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A Real to virtual slot mapping

For the analysis, let t(τ) denote the real slot when the real loss lt(τ) corresponding to l̃τ was incurred, i.e., l̃τ = l̂t(τ)|t(τ)+dt(τ)
. Also

define an auxiliary variable s̃τ = τ − 1− Lt(τ)−1. See an example in Fig. 6 and Table 1.

Lemma 6. The following relations hold: i) s̃τ ≥ 0, ∀τ ; ii)
∑T
τ=1 s̃τ =

∑T
t=1 dt; and, iii) if maxt dt ≤ d̄, we have s̃τ ≤ 2d̄, ∀τ .

Proof. We first prove the property i) s̃τ ≥ 0, ∀t. Consider at virtual slot τ , the observed loss is lt(τ)(at(τ)) with corresponding
s̃τ = τ − 1 − Lt(τ)−1. Suppose that Lt(τ)−1 = m, where 0 ≤ m ≤ t(τ) − 1 (by definition of Lt(τ)−1). The history Lt(τ)−1 = m
suggests that at the beginning of t1 = t(τ), the number of received feedback is m. On the other hand, the loss lt(τ)(at(τ)) is observed
at the end of slot t2 = t(τ) + dt(τ) ≥ t1, thus at the beginning of t2, there are at least m observations. Hence we must have τ ≥ m+ 1.
Then by the definition, s̃τ ≥ m+ 1− 1−m = 0.

Then for the property ii)
∑T
τ=1 s̃τ =

∑T
t=1 dt, the proof follows from the definition of s̃τ , i.e.,

T∑
τ=1

s̃τ =

T∑
τ=1

(
τ − 1− Lt(τ)−1

)
=

T∑
t=1

(t− 1)−
T∑
τ=1

Lt(τ)−1

(a)
=

T∑
t=1

(
t− 1− Lt−1

) (b)
=

T∑
t=1

dt (20)

where (a) is due to the fact that {t(τ)}Tτ=1 is a permutation of {1, · · · , T}; and (b) follows from the definition of Lt−1.

Finally, for property iii), notice that Lt(τ)−1 ≥ t(τ) − 1 − d̄, which follows that at the beginning of t = t(τ), the losses of slots
t ≤ t(τ)− 1− d̄ must have been received. Therefore, we have

s̃τ = τ − 1− Lt(τ)−1 ≤ τ − 1− t(τ) + 1 + d̄
(c)

≤ 2d̄ (21)

where (c) follows from that lt(τ)(at(τ)) is observed at the end of t = t(τ) + dt(τ), and Lt(τ)+dt(τ)−1 is at most t(τ) + dt(τ) − 2 (since
lt(τ)(at(τ)) is not observed), leading to the fact that τ is at most t(τ) + dt(τ), and thus τ − t(τ) ≤ dt(τ) ≤ d̄.

Figure 6: An example of mapping from real slots (solid line) to virtual
slots (dotted line). The value of t(τ) is marked beside the corresponding
yellow arrow. In the example, we consider T = 3 with delay d1 = 2,
d2 = 0, and d3 = 0.

Table 1: The Value of t(τ), Lt(τ)−1, and s̃τ in Fig. 6.

Virtual slot τ = 1 τ = 2 τ = 3
t(τ) 2 3 1

Lt(τ)−1 0 1 0
s̃τ 0 0 2

B Proofs for DEXP3

Before diving into the proofs, we first show some useful yet simple bounds for different parameters of the DEXP3’s (in virtual slots). In
virtual slot τ , the update is carried out the same as (6), (7) and (8), given by

w̃τ+1(k) = p̃τ (k) exp
[
− ηmin

{
δ1, l̃τ (k)

}]
, ∀k, (22)

wτ+1(k) = max

{
w̃τ+1(k)∑K
j=1 w̃τ+1(j)

,
δ2
K

}
, ∀k, (23)

p̃τ+1(k) =
wτ+1(k)∑K
j=1 wτ+1(j)

, ∀k. (24)
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Since l̃τ (k) ≥ 0, ∀k, τ , we have
K∑
j=1

w̃τ (j) ≤
K∑
j=1

p̃τ−1(j) = 1. (25)

And
∑K
k=1 wτ (k) is bounded by

K∑
k=1

wτ (k) ≥
K∑
k=1

w̃τ (k)∑K
j=1 w̃τ (j)

= 1; (26)

K∑
k=1

wτ (k) ≤
K∑
k=1

w̃τ (k)∑K
j=1 w̃τ (j)

+ δ2 = 1 + δ2. (27)

Finally, p̃τ (k) is bounded by
δ2

K(1 + δ2)
≤ wτ (k)

1 + δ2
≤ p̃τ (k) ≤ wτ (k). (28)

B.1 Proof of Lemma 1

Lemma 7. In consecutive virtual slots τ − 1 and τ , the following inequality holds for any k.

p̃τ−1(k)− p̃τ (k) ≤ p̃τ−1(k)
δ2 + ηmin

{
δ1, l̃τ−1(k)

}
1 + δ2

. (29)

Proof. First, we have

p̃τ (k)
(a)

≥ wτ (k)

1 + δ2
≥ w̃τ (k)∑K

j=1 w̃τ (j)(1 + δ2)

(b)

≥ w̃τ (k)

1 + δ2
=
p̃τ−1(k) exp

[
− ηmin

{
δ1, l̃τ−1(k)

}]
1 + δ2

(30)

where (a) is the result of (28); (b) is due to (25). Hence, we have

p̃τ (k)− p̃τ−1(k) ≥
p̃τ−1(k) exp

[
− ηmin

{
δ1, l̃τ−1(k)

}]
1 + δ2

− p̃τ−1(k)

(c)

≥ p̃τ−1(k)

1 + δ2

[
1− ηmin

{
δ1, l̃τ−1(k)

}]
− p̃τ−1(k)

= p̃τ−1(k)
−δ2 − ηmin

{
δ1, l̃τ−1(k)

}
1 + δ2

(31)

where (c) follows from e−x ≥ 1− x and the proof is completed by multiplying −1 on both sides of (31).

From Lemma 7, we have

p̃τ−1(k)− p̃τ (k) ≤ p̃τ−1(k)
δ2 + ηmin

{
δ1, l̃τ−1(k)

}
1 + δ2

≤ p̃τ−1(k)
(
δ2 + ηδ1). (32)

Hence, as long as 1− δ2 − ηδ1 ≥ 0, we can guarantee that (13) is satisfied.

B.2 Proof of Lemma 2

Lemma 8. The following inequality holds for any τ and any k

p̃τ (k)− p̃τ−1(k) ≤ p̃τ (k)

[
1− Iτ (k)

K∑
j=1

p̃τ−1(j)
(

1− ηmin
{
δ1, l̃τ−1(j)

})]
(33)

where Iτ (k) := 1
(
wτ (k) > δ2

K

)
.

Proof. We first show that

w̃τ (k) ≥ p̃τ (k)Iτ (k)

K∑
j=1

w̃τ (j). (34)



Bingcong Li, Tianyi Chen, Georgios B. Giannakis

It is easy to see that inequality (34) holds when Iτ (k) = 0. When Iτ (k) = 1, we have wτ (k) = w̃τ (k)/
(∑K

j=1 w̃τ (j)
)
. By (28), we

have p̃τ (k) ≤ wτ (k) = w̃τ (k)/
(∑K

j=1 w̃τ (j)
)
, from which (34) holds. Then we have

p̃τ (k)− p̃τ−1(k) ≤ p̃τ (k)− w̃τ (k) ≤ p̃τ (k)− p̃τ (k)Iτ (k)

K∑
j=1

w̃τ (j)

= p̃τ (k)

[
1− Iτ (k)

K∑
j=1

w̃τ (j)

]
= p̃τ (k)

{
1− Iτ (k)

K∑
j=1

p̃τ−1(j) exp
[
− ηmin

{
δ1, l̃τ−1(j)

}]}
(a)

≤ p̃τ (k)

[
1− Iτ (k)

K∑
j=1

p̃τ−1(j)
(

1− ηmin
{
δ1, l̃τ−1(j)

})]
(35)

where in (a) we used e−x ≥ 1− x.

The proof of Lemma 2 builds on Lemma 8. First consider the case of Iτ (k) = 0. In this case Lemma 8 becomes p̃τ (k) − p̃τ−1(k) ≤
p̃τ (k), which is trivial. On the other hand, since Iτ (k) = 0, we havewτ (k) = δ2

K
. Then leveraging (28), we have p̃τ (k) ≤ wτ (k) = δ2

K
.

Plugging the lower bound of p̃τ−1(k) into (28), we have

p̃τ (k)

p̃τ−1(k)
≤ δ2
K

1

p̃τ−1(k)
≤ δ2
K

K(1 + δ2)

δ2
= 1 + δ2. (36)

Considering the case of Iτ (k) = 1, Lemma 8 becomes

p̃τ (k)− p̃τ−1(k) ≤ p̃τ (k)

[
1−

K∑
j=1

p̃τ−1(j)
(

1− ηmin
{
δ1, l̃τ−1(j)

})]

= ηp̃τ (k)

K∑
j=1

p̃τ−1(j) min
{
δ1, l̃τ−1(k)

}
≤ ηp̃τ (k)δ1. (37)

Rearranging (37) and combining it with (36), we complete the proof.

B.3 Proof of Lemma 3

For conciseness, define c̃τ := min
{
l̃τ , δ1 ·1} , and correspondingly c̃τ (k) := min{l̃τ (k), δ1

}
. We further define W̃τ :=

∑K
k=1 w̃τ (k),

and Wτ :=
∑K
k=1 wτ (k). Leveraging these auxiliary variables, we have

W̃T+1 =

K∑
k=1

w̃T+1(k) =

K∑
k=1

p̃T (k) exp
[
− ηc̃T (k)

]
=

K∑
k=1

wT (k)

WT
exp

[
− ηc̃T (k)

]
≥

K∑
k=1

w̃T (k)

W̃T

exp
[
− ηc̃T (k)

]
WT

=

K∑
k=1

p̃T−1(k)
exp

[
− ηc̃T (k)− ηc̃T−1(k)

]
W̃TWT

=

K∑
k=1

wT−1(k)

WT−1

exp
[
− ηc̃T (k)− ηc̃T−1(k)

]
W̃TWT

≥ · · · ≥
K∑
k=1

w̃1(k) exp
[
− η

∑T
τ=1 c̃τ (k)

]
∏T
τ=1

(
WτW̃τ

) . (38)

Then, for any probability distribution p ∈ ∆K noticing that the initialization of w̃1(k) = 1, ∀k and hence W̃1 = K, inequality (38)
implies that

K∑
k=1

p(k) exp
[
− η

T∑
τ=1

c̃τ (k)
]
≤

K∑
k=1

exp
[
− η

T∑
τ=1

c̃τ (k)
]
≤ W̃1

T∏
τ=1

(
WτW̃τ+1

) (a)

≤ K(1 + δ2)T
T+1∏
τ=2

W̃τ , (39)

where in (a) we used the fact that Wτ ≤ 1 + δ2. Then, using the the Jensen’s inequality on e−x, we have

K∑
k=1

p(k) exp
[
− η

T∑
τ=1

c̃τ (k)
]
≥ exp

[
− η

K∑
k=1

T∑
τ=1

p(k)c̃τ (k)

]
. (40)

Plugging (40) into (39), we arrive at

exp

[
− η

K∑
k=1

T∑
τ=1

p(k)c̃τ (k)

]
≤ K(1 + δ2)T

T+1∏
τ=2

W̃τ . (41)
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On the other hand, W̃τ can be upper bounded by

W̃τ =

K∑
k=1

w̃τ =

K∑
k=1

p̃τ−1(k) exp
[
− ηc̃τ−1(k)

]
(b)

≤
K∑
k=1

p̃τ−1(k)

(
1− ηc̃τ−1(k) +

η2

2

[
c̃τ−1(k)

]2)

= 1− η
K∑
k=1

p̃τ−1(k)c̃τ−1(k) +
η2

2

K∑
k=1

p̃τ−1(k)
[
c̃τ−1(k)

]2 (42)

where (b) follows from e−x ≤ 1− x+ x2/2, ∀x ≥ 0. Taking logarithm on both sides of (42), we arrive at

ln W̃τ ≤ ln

(
1− η

K∑
k=1

p̃τ−1(k)c̃τ−1(k) +
η2

2

K∑
k=1

p̃τ−1(k)
[
c̃τ−1(k)

]2)
(c)

≤ −η
K∑
k=1

p̃τ−1(k)c̃τ−1(k) +
η2

2

K∑
k=1

p̃τ−1(k)
[
c̃τ−1(k)

]2 (43)

where (c) follows from ln(1 + x) ≤ x. Then taking logarithm on both sides of (41) and plugging (43) in, we arrive at

−η
K∑
k=1

T∑
τ=1

p(k)c̃τ (k) ≤ T ln(1 + δ2) + lnK − η
T∑
τ=1

K∑
k=1

p̃τ (k)c̃τ (k) +
η2

2

T∑
τ=1

K∑
k=1

p̃τ (k)
[
c̃τ (k)

]2
. (44)

Rearranging the terms of (44) and writing it compactly, we obtain

T∑
τ=1

(
p̃τ − p

)>
c̃τ ≤

T ln(1+δ2)+lnK

η
+
η

2

T∑
τ=1

K∑
k=1

p̃τ (k)
[
c̃τ (k)

]2
≤T ln(1+δ2)+lnK

η
+
η

2

T∑
τ=1

K∑
k=1

p̃τ (k)
[
l̃τ (k)

]2
. (45)

B.4 Proof of Theorem 1

To begin with, the instantaneous regret can be written as

p>t lt − p>lt =

K∑
k=1

pt(k)lt(k)−
K∑
k=1

p(k)lt(k)

(a)
=

K∑
k=1

pt(k)Eat
[
lt(k)1(at = k)

pt(k)

]
−

K∑
k=1

p(k)Eat
[
lt(k)1(at = k)

pt(k)

]

=

K∑
k=1

(
pt(k)− p(k)

)
Eat
[
lt(k)1(at = k)

pt+dt(k)

pt+dt(k)

pt(k)

]

≤ max
k

pt+dt(k)

pt(k)

K∑
k=1

(
pt(k)− p(k)

)
Eat
[
lt(k)1(at = k)

pt+dt(k)

]
(b)
=

(
max
k

pt+dt(k)

pt(k)

)
Eat
[
p>t l̂t|t+dt − p> l̂t|t+dt

]
(46)

where (a) is due to Eat
[
lt(k)1(at=k)

pt(k)

]
= lt(k), and (b) follows from l̂t|t+dt(k) = lt(k)1(at=k)

pt+dt (k)
.
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Then the overall regret of T slots is given by

RegT = E
[ T∑
t=1

p>t lt

]
− p>lt ≤ E

[ T∑
t=1

(
max
k

pt+dt(k)

pt(k)

)
Eat
[
p>t l̂t|t+dt − p> l̂t|t+dt

]]
(c)
= E

[ T∑
τ=1

(
max
k

pt(τ)+dt(τ)
(k)

pt(τ)(k)

)
Eat(τ)

[
p>t(τ) l̂t(τ)|t(τ)+dt(τ) − p> l̂t(τ)|t(τ)+dt(τ)

]]
(d)
= E

[ T∑
τ=1

(
max
k

pt(τ)+dt(τ)
(k)

pt(τ)(k)

)
Eat(τ)

[
p>t(τ) l̃τ − p> l̃τ

]]
(e)
= E

[ T∑
τ=1

(
max
k

pt(τ)+dt(τ)
(k)

pt(τ)(k)

)
Eat(τ)

[
p̃>τ−s̃τ l̃τ − p> l̃τ

]]

= E
[ T∑
τ=1

(
max
k

pt(τ)+dt(τ)
(k)

pt(τ)(k)

)(
Eat(τ)

[
p̃>τ−s̃τ l̃τ − p̃>τ l̃τ

]
+ Eat(τ)

[
p̃>τ l̃τ − p> l̃τ

])]
(47)

where (c) is due to the fact that {t(1), t(2), . . . , t(T )} is a permutation of {1, 2, . . . , T}; (d) follows from l̃τ = l̂t(τ)|t(τ)+dt(τ); (e) uses
the fact pt = p̃Lt−1+1 and pt(τ) = p̃Lt(τ)−1+1 = p̃τ−s̃τ .

First note that between real time slot t(τ) and t(τ) + dt(τ), there is at most d̄+ dt(τ) ≤ 2d̄ feedback received. Hence the corresponding
virtual slots will not differ larger than 2d̄. Note also that the index of virtual slot corresponding to t(τ) must be no larger than that of
t(τ) + dt(τ). Hence we have for all τ ∈ [1, T ],

max
k

pt(τ)+dt(τ)
(k)

pt(τ)(k)
≤
(

max
k

p̃τ+1(k)

p̃τ (k)

)2d̄ (f)

≤ max

{
(1 + δ2)2d̄,

1

(1− ηδ1)2d̄

}
(48)

where (f) is the result of Lemma 2.

Then, to bound the terms in the second brackets of (47), again we denote c̃τ := min
{
l̃τ , δ1 · 1}, and correspondingly c̃τ (k) :=

min{l̃τ (k), δ1
}

for conciseness. Then we have

p̃>τ−s̃τ c̃τ−p̃
>
τ c̃τ = c̃>τ (p̃τ−s̃τ − p̃τ )

(g)
= c̃τ (m)

s̃τ−1∑
j=0

(
p̃τ−s̃τ+j(m)− p̃τ−s̃τ+j+1(m)

)
(h)

≤ c̃τ (m)

s̃τ−1∑
j=0

p̃τ−s̃τ+j(m)
δ2 + ηc̃τ−s̃τ+j(m)

1 + δ2
≤ c̃τ (m)

s̃τ−1∑
j=0

(
ηp̃τ−s̃τ+j(m)c̃τ−s̃τ+j(m) + δ2

)
≤ l̃τ (m)

s̃τ−1∑
j=0

(
ηp̃τ−s̃τ+j(m)l̃τ−s̃τ+j(m) + δ2

)
(49)

where (g) follows from the facts that l̃τ has at most one entry (with index m) being non-zero [cf. (59)] and s̃τ ≥ 0 [cf. Lemma 6]; and
(h) is the result of Lemma 7. Then notice that

l̃τ (k)p̃τ (k) =
lt(τ)(k)

pt(τ)+dt(τ)(k)
p̃τ (k)

(i)

≤
(

max
k

p̃τ (k)

p̃τ+1(k)

)2d̄

≤ 1

(1− δ2 − ηδ1)2d̄
(50)

where (i) uses the fact that between t(τ) and t(τ) + dt(τ) there is at most 2d̄ feedback; then further applying the result of Lemma 1,
inequality (50) can be obtained. Plugging (50) back in to (49) and taking expectation w.r.t. at(τ), we arrive at

Eat(τ)
[
p̃>τ−s̃τ c̃τ − p̃>τ c̃τ

]
≤
(

ηs̃τ

(1− δ2 − ηδ1)2d̄
+ δ2s̃τ

) K∑
k=1

pt(τ)(k)l̃τ (k)

(j)

≤ K
1

(1− δ2 − ηδ1)2d̄

(
ηs̃τ

(1− δ2 − ηδ1)2d̄
+ δ2s̃τ

)
(51)

where (j) follows a similar reason of (50). Then, noticing
∑T
τ=1 s̃τ =

∑T
t=1 dt = D, we have

T∑
τ=1

Eat(τ)
[
p̃>τ−s̃τ c̃τ − p̃>τ c̃τ

]
≤ KD

(1− δ2 − ηδ1)2d̄

(
η

(1− δ2 − ηδ1)2d̄
+ δ2

)
. (52)
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Using a similar argument of (50), we can obtain

Eat(τ)
[
p̃τ (k)

[
l̃τ (k)

]2]
= p̃τ (k)

l2t(τ)(k)

p2
t(τ)+dt(τ)

(k)
pt(τ)(k) ≤ 1

(1− δ2 − ηδ1)4d̄
(53)

Then leveraging Lemma 3, we arrive at

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
≤ T ln(1 + δ2) + lnK

η
+
η

2

T∑
τ=1

K∑
k=1

Eat(τ)
[
p̃τ (k)

[
l̃τ (k)

]2]
≤ T ln(1 + δ2) + lnK

η
+

ηKT

2(1− δ2 − ηδ1)4d̄
. (54)

The last step is to show that introducing δ1 will not incur too much extra regret. Note that both c̃τ and l̃τ have only one entry being non-
zero, whose index is denoted by mτ . Notice that l̃τ (mτ ) > c̃τ (mτ ) only when l̃τ (mτ ) =

lt(τ)(mτ )

pt(τ)+dt(τ)
(mτ )

> δ1, which is equivalent to

pt(τ)+dt(τ)
(mτ ) < lt(τ)(mτ )/δ1 ≤ 1/δ1. Hence, we have

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)> l̃τ

]
=

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
+

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>

(
l̃τ − c̃τ

)]
(h)

≤
T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
+

T∑
τ=1

Eat(τ)
[
p̃τ (mτ )

(
l̃τ (mτ )− c̃τ (mτ )

)
1
(
pt(τ)+dt(τ)(mτ ) < 1/δ1

)]
≤

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
+

T∑
τ=1

Eat(τ)
[
p̃τ (mτ )l̃τ (mτ )1

(
pt(τ)+dt(τ)(mτ ) < 1/δ1

)]
(55)

where in (h), mτ denotes the index of the only one none-zero entry of l̃τ , and p̃ is dropped due to the appearance of the indicator
function. To proceed, notice that

Eat(τ)
[
l̃τ (mτ )p̃τ (mτ )1

(
pt(τ)+dt(τ)(mτ ) < 1/δ1

)]
=

K∑
k=1

pt(τ)(k)lt(τ)(k)

pt(τ)+dt(τ)(k)
p̃τ (k)1

(
pt(τ)+dt(τ)(k) < 1/δ1

)
(i)

≤
∑K
k=1 p̃τ (k)1

(
pt(τ)+dt(τ)(k) < 1/δ1

)
(1− δ2 − ηδ1)2d̄

=

K∑
k=1

p̃τ (k)

pt(τ)+dt(τ)(k)

pt(τ)+dt(τ)(k)1
(
pt(τ)+dt(τ)(k) < 1/δ1

)
(1− δ2 − ηδ1)2d̄

(j)

≤ K

δ1(1− δ2 − ηδ1)4d̄
(56)

where in (i) we used the a similar argument of (50); and in (j) we used the fact x1(x < a) ≤ a.

Plugging (56) back into (55), we arrive at

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)> l̃τ

]
≤

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
+

KT

δ1(1− δ2 − ηδ1)4d̄
(57)

Applying similar arguments as (55) and (56), we can also show that

T∑
τ=1

Eat(τ)
[(
p̃τ−s̃τ − p̃τ

)>
l̃τ
]
≤

T∑
τ=1

Eat(τ)
[(
p̃τ−s̃τ − p̃τ

)>
c̃τ
]

+
KD

δ1(1− δ2 − ηδ1)6d̄
. (58)

For the parameter selection, we have T ln(1 + δ2) = T ln(1 + 1
T+D

) ≤ ln e = 1. Leveraging the inequality that e ≤ (1− 2x)−2x ≤
4, ∀x ∈ N+, we have that

1

(1− ηδ1)2d̄
≤ 1

(1− δ2 − ηδ1)2d̄
= O(1). (59)

From (59) it is not hard to see the bound on (48), which is

max
k

pt(τ)+dt(τ)
(k)

pt(τ)(k)
≤ max

{
(1 + δ2)2d̄,

1

(1− ηδ1)2d̄

}
= O(1). (60)
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Then for (52), we have

T∑
τ=1

Eat(τ)
[
p̃>τ−s̃τ c̃τ − p̃>τ c̃τ

]
≤ KD

(1− δ2 − ηδ1)2d̄

(
η

(1− δ2 − ηδ1)2d̄
+ δ2

)
= O(ηKD + δ2KD). (61)

For (54), we have

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
≤ T ln(1 + δ2) + lnK

η
+

ηKT

2(1− δ2 − ηδ1)4d̄
= O

(
ηKT +

1 + lnK

η

)
. (62)

Using (62) and the selection of δ1, we can bound (57) by

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)> l̃τ

]
≤

T∑
τ=1

Eat(τ)
[
(p̃τ − p̃)>c̃τ

]
+

KT

δ1(1− δ2 − ηδ1)4d̄
= O

(
ηKT +

1 + lnK

η

)
. (63)

Using (61) and the selection of δ1, we have

T∑
τ=1

Eat(τ)
[(
p̃τ−s̃τ − p̃τ

)>
l̃τ
]
≤

T∑
τ=1

Eat(τ)
[(
p̃τ−s̃τ − p̃τ

)>
c̃τ
]

+
KD

δ1(1− δ2 − ηδ1)6d̄
= O

(
ηKD + δ2KD

)
. (64)

Plugging (60), (63) , and (64) into (47), the regret is bounded by

RegT =

T∑
t=1

E
[
p>t lt

]
−

T∑
t=1

p∗>lt = O
(√

(T +D)K(1 + lnK)
)
. (65)

C Proofs for DBGD

C.1 Proof of Lemma 4

Since fs|t(·) is L-Lipschitz, we have gs|t(k) ≤ 1
δ
L‖δek‖ = L, and thus ‖gs|t‖ ≤

√
KL. On the other hand, let ∇s|t := ∇fs|t(xs|t),

and∇s|t(k) being the k-th entry of ∇s|t. Due to the β-smoothness of fs|t(·), we have

gs|t(k)−∇s|t(k) ≤ 1

δ

(
δ∇>s|tek +

β

2
δ2)−∇s|t(k) =

βδ

2
(66)

suggesting that ‖gs|t −∇fs|t(xs|t)‖ ≤ βδ
2

√
K.

C.2 Proof of Lemma 5

Lemma 5 (Restate). In virtual slots, it is guaranteed to have

‖x̃τ − x̃τ−s̃τ ‖ ≤ ηs̃τ
√
KL (67)

and for any x ∈ Xδ , we have

ηg̃>τ
(
x̃τ − x

)
≤ η2

2
KL2 +

∥∥x̃τ − x
∥∥2 −

∥∥x̃τ+1 − x
∥∥2

2
. (68)

Proof. The proof begins with

‖x̃τ−s̃τ − x̃τ‖ ≤
s̃τ−1∑
j=0

‖x̃τ−s̃τ+j − x̃τ−s̃τ+j+1‖
(a)

≤ ηs̃τ
√
KL (69)

where (a) uses the fact that ‖x̃τ − x̃τ+1‖ =
∥∥x̃τ −ΠXδ [x̃τ − ηg̃τ ]

∥∥ ≤ η‖g̃τ‖. The first inequality is thus proved

Then, notice that∥∥x̃τ+1 − x
∥∥2 −

∥∥x̃τ − x
∥∥2

=
∥∥ΠXδ [x̃τ − ηg̃τ ]− x

∥∥2 −
∥∥x̃τ − x

∥∥2

(b)

≤
∥∥x̃τ − x− ηg̃τ

∥∥2 −
∥∥x̃τ − x

∥∥2
= −2ηg̃>τ

(
x̃τ − x

)
+ η2

∥∥g̃τ∥∥2 (70)

where inequality (b) uses the non-expansion property of projection. Rearranging the terms of (70) completes the proof.
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C.3 Proof of Theorem 2

Lemma 9. Let ht(x) := ft(x) +
(
gt − ∇ft(xt)

)>
x, where gt := gt|t+dt . Then ht(x) has the following properties: i) ht(x) is(

L+ βδ
√
K

2

)
-Lipschitz; and ii) ht(x) is β smooth and convex.

Proof. Starting with the first property, consider that

‖ht(x)− ht(y)‖ =
∥∥ft(x) +

(
gt −∇ft(xt)

)>
x− ft(y)−

(
gt −∇ft(xt)

)>
y
∥∥

≤ ‖ft(x)− ft(y)‖+
∥∥gt −∇ft(xt)∥∥‖x− y‖

(a)

≤
(
L+

βδ
√
K

2

)
‖x− y‖ (71)

where in (a) we used the results in Lemma 4. For the second property, the convexity of ht(x) is obvious. Then noticing that∇ht(x) =
∇ft(x) + gt −∇ft(xt), we have

ht(y)− ht(x) = ft(y)− ft(x) +
(
gt −∇ft(xt)

)>
(y − x)

≤
(
∇ft(x)

)>
(y − x) +

β

2
‖y − x‖2 +

(
gt −∇ft(xt)

)>
(y − x)

=
(
∇ht(x)

)>
(y − x) +

β

2
‖y − x‖2 (72)

which implies that ht(x) is β smooth.

Then we are ready to prove Theorem 2. Let ht(x) := ft(x) +
(
gt −∇ft(xt)

)>
x, where gt := gt|t+dt . Using the property of ht(x)

in Lemma 9 as well as the fact∇ht(xt) = gt, we have

RegT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

=

T∑
t=1

(
ht(xt)−

(
gt −∇ft(xt)

)>
xt

)
−

T∑
t=1

(
ht(x

∗)−
(
gt −∇ft(xt)

)>
x∗
)

=

T∑
t=1

(
ht(xt)− ht(x∗)

)
+

T∑
t=1

(
gt −∇ft(xt)

)>(
x∗ − xt

)
(a)

≤
T∑
t=1

(
ht(xt)− ht(xδ)

)
+

T∑
t=1

(
ht(xδ)− ht(x)

)
+
RTβδ

√
K

2

(b)

≤
T∑
t=1

(
ht(xt)− ht(xδ)

)
+ δRT

(
L+

βδ
√
K

2

)
+
RTβδ

√
K

2
(73)

where in (a) xδ := ΠXδ (x∗), and the inequality follows from the results in Lemma 4; (b) follows from the fact that ht(·) is (L+ βδ
√
K

2
)-

Lipschitz, as well as ‖xδ − x‖ ≤ δR.

Hence, at virtual slots, it is like learning according to ht(xt), with ∇ht(xt) being revealed. With the short-hand notation h̃τ (·) :=
ht(τ)(·), we have (using similar arguments like the proof of Theorem 1)

T∑
t=1

ht(xt)−
T∑
t=1

ht(xδ) =
T∑
τ=1

ht(τ)(xt(τ))−
T∑
τ=1

ht(τ)(xδ) =
T∑
τ=1

h̃τ (x̃τ−s̃τ )−
T∑
τ=1

h̃τ (xδ)

=

T∑
τ=1

h̃τ (x̃τ−s̃τ )−
T∑
τ=1

h̃τ (x̃τ ) +
T∑
τ=1

h̃τ (x̃τ )−
T∑
τ=1

h̃τ (xδ). (74)

The first term in the RHS of (74) can be bounded as

h̃τ (x̃τ−s̃τ )− h̃τ (x̃τ ) ≤
∥∥h̃τ (x̃τ−s̃τ )− h̃τ (x̃τ )

∥∥ (c)

≤
(
L+

βδ
√
K

2

)∥∥x̃τ−s̃τ − x̃τ
∥∥ (d)

≤ ηs̃τ
√
KL

(
L+

βδ
√
K

2

)
(75)

where (c) follows from Lemma 9; and (d) is the result of Lemma 5. Hence, using
∑T
τ=1 s̃τ = D in Lemma 6, we obtain

T∑
τ=1

h̃τ (x̃τ−s̃τ )−
T∑
τ=1

h̃τ (x̃τ ) ≤ ηD
√
KL

(
L+

βδ
√
K

2

)
. (76)
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On the other hand, by the convexity of h̃τ (·), we have

h̃τ (x̃τ )− h̃τ (xδ) ≤
(
∇h̃τ (x̃τ )

)>(
x̃τ − xδ

)
=
[
∇h̃τ (x̃τ )− g̃τ

]>(
x̃τ − xδ

)
+ g̃>τ

(
x̃τ − xδ

)
(e)

≤ β
∥∥x̃τ − x̃τ−s̃τ

∥∥∥∥x̃τ − xδ
∥∥+ g̃>τ

(
x̃τ − xδ

)
≤ βR

∥∥x̃τ − x̃τ−s̃τ
∥∥+ g̃>τ

(
x̃τ − xδ

)
(77)

where (e) is because h̃τ (·) is β-smoothness [cf. (Nesterov, 2013, Thm 2.1.5)]. Taking summation over τ and leveraging the results in
Lemma 5, we have

T∑
τ=1

h̃τ (x̃τ )− h̃τ (xδ) ≤
T∑
τ=1

ηs̃τ
√
KLβR+

T∑
τ=1

η

2

∥∥g̃τ∥∥2
+
R2

η
≤ ηD

√
KLβR+

ηT

2
KL2 +

R2

η
. (78)

Selecting δ = O
(
1/(T +D)

)
, (76) implies

T∑
τ=1

h̃τ (x̃τ−s̃τ )−
T∑
τ=1

h̃τ (x̃τ ) ≤ ηD
√
KL

(
L+

βδ
√
K

2

)
= O

(
η
√
KD

)
. (79)

Inequality (78) then becomes

T∑
τ=1

h̃τ (x̃τ )− h̃τ (xδ) ≤ ηD
√
KLβR+

ηT

2
KL2 +

R2

η
= O

(
ηKT + η

√
KD +

1

η

)
. (80)

Plugging (74), (76), and (78) into (73), and choosing η = O(1/
√
K(T +D)), the proof is complete.

C.4 Proof of Corollary 1

To prove Corollary 1, we will show that

1

K + 1

T∑
t=1

K∑
k=0

ft(xt,k)−
T∑
t=1

ft(xt) = O(
√
K). (81)

Using the β-smoothness in Assumption 4, we have for any k 6= 0

ft(xt,k)− ft(xt) ≤
(
∇ft(xt)

)>
(xt,k − xt) +

βδ2

2
≤ δ‖∇ft(xt)‖+

βδ2

2
. (82)

Then leveraging the result of Lemma 4, we have

‖∇ft(xt)‖ = ‖∇ft|t+dt(xt|t+dt)‖ = ‖∇ft|t+dt(xt|t+dt) + gt|t+dt − gt|t+dt‖

≤ ‖gt|t+dt‖+ ‖∇ft|t+dt(xt|t+dt)− gt|t+dt‖ ≤
√
KL+

βδ
√
K

2
. (83)

Plugging (83) back to (82), we have

ft(xt,k)− ft(xt) ≤ δ
√
KL+

βδ2
√
K

2
+
βδ2

2

(a)
= O

( √K
T +D

)
(84)

where (a) follows from δ = O
(
(T +D)−1

)
. Summing over k and t readily implies (81).




