d)-
DP under a certain condition. Our theory shows a
significant improvement of the differential privacy ob-
tained by SGLD over the most related work by |[Wang
et al| (2015). To study the estimation accuracy (util-
ity) of the algorithm, the corresponding mean square
error estimation bounds are then proved under such
differential-privacy settings.

3.1 Stepsize bounds for differentially-private
SGLD

Previous work on SG-MCMC has shown that an ap-
propriately chosen decreasing stepsize sequence can
be adopted for an SG-MCMC algorithm (Teh et al.,
2016; [Chen et al., |2015)). For the sequence in the form
of n; = O(t™*), the optimal value is @ = % in order
to obtain the optimal mean square error bound (de-
fined in Section . Consequently, we first consider
ne = O(t~/3) in our below analysis, where the con-
stant of the stepsize can be specified with parameters of
the DP setting, shown in Theorem [3] The differential
privacy property under a fixed stepsize is also discussed

subsequently.

Theorem 3 If we let the stepsize decrease at the rate
of O(til/S), there ewist positive constants ci and co
such that given the sampling probability ¢ = 7/N and
the number of iterations T, for any € < c1¢*T?/3, Al-
gorithm satisfies (€,0)-DP as long as n; satisfies:

1.y <35

2
q°N
2. Nt > 55512

ENt—1/8

3. Nt < c2L2T?/31og(1/6) "

Remark 2 In practice, the first condition is easy to
satisfy, as % 1s often much larger than the stepsize,
especially in a large-data setting (N is large). The
second condition is also easy to satisfy with properly
chosen L and q, and we verify this condition in our
experiments. In the rest of this section, we only focus
on the third condition as an upper bound to the stepsize.

It is now clear that with optimal decreasing stepsize
sequence (in terms of MSE defined in Section [3.2), Al-
gorithm [I| maintains (e, §)-DP. There are other variants
of SG-MCMC which use fixed stepsizes. We show in
Theorem [ that in this case, the algorithm still satisfies
(e,8)-DP.

Theorem 4 Under the same setting as Theorem [3,
but using a fized-stepsize gy = n, Algorithm [1] satisfies

(e,8)-DP whenever the stepsize satisfies i) and ii) in

Theorem
constant c.

2
as well as n < Woj\;u/é) for another

In (Wang et al., |2015)), the authors proved that the
SGLD method is (e, d)-DP if the stepsize 7 is small
2

enough to satisfy n; < 128L2T10g(;5T/6) o2 (2/9) " This
bound is relatively small compared to ours (explained
below), thus it is not practical in real applications.
To address this problem, |Wang et al.| (2015)) proposed
the Hybrid Posterior Sampling algorithm, that uses
the One Posterior Sample (OPS) estimator for the
“burn-in” period, followed by the SGLD with a small
stepsize to guarantee the differential privacy property.
We note that for complicated models, especially with
non-convex target posterior landscapes, such an upper
bound for the stepsize still brings practical problems,
even with the OPS. One issue is that the Markov chain
will mix very slowly with a small stepsize, leading to
highly correlated samples.

By contrast, our new upper bound for the stepsize in
ENt—1/3
c2L2T?/310g(1/6)’

in (Wang et al., 2015) by a factor of T"/31og(T/4) at
the first iteration. Note the constant c3 in our bound
is empirically smaller than 128 (see the calculating
method in Section [C| of the SM), thus still giving a
larger bound overall.

Theorem e < improves the bound

To provide intuition on how our bound compares with
that in (Wang et al.,2015)), consider the MNIST dataset
with N = 50,000. If we set e = 0.1, § = 107°, T =
10000, and L = 1, our upper bound for decreasing
stepsize can be calculated as 7; < 0.103, consistent
with the default stepsize when training MNIST (Li
et al., |2016]). More importantly, our theory indicates
that using SGLD with the default stepsize 7, = 0.1
is able to achieve (e,d)-DP with a small privacy loss
for the MNIST dataset. As a comparison, [Wang et al.
(2015)) gives a much smaller upper bound of 7; < 1.54 x
1076, which is too small too be practically used. More
detailed comparisons for these two bounds is given
in Section when considering experimental results.
Finally, note that as in (Wang et al.l 2015), our analysis
can be easily extended to other SG-MCMC methods
such as SGHMC (Chen et al.,[2014)) and SGNHT (Ding
et all [2014). We do not specify the results here, for
conciseness.

3.2 Utility Bounds

The above theory indicates that, with a smaller stepsize,
one can manifest an SG-MCMC algorithm that pre-
serves more privacy, e.g., (0,)-DP in the limit of zero
stepsize. However, this does not mean one can choose
arbitrarily small stepsizes, because this would hinder
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the exploration of the parameter space, leading to slow
mixing and potentially worse generalization. We in-
vestigate utility bounds w.r.t. mixing (how a sample
estimate approximates the true posterior) and a gener-
alization property (how a specific sample generalizes
to unseen data for optimization) of the differentially-
private SG-MCMC.

Mixing bound with deceasing stepsizes Follow-
ing standard settings for SG-MCMC (Chen et al.| 2015}
Vollmer et al., 2016), we use the mean square error
(MSE) under a target posterior distribution to measure
the estimation accuracy for a Bayesian model. Specifi-
cally, our utility goal is to evaluate the posterior average
of a test function ¢(8), defined as ¢ = [ ¢(0)p(0|D)d0,
with a posterior distribution p(8|D). The posterlor
average is typically 1nfea81ble to compute thus we use
the sample average, pp 2 Z o Zt 1 M:P(0:), to ap-
proximate ¢, where {6;}1_; are the samples from an
SG-MCMC algorithm. The MSE we desire is defined

2
as E (¢T - (E)
an SG-MCMC algorithm as in previous work (Vollmer
et al., |2016; |Chen et al.| [2015]), which are detailed in
Section |D] of the SM. We assume both the correspond-
ing Ito diffusion (in terms of its coefficients) and the
numerical method of an SG-MCMC algorithm to be
well behaved.

. We impose the same assumptions on

Proposition 5 Under Assumption i the SM,

the MSE of SGLD with a decreasing stepsize se-
eENt~1/3
c2L2T?2/31og(1/6)
bounded, for a constant C independent of {n,T, T}
and a bounded constant Tp; depending on U(-)

. N2
(see the proof for details), as E(gf)L*qﬁ) <
C(3(% 1) N2ryTt + 5k

~ A €2
0 = ZILZlog(i/3)"

quence {n; < } as in Theorem |4 is

+27)ST 2/3), where

The bound in Proposition [5| indicates how the MSE
decreases w.r.t. the number of iterations T" and other
parameters. It is consistent with standard SG-MCMC,
leading to a similar convergence rate. Interestingly, we
can also derive the optimal bounds w.r.t. the privacy
parameters. For example, the optimal value for 7o when
fixing other parameters can be seen as 79 = O (T 2/ 9).
Consequently, we have €2 = O (L2T2/9 log(1/5)) in the
optimal MSE setting. Different from the bound of
standard SG-MCMC (Chen et all 2015), when consid-
ering a (e, 6)-DP setting, the MSE bound induces an
bgi# does not

approach zero.

Mixing bound with a fixed stepsize We also wish
to study the MSE under the fixed-step-size case. Con-

sider a general situation, i.e., 1, = 1, for which [Chen
et al.| (2017) has proved the following MSE bound for
a fixed steps size, rephrased in Proposition [0}

Proposition 6 With the same Assumption as Propo-
sition[9], the MSE of SGLD is bounded aff:

. N _ NPT
E(¢L—¢) <C<(T)M+T1n+n2>

Furthermore, the optimal MSE w.r.t. the stepsize 1) is
bounded by

(60 o) so )

with the optimal stepsize being n = O(T~1/3).

From Proposition [6] the optimal stepsize, i.e., n =
O(T~'/3), is of a lower order than both our differential-
privacy-based algorithm (n = O(T~!)) and the algo-
rithm in Wang et al.| (2015), i.e., n = O(T ' log ™' T).
This means that for T large enough, both ours and
the method in (Wang et al., |2015) might not run on
the optimal stepsize setting. A remedy for this is
to increase the stepsize at the cost of increasing pri-
vacy loss. Because for the same privacy loss our step-
sizes are typically larger than in (Wang et al.l 2015]),
our algorithm is able to obtain both higher approx-
imate accuracy and differential privacy. Specifically,
to guarantee the desired differential-privacy property
as stated in Theorem [d] we substitute a stepsize of
n = ﬂgﬁ% into the MSE formula in Lemma

) N2
Consequently, the MSE is bounded by E (¢L — (b) <
(X-1N°1r c2L%log 4 N2 .

c e i cALIT7 log? (1/5)) which
is smaller than that in the method of [Wang et al.

(2015).

Generalization error bound In terms of general-
ization error, our objective is to minimize U(6) in
an infinite-sized dataset, i.e., minimizing F(0) =
Ep[logp(d|0)], where P is the unknown probability
law of the data. Let F* £ infg F(0), and 67 be the
final sample returned by our DP-SGLD. We investigate
the generalization ability in terms of the expected ex-
cess risk: EF(07) — F*, where the expectation is taken
over the stochasticity of the algorithm. Note different
from (Raginsky et al. [2017]), which uses a tempered
version of SGLD for optimization, it still make sense
to use our proposed DP-SGLD for optimization as our
algorithm is a special case of tempered-SGLD with the

*With a slight abuse of notation, the constant C is
independent of {n, T, 7}, but might be different from that
in Proposition [5
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temperature set to 1. In the following, we show that it
is possible to use our proposed DP-SGLD for optimiza-
tion, whose generalization error can be bounded.

Following the techniques presented in (Raginsky et al.
2017), with some standard assumptions detailed in

Section [F] of the SM, we can derive a generalization-
error bound for the proposed DP-SGLD, where we only
consider the impact of the fixed-stepsize 7, the total
number of iterations T and the dataset size N.

Proposition 7 Under Assumption [3 in Section [F],
for a positive w small enough and satisfying w >

—771/410g(w such that T = Alog® L/wt fo_r
some constant A independent of w, and n <

. 4 2 . .
min { (log(“l’/w)) , CQLQ;I(])\;(I/(;) }, the generalization

error is bounded as

EF(67) — F* <O (T1/5w4/5 +w+ %) =

15, 4 s 4 1
O(W (SAT)—FeXp{ % (5AT)}+N),

where W (-) is the Lambert W function (Corless et al.
.

Proposition [7] seems to indicate that the generalization
error grows w.r.t. the number of iterations at a rate
of T'/5 when T is large. However, w would become
small as T' grows. Consequently, one should choose
an appropriate w so that the terms 7%/5w%5 and w
in the bound reach a balance, achieving a minimum
bound. Proposition[7]also indicates that there is always
a nonzero gap in the bound of EF(07) — F*, even if
we have infinite data.

4 Experiments

We test the proposed differentially-private SG-MCMC
algorithms by considering several tasks, including logis-
tic regression and deep neural networks, and compare
with related Bayesian and optimization methods in
terms of both algorithm privacy and utility. We first
verify the stepsize bounds presented in Theorems 3] and

z]

4.1 Stepsize Upper Bound

We compare our upper bound for the stepsize in Sec-
tion with the bound of [Wang et al.| (2015). Sec-
tion [C]in the SM describes how to calculate the bound,
which denotes the largest stepsize allowed to preserve
(e,6)-DP.

In this simulation experiment, we use the following

setting: N = 50,000, T = 10,000, L = 1, and § = 10~°.

TThe specific range is given in Section [F|in the SM.

10° 4
g 1072
w
Q
]
0 -4
é 107% A
el
i=
3
a
. 107
0)
o
o
)
-8
10 —— Wang et al.
—— Fixed-stepsize
—— Decreasing-stepsize
10710 1+ T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
€
Figure 1: Upper bounds for fixed-stepsize and

decreasing-stepsize (first step) with DP loss ¢, as well
as the upper bound from (Wang et al., 2015).

We vary e from 0.02 to 1.7 for different differential-
privacy settings, for both ours (fixed and decreasing-
stepsize cases) and the bound in (Wang et al., 2015),
with results in the left plot in Figure [I} It is clear that
our bounds give much larger stepsizes than from
at the same privacy loss, e.g., 107! vs. 1074,
Our stepsizes appear to be much more practical in real
applications.

[

o
E)
L

—— N=1,000
—— N=10,000

—— N=100,000
—— N=1,000,000

Upper Bound for Step size
=
<

._.
)
\

T
£

102 4
10! 4
10° 4
101 4
1072 4
1073 4 — L=0.1 — L=1
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1074 4

Figure 2:  Stepsize upper bounds for N =
103,10%,10°,10% with fixed L = 1 (top), and L =
0.1,0.5,1.0,10.0 with fixed N = 10* (bottom). In both
simulations, we let 6 = 1/N and T = N.

Upper Bound for Step size

In the rest of our experiments, we focus on using the
decreasing-stepsize SGLD as it gives a better MSE
bound, as shown in Proposition [5} For the parameters
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in our bounds, i.e., (N, T,€,d, L), the default setting is
often chosen to be § = O(1/N) and T = O(N); L is
typically selected from a range such as L € {0.1,1,10}.
In this experiment, we investigate the sensitivity of our
proposed upper bound w.r.t. N and L when fixing other
parameters. The results are shown in the right plot
in Figure [1} from which we observe that our proposed
stepsize bound is stable in terms of the data size IV,
and is approximately proportional to 1/L. Such a
conclusion is not a direct implication from the upper
bound formula in Theorem [3] as the constant ¢y also
depends on (N, T,¢€,d,L). The result also indicates a
rule for choosing stepsizes in practice by using our upper
bound, which fall into the range of (1074,0.1). When
using such stepsizes, we observe that the standard
SGLD automatically preserves (e, d)-DP even when €
is small.

4.2 Logistic Regression

0.85
0.84
0.83 4
>
3
5 0.82
1o
1%}
©
% 0.81
()
o
0.80 ——- Non-private
DP-SGLD
0.79 —— DPVI
' Hybrid+SGLD
0.78 4 OPS
: PATE
-4 -3 -2 -1 0 1

Figure 3: Test accuracies on a classification task based
on Bayesian logistic regression for DPVI, One-Posterior
Sample (OPS), Hybrid Posterior sampling based on
SGLD, Confident-GNMax and our proposed DP-SGLD,
considering different choices of privacy loss €. The non-
private baseline is obtained by standard SGLD.

In the remaining experiments, we compare our pro-
posed differentially-private SGLD (DP-SGLD) with
other methods. The Private Aggregation of Teacher
Ensembles (PATE) model is proposed in (Papernot
et al., 2016)) for differentially private training of ma-
chine learning models. PATE takes advantage of the
moment accountant method for privacy-loss calcula-
tion, and uses a knowledge-transfer technique via semi-
supervised learning, to build a teacher-student-based
model. This framework first trains multiple teach-
ers with private data; these teachers then differential
privately release aggregated knowledge, such as label
assignments on several public data points, to multiple

students. The students then use the released knowl-
edge to train their models in a supervised-learning
setting, or they can incorporate unlabeled data in a
semi-supervised-learning setting. In (Papernot et al.,
2018)), the authors proposed improved analysis, named
Confident-GNMax, on the PATE model, which gives
the state-of-the-art privacy and performance balance.
As the semi-supervised setting requires a large amount
of non-private unlabeled data for training, which are
not always available in practice, for fair comparison,
we only consider supervised setting in this experiment.

We compare DP-SGLD with Confident-GNMax, the
Hybrid Posterior Sampling algorithm (Wang et al.,
2015)), and recently proposed differentially private vari-
ational inference (DPVI) (Jalko et al. 2016) on the
Adult dataset from the UCI Machine Learning Reposi-
tory (Lichman, [2013]), for a binary classification task
with Bayesian logistic regression, under the DP setting.
We fix § = 10~%, and compare the classification accu-
racy while varying e. We repeat each experiment ten
times, and report averages and standard deviations, as
illustrated in Figure

Our proposed DP-SGLD achieves a higher accuracy
compared to other methods and is close to the baseline
with plain SGLD. In fact, when ¢ ~ 0.08 or above,
our DP-SGLD becomes the standard SGLD, therefore
has the same test accuracy as the baseline. Note that
Confident-GNMax obtains the worst performance in
this experiment. This might be because under a su-
pervised setting with small € and only labeled data,
the students are restricted to use an extremely small
amount of training data.

4.3 Deep Neural Networks

We compare our methods with Confident-GNMax
(CGNMax) (Papernot et al., [2018) and the DP-SGD
(Abadi et al., |2016) for training deep neural networks
under DP settings. We use two datasets: (i) the stan-
dard MNIST dataset for handwritten digit recognition,
consisting of 60,000 training examples and 10,000 test-
ing examples (LeCun and Cortes|, 2010); and (i¢) the
Street View House Number (SVHN) dataset, which
contains 600,000 32 x 32 RGB images of printed digits
obtained from pictures of house number in street view
(Netzer et al). We use the same network structure as
for the Confident-GNMax model, which contains two
stacked convolutional layers and one fully connected
layer with ReLUs for MNIST, and two more convo-
lutional layers for SVHN. We use standard Gaussian
priors for the weights of the DNN. For the MNIST
dataset, the standard SGLD is considered with stepsize
1 = 0.3, batch size 128, number of epochs 20, and
L = 0.3. This setting satisfies (¢, d)-DP for ¢ = 0.99
and § = 107°. For the SVHN dataset, the standard
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SGLD with stepsize n; = 0.1 satisfies (e, d)-DP for
€ =297 and § = 1075 when we set L = 5. The test
accuracies are shown in Table [I] In practice, we found
keeping a constant stepsize instead of decreasing yields
better privacy and utility balance.

Table 1: Test accuracies on MNIST and SVHN.

Dataset | Methods € 1) Accuracy
Non-Private 99.34%
DP-SGD 0.5 [ 107> [ 90.00%

MNIST | DP-SGD 8.0 [ 107> | 97.00%
CGNMax 1.97 [ 107° | 98.51%
DP-SGLD | 0.99 | 10=° | 99.21%
Non-Private 92.80%

SVHN | CGNMax 496 | 107% | 91.62%
DP-SGLD | 2.97 | 107 | 91.89%

It is shown that SGLD obtains better test accuracy
than the state-of-the-art differential privacy methods,
remarkably with much less privacy loss.

Application to generative-adversarial-network
(GAN) training Our analysis also sheds lights on
how SG-MCMC methods help improve the generaliza-
tion for training generative models. For example, in
(Saatchi and Wilson|, |2017)), a Bayesian GAN model
trained with SGHMC is proposed and shows promis-
ing performance in avoiding mode-collapse problem.
According to |[Arora et al| (2017), mode collapse is
potentially due to weak generalization. As the con-
nection between differential privacy and generaliza-
tion of a model has been well acknowledged (Wang
et al., 2016)), it may imply Bayesian GAN moderates
the mode-collapse problem, because SGHMC naturally
leads to better generalization through DP. We per-
form additional experiments with GAN to verify our
conjecture. Our experiment suggests under the same
differential privacy setting (e = 0.2, = 107°), GAN
trained by SGHMC achieves 98.3% accuracy on the
semi-supervised learning task with 100 labeled data on
MNIST, outperforming the one trained by DP-SGD
that achieves 90.8%.

5 Related Work

There are a number of papers dealing with differentially-
private stochastic gradient based methods. For exam-
ple, [Song et al.|(2013) proposed a differentially-private
SGD algorithm, which requires a large amount of noise
when mini-batches are sampled randomly. The theo-
retical performance of noisy SGD is studied in (Bassily
et al.| 2014) for the special case of convex loss functions.
Therefore, for a non-convex loss function, a common
setting for many machine learning models, there are no

theoretical guarantees on performance. In (Abadi et al.,
2016)), another differentially private SGD was proposed,
requiring a smaller variance for added Gaussian noise,
yet it still did not provide theoretical guarantees on
utility. On the other hand, the standard SG-MCMC
has been shown to be able to converge to the target pos-
terior distribution in theory. In this paper, we discuss
the effect of our modification for differential privacy on
the performance of the SG-MCMC, which endows theo-
retical guarantees on the bounds for the mean squared
error of the posterior mean.

Bayesian modeling provides an effective framework for
privacy-preserving data analysis, as posterior sampling
naturally introduces noise into the system, leading to
differential privacy (Dimitrakakis et al., |2014; [Wang
et al.} [2015). In (Foulds et al., [2016), the privacy for
sampling from exponential families with a Gibbs sam-
pler was studied. In (Wang et al.| |2015) a comprehen-
sive analysis was proposed on the differential privacy
of SG-MCMC methods. As a comparison, we have de-
rived a tighter bound for the amount of noise required
to guarantee a certain differential privacy, yielding a
more practical upper bound for the stepsize.

6 Conclusion

Previous work on differential privacy has modified ex-
isting algorithms, or has built complicated frameworks
that sacrifice performance for privacy. In some cases
the privacy loss may be relatively large. This paper
addresses a privacy analysis for SG-MCMC, a stan-
dard class of methods for scalable Bayesian posterior
sampling. We have significantly relaxed the condi-
tion for SG-MCMC methods being differentially pri-
vate, compared to previous works. Our results indicate
that standard SG-MCMC methods have strong privacy
guarantees for problems of large scale. In addition,
we have proposed theoretical analysis on the estima-
tion performance of differentially private SG-MCMC
methods. Our results show that even when there is
a strong privacy constraint, the differentially private
SG-MCMC still endows a guarantee on the model per-
formance. Our experiments have shown that standard
SG-MCMC methods achieve both state-of-the-art util-
ity and strong privacy compared with related methods
on multiple tasks, such as logistic regression and deep
neural networks.
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