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A  Appendix
Here, we report the proofs missing from the main text.

A.1 Details of Example 1

Consider the function f(z) = $2?. The gradient in ¢-th iteration is V f(2;) = x;. Let the stochastic gradient be

defined as g, = Vf(a:t) + ft, where P(gf = O't) = 17757 P(gf = *%O’t) = % and P(gt = *%O’t) = %

Let A2 Y"1 g2+ 3. Then
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This expression can be negative, for example, setting x; =1, 0, =10, A =10, e =0 or e = 0.1.

A.2 Proof of Lemma 2

Lemma 9. Let a; > 0,---,T and f : [0,4+00) — [0, +00) nonincreasing function. Then
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Proof. Denote by s; = ZEZO a;.
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Summing over i = 1,--- , T, we have the stated bound. O
Proof of Lemma 2. The proof is immediate from Lemma 9. O

A.3 Proofs of Section 6.1

Proof of Lemma 4. From (4), for any ,y € R?, we have

fla+) < F@)+ (VF(@).9) + 2yl
Take y = —ﬁVf(:n), to have

fatw) < f@)+ (57— 57 ) IVS@IP

Hence,
IVF(@)|? < 2M(f(x) = f(z +y)) < 2M(f(2) — min f(u)). O

1
Proof of Lemma 5. If A < Bz, then & < C(2Bx)2*¢, so z < [C(QB)%“} Y*7° And if A > Bz, then z <
C(2A)2 %€, Taking the maximum of the two cases, we have the stated bound. O
Proof of Lemma 6. Assume that Bx > A. We have that
2? < (A4 Bx)(C + DIn(A + Bx)) < 2Bx(C + DIn(2Bx)) < 2Bx(C + 2DV2Bzx),

that is
r < 2BC +4BDvV?2Bx.
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We can solve this inequality, to obtain
x < 32B*D? + 2BC + 8B*DVC.

On the other hand, if Bx < A, we have x < %. Taking the sum of these two case, we have the stated bound. [

Proof of Lemma 7. Let f(z) = (x + y)? — 2P — y?. We can see that f'(z) = p(x + y)?~! — pzP~! < 0 when
z,y > 0. So f(x) < f(0) = 0. The inequality holds. O

Lemma 10. Ifz >0, a > 0, then In(z) < a(z — 1).

Proof of Lemma 10. Let f(z) = In(z) — azs +a. f'(z) = 1_ z=~1is positive when 0 < z < 1, f/(1) = 0 and
f'(z) <0 when z > 1. So f(z) < f(1) = 0. The inequality holds. O

Proof of Lemma 8. Using the assumption on the noise, we have
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that implies

E {max IV f(x;) — (:I:i7§i)||2] <o?(1+1InT). (12)

1<i<T

Hence, when € > 0, we have
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where in second inequality we used Lemma 2 and in fourth one we used (12). Note that the analysis after the
second inequality also holds when € = 0.
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And when ¢ = 0, we have
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where in first inequality we used Lemma 10 and in the third one we used Jensen’s inequality. Putting things
together, we have
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A.4 Proofs of Section 5
Proof of Lemma 3. From (4), we have

M 2
Fl@er1) < fl@e) + (V@) Berr = @) + - lles — 2]
M
= fxe) + (Vf(e), n (V) — g(@e, &) — (VI (@), m, V f (1)) + 7I|mg(wt,£t)|l2~
Taking the conditional expectation with respect to &1,--- ,&—1, we have that
E(V f(e),ny (V@) — g(@e,&)))] = (V) n V(@) — mEe[g (e, &)]) = 0.
Hence, from the law of total expectation, we have
M 2
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Summing over ¢t = 1 to T and lower bounding f(xry1) with f*, we have the stated bound. O

Proof of Lemma 1. Since the series Y .-, a; diverges, given that Y .-, a;b; converges, we necessarily have
liminf; ;. by = 0. So there exists a subsequence {b;)} of {b;} such that lim; o b;+) = 0.

Let us proceed by contradiction and assume that there exists some a > 0 and some other subsequence {b,, }
of {b;} such that by, > « for all t. In this case, we can construct a third subsequence {b;(;} of {b;} where the
subindices j(t) are chosen in the following way:

4(0) = min{l > 0: b, > a}
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and, given j(2t),

|
§(2t+1) =min{l > j(20) : by < Sa},

1
J2t+2)=min{l > j(2t+1) : b < za}.

[\

Note that the existence of {b;;)} and {b,,(+)} guarantees that j(t) is well defined. Also by (13) and (14)
b < %for j(2t) <1< j(2t+1)— 1.

Then, denoting ¢; = Zg@;:l) 1a we have

oo J(2t+1)—

00 >Zatbt >Z Z albl < %Zqﬁt.
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Therefore, we have lim;_, o, ¢¢ = 0.

On the other hand, by (13) and (14), we have b;2¢) > o, bj2¢41) < 7, 50 that

o j(2t+1)—1 j(2t+1)—1
5 Shien —bjen = D, (b)) < Y Ka=Ke.
1=75(2t) 1=j(2t)

So ¢ > 2 %> which is in contradiction with lim; o, ¢¢ = 0. Therefore, b; goes to zero.

Proof of Theorem 2. We proceed similarly to the proof of Theorem 1, to get
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Observe that
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where the last inequality comes from the same reasoning in (5). Hence, we have
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Hence, with probability 1, we have
) oo d d oo
Z Vf(xe),neVf(ze)) sz,]vf th ZZm,JVf mt
t=1 t=1 j=1 j=1t=1
and, for any j=1,--- ,d,
oo
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Now, observe that the Lipschitzness of f and the bounded support of the noise on the gradients gives
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Using the fact the f is L-Lipschitz and M-smooth, we also have

[(Vf(@e41))5)? = (VF(@));)*| = (VF(@e41)); + (VF(@0));) - [(Vf(@e11)); = (VS ()]
S 2LM||@py1 — @] = 2LM |m,g (e, &)|| < 2LM (L + S)ne.

Hence, we case use Lemma 1 to obtain

lim ((Vf(2:));)? = 0.

t—o0

For the second statement, observe that, with probability 1,
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Hence, noting that Y ;= + = oo, we have that liminf, o ((V f(z));)%"/27 = 0.



