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A Derivation of the f -divergence
Lower Bound

A detailed derivation of (6) is given here. The lower
bound of the f -divergence is given as
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The second step follows the lower bound of f -divergence.
The last step is derived because that rs(h) is an esti-
mation of Qs(h)

PT (h) . (7) can be derived by re-arranging
the terms.

B Proof of Theorem 3.1

In this section, we give the proof sketch of Theorem 3.1.
For completeness, we repeat the theorem here.
Theorem. Assume that P s(h|y) = PT (h|y) =
P (h|y), the variance in the feature space is finite, and
the label proportions are all non-zero. When the num-
ber of training and testing samples goes to infinity, �̂T

is asymptotically consistent for �T if (M s)| M s is
invertible for all s.

Proof. Considering first a single source domain, the
quadratic form in Equation 3 would give that the esti-
mator is

�̂ = ((M s)|(M s))�1(M s)|µT . (13)

From the assumption that we have finite variance and
that conditional distributions are equivalent for all
source and target domains, the central limit theorem
gives that as the number of samples increases

(µs
l � µ⇤

l ) ⇠ N (0,
1

ns�s
l

⌃l), (14)

This is equivalent to noting that M s is asymptotically
centered around M⇤, because M s is just the concate-
nation of these individual vectors. Likewise, we have
that asymptotically

✏ = (µT �M⇤�T ) ⇠ N (0,
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Using the equality from (15) in our estimator of (13),
we have that

�̂ = ((M s)|(M s))�1(M s)|(M⇤�T + ✏). (16)

Note that asymptotically the errors go to 0 from (14)
and (15) on all terms in (16), so the estimator has the
asymptotic expectation of

lim
ns!1,nT!1

E[�̂T ]

= lim
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E[((M s)|(M s))�1(M s)|(M⇤�T + ✏)]

= ((M⇤)|(M⇤))�1(M⇤)|M⇤�T = �T ,

if the inverse exists. Therefore, by the weak law of
large numbers, limns!1,nT!1 �̂T = �T .
In two domains, limns!1,nT!1 �̂T = �T shows the
final result of Theorem 3.1.

C Time Series Data Label Proportion
The label proportion of the two EEG datasets used in
experiment Section 5.2 are visualized in Figure 3.

(a) ASD Dataset Label Proportion

(b) LFP Dataset Label Proportion
Figure 3: (Left) Label constitution of the ASD dataset
in each domain. ‘L1’, ‘L2’, ‘L3’ means before treatment,
six months after treatment and twelve months after
treatment, respectively. (Right) Label constitution of
the LFP dataset. This dataset is for mice behavior
classification using LFP signal. ‘L1’, ‘L2’, ‘L3’ mean
home cage, open field and tail suspension, respectively.
Please refer the the text for more detailed introduction.


