
Bandit Online Learning with Unknown Delays

Bingcong Li Tianyi Chen Georgios B. Giannakis
University of Minnesota University of Minnesota University of Minnesota

Abstract

This paper deals with bandit online learning,
where feedback of unknown delay can emerge
in non-stochastic multi-armed bandit (MAB)
and bandit convex optimization (BCO) settings.
MAB and BCO require only values of the objec-
tive function to become available through feed-
back, and are used to estimate the gradient ap-
pearing in the corresponding iterative algorithms.
Since the challenging case of feedback with un-
known delays prevents one from constructing
the sought gradient estimates, existing MAB
and BCO algorithms become intractable. De-
layed exploration, exploitation, and exponential
(DEXP3) iterations, along with delayed bandit
gradient descent (DBGD) iterations are devel-
oped for MAB and BCO with unknown delays,
respectively. Based on a unifying analysis frame-
work, it is established that both DEXP3 and
DBGD guarantee an Õ

(√
K(T +D)

)
regret,

where D denotes the delay accumulated over T
slots, and K represents the number of arms in
MAB or the dimension of decision variables in
BCO. Numerical tests using both synthetic and
real data validate DEXP3 and DBGD.

1 INTRODUCTION

Sequential decision making emerges in several learning
and optimization tasks, such as online advertisement, on-
line routing, and portfolio management (Hazan, 2016;
Bubeck et al., 2012). Among popular methods for se-
quential decision making, non-stochastic multi-armed ban-
dit (MAB) and bandit convex optimization (BCO) have
widely-appreciated merits because they only rely on the
value of loss function, and offer quantifiable performance
guarantees. MAB and BCO can be viewed as a repeated
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game between a possibly randomized learner, and the pos-
sibly adversarial nature. In each round, the learner selects
an action, and incurs the associated loss that is returned by
the nature. In contrast to the full information setting, only
the loss of the performed action rather than the gradient of
the loss function (or even the loss function itself) is revealed
to the learner. Popular approaches to bandit online learn-
ing estimate gradients using several point-wise evaluations
of the loss function, and use them to run online gradient-
type algorithms; see e.g., Auer et al. (2002) for MAB and
Flaxman et al. (2005); Agarwal et al. (2010) for BCO.

Although widely applicable with solid performance guar-
antees, standard MAB and BCO approaches do not ac-
count for delayed feedback that is naturally present in vari-
ous applications. For example, when carrying out machine
learning tasks using distributed mobile devices (a setup re-
ferred to as federated learning) (McMahan et al., 2017), de-
lay comes from the time it takes to compute at mobile de-
vices and also to transmit over the wireless communication
links; in online recommender systems the click-through
rate could be aggregated and then periodically sent back
(Li et al., 2010); in online routing over communication net-
works, the latency of each routing decision can be revealed
only after packets arrive to their destination (Awerbuch and
Kleinberg, 2004); and in parallel computing, computations
are carried with outdated information because workers are
not synchronized (Agarwal and Duchi, 2011; Duchi et al.,
2013; McMahan and Streeter, 2014). In these cases, the
delay can be unknown to the learner. One relevant example
appears also in recommender systems, when the same item
is recommended multiple times and the feedback is de-
layed, which makes it challenging to deduce which round
of recommendation triggered the user interests.

Challenges arise naturally when dealing with bandit online
learning with unknown delays, simply because unknown
delays prevent existing MAB as well as BCO methods to
construct reliable gradient estimates. To address this limita-
tion, our solution is a fine-grained biased gradient estimator
for MAB and a deterministic gradient estimator for BCO,
where the standard unbiased loss estimator for MAB and
the nearly unbiased one for BCO are no longer available.
The resultant algorithms, that we abbreviate as DEXP3 and
DBGD, are guaranteed to achieve an Õ

(√
K(T+D)

)
re-
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gret over a T -slot time horizon, where D denotes the over-
all delay, and K represents the number of arms in MAB or
the dimension of decision variables in BCO.

1.1 Related Works

Delayed online learning can be categorized depending on
whether the feedback information is full or bandit. We re-
view prior works from these two aspects.

Delayed Online Learning. This class deals with delayed
but fully revealed information, namely fully known gradi-
ent or loss function. It is proved that anO

(√
T +D

)
regret

is achievable for a T -slot time horizon with overall delay
D. Particularly, algorithms dealing with a fixed delay have
been studied by Weinberger and Ordentlich (2002). To re-
duce the storage and computation burden of Weinberger
and Ordentlich (2002), an online gradient descent type al-
gorithm for fixed d-slot delay was developed by Langford
et al. (2009), where the lower bound O

(√
(d+ 1)T

)
was

also provided. Adversarial delay has been tackled recently
by Joulani et al. (2016); Shamir and Szlak (2017) and
Quanrud and Khashabi (2015). However, the algorithms
as well as the corresponding analyses are not applicable to
the bandit online learning setup.

Delayed Bandit Online Learning. Stochastic MAB with
delays has been reported by Chapelle and Li (2011); De-
sautels et al. (2014); Vernade et al. (2017); Pike-Burke
et al. (2017); see also Joulani et al. (2013) for multi-
instance generalizations introduced to handle adversarial
delays in stochastic and non-stochastic MAB settings. For
non-stochastic MAB, EXP3-based algorithms were devel-
oped to handle fixed delays in Cesa-Bianchi et al. (2016);
Neu et al. (2010). Although not requiring memory for
extra instances, the delay in Neu et al. (2010) and Cesa-
Bianchi et al. (2016) must be known. A recent work by
Cesa-Bianchi et al. (2018) considers a more general non-
stochastic MAB setting, where the feedback is compos-
ite and anonymous. Although the scope in the work of
Cesa-Bianchi et al. (2018) is general, we will see in Sec-
tion 5.2, that the regret bound of the MAB algorithm in
Cesa-Bianchi et al. (2018) can be improved in terms of de-
lay dependence in the considered setting1.

1.2 Contributions

Our main contributions can be summarized as follows.

c1) Based on a biased gradient estimator, a delayed
exploration-exploitation exponentially (DEXP3) weighted
algorithm is developed for delayed non-stochastic MAB
with unknown and even adversarially chosen delays;

c2) Relying on a deterministic gradient estimator, a delayed

1However, these two regret bounds match in the worst case
where all delays equal the maximal delay.

bandit gradient descent (DBGD) algorithm is developed to
handle the delayed BCO setting; and,

c3) A unified analysis framework is introduced to re-
veal that DEXP3 and DBGD provably achieve an
Õ
(√

K(T +D)
)

regret, where D is the cumulative delay
over T slots, and K denotes the number of arms in MAB
or the dimension of decision variables in BCO. Numerical
tests validate the proposed DEXP3 and DBGD.

Notational Conventions. Bold lowercase letters denote
column vectors; E[ · ] represents expectation; 1( · ) denotes
the indicator function; x> stands for vector transposition;
and ‖x‖ denotes the `2-norm of a vector x.

2 PROBLEM STATEMENT

Before introducing our setups with delays, we outline first
the standard non-stochastic MAB and BCO ones.

2.1 MAB and BCO

Non-stochastic MAB. Consider the MAB setup with K
arms (a.k.a. actions) (Bubeck et al., 2012; Auer et al.,
2002). At the beginning of slot t, without knowing the loss
corresponding to each arm, the learner selects an arm at
in accordance to the K × 1 probability mass distribution
vector pt ∈ ∆K , where ∆K := {p ∈ ∆K : p(k) ≥
0,∀k;

∑K
k=1 p(k) = 1} denotes the probability simplex.

The loss lt(at) incurred when selecting at is an entry of
the K × 1 loss vector lt, and it is observed by the learner.
This and previously observed losses {ls(as)}ts=1, are used
to obtain pt+1 of the ensuing slot; see also Fig. 1 (a1).

The goal is to minimize the regret, which is the difference
between the expected cumulative loss of the learner relative
to the loss of the best fixed policy in hindsight, given by

RegMAB
T :=

T∑
t=1

E
[
p>t lt

]
−

T∑
t=1

(p∗)>lt (1)

where the expectation is taken w.r.t. the possible random-
ness of pt induced by the selection of {as}t−1

s=1, while the
best fixed policy p∗ is defined as

p∗ := arg min
p∈∆K

T∑
t=1

p>lt.

If for instance p∗ = [0, . . . , 1, . . . , 0]>, the regret is relative
to the corresponding best fixed arm in hindsight.

BCO. Consider now the BCO setup with M -point feed-
back (Agarwal et al., 2010). At the beginning of slot t,
without knowing the loss function ft, the learner selects the
K×1 vector xt ∈ X of decision variables, whereX ⊂ RK
is a compact and convex set. Along with xt,0 := xt, loss
values {ft(xt,k)}M−1

k=0 are then observed at another M − 1
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(a1)

(a2)

(b1)

(b2)

Figure 1: A single-slot structure of: (a1) standard non-stochastic
MAB, where pt+1|{ls(as)}ts=1 means that pt+1 is updated based
on past losses {ls(as)}ts=1; (a2) MAB with delayed feedback;
(b1) standard BCO; and (b2) BCO with delayed feedback.

points {xt,k ∈ X}M−1
k=1 . The learner leverages the revealed

losses to obtain the next decision vector (action) xt+1; see
also Fig. 1 (b1). The sequence of

{
{xt,k}M−1

k=0

}T
t=1

is cho-
sen to minimize the regret relative to the best fixed action
in hindsight2

RegBCO
T :=

T∑
t=1

E
[
ft(xt)

]
−

T∑
t=1

ft(x
∗) (2)

where the expectation is taken over the sequence of random
actions {xτ}t−1

s=1. The best fixed action x∗ in hindsight is

x∗ := arg min
x∈X

T∑
t=1

ft(x).

In both MAB and BCO settings, an online algorithm is de-
sirable with regret that is sublinear w.r.t. the time horizon
T , that is, RegMAB

T = o(T ) and RegBCO
T = o(T ); see

e.g., (Hazan, 2016; Bubeck et al., 2012).

2.2 Delayed MAB and BCO

MAB with Unknown Delays. In delayed MAB, the
learner still chooses an arm at ∼ pt at the beginning of
slot t. However, the loss lt(at) is observed after dt slots,
namely, at the end of slot t + dt, where delay dt ≥ 0 can
vary from slot to slot. In this paper, we assume that {dt}Tt=1

can be chosen adversarially by nature. Let ls|t(as|t) denote
the loss incurred by the selected arm as in slot s but ob-
served at t, i.e., the learner receives the losses collected in
Lt =

{
ls|t(as|t), s : s+ds = t

}
at the end of slot t. Note

that it is possible to have Lt = ∅ in certain slots. And the
order of feedback can be arbitrary, meaning it is possible
to have t1 + dt1 ≥ t2 + dt2 when t1 ≤ t2. In contrast to

2This definition is slightly different with that in Agarwal et al.
(2010). However, we will show in Section 5.2 that the regret
bound is not affected.

Joulani et al. (2013) however, we consider that the delay
dt may not be accessible, in which case the learner just ob-
serves the value of ls|t(as|t), but not s. The learner’s goal is

to select
{
pt
}T
t=1

“on-the-fly” to minimize the regret in (1).
Note that with unknown delays, the information available
to decide pt is even less compared with that in the standard
MAB. Specifically, the available information to decide pt
is contained in L1:t−1 :=

⋃t−1
s=1 Ls; see also Fig. 1 (a2).

For simplicity, we assume that all feedback information is
received at the end of slot T . This assumption comes with-
out loss of generality since the feedback arriving at the end
of slot T cannot aid the arm selection, hence the final per-
formance of the learner will not be affected.

BCO with Unknown Delays. For delayed BCO, the
learner still chooses xt to play while querying {xt,k}M−1

k=1

at the beginning of slot t. However, the loss as well as the
querying responses

{
ft(xt,k)

}M−1

k=0
are observed at the end

of slot t+ dt. With fs|t(xs|t) denoting the loss incurred in
slot s but observed at t, the feedback set at the end of slot t
is Lt =

{
{fs|t(xs|t,k)}M−1

k=0 , s :s+ds= t
}

. To find xt, the
learner relies on the history L1:t−1 :=

⋃t−1
s=1 Ls, with the

goal of minimizing the regret in (2).

Why Existing Algorithms Fail with Unknown Delays?
The algorithms for standard (non-delayed) MAB, such as
EXP3, cannot be applied to delayed MAB with unknown
delays. Recall that in settings without delay, to deal with
the partially observed lt, EXP3 relies on an importance
sampling type of loss estimates given by

l̂t(k) =
lt(at)1(at = k)

pt(k)
, k = 1, . . . ,K . (3)

The denominator as well as the indicator function in (3) en-
sure unbiasedness of l̂t(k). Leveraging the estimated loss,
the distribution vector pt+1 is obtained with entries

pt+1(k) =
pt(k) exp(−ηl̂t(k))∑K
j=1 pt(j) exp(−ηl̂t(j))

, k = 1, . . . ,K

where η is the learning rate. Consider now that the loss
ls|t(as|t) with delay ds is observed at t = s + ds. To
recover the unbiased estimator l̂s|t(k) in (3), ps(k) must
be known. However, since ds is not revealed, even if the
learner can store past probability distribution vectors, it is
not clear how to attain the loss estimator.

Knowing the delay is instrumental when it comes to the
gradient estimator in BCO as well. For non-delayed single-
point (M =1) feedback BCO (Flaxman et al., 2005), since
only one value of the loss instead of the full gradient is
observed per slot, the idea is to draw ut uniformly from the
surface of a unit ball in RK , to form the gradient estimate

gt =
K

δ
ft(xt + δut)ut (4)
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where δ is a small constant. The next action is obtained us-
ing a standard online (projected) gradient descent iteration
leveraging the estimated gradient, that is

xt+1 = ΠXδ [xt − ηgt]

where Xδ is the shrunk feasibility set to ensure xt + ut is
feasible. While gt serves as a nearly unbiased estimator of
∇ft(xt), the unknown delay causes mismatch between the
feedback fs|t(xs|t + δus|t) and gs|t. Specifically, given
the feedback fs|t(xs|t + δus|t), since ds is unknown, the
learner does not know us|t to obtain gs|t in (4). Similar
arguments also hold for BCO with multi-point feedback.

Therefore, performing delayed bandit learning with un-
known delays is challenging, and has not been explored.

3 DEXP3 FOR DELAYED MAB

We start with the non-stochastic MAB setup that is random-
ized in nature since an arm at is chosen randomly per slot
according to a K × 1 probability mass vector pt. In this
section, we show that for the MAB problem, so long as the
(unknown) delay is bounded, based only on a single-point
feedback, the randomized algorithm that we term Delayed
EXP3 (DEXP3) can cope with unknown delays in MAB
through a biased loss estimator, which provably leads to a
desirable regret.

Recall that the feedback at slot t includes losses incurred
at slots sn, n = 1, 2, . . . , |Lt|, where Lt :=

{
lsn|t(asn|t) :

∀sn = t−dsn
}

. Once Lt is revealed, the learner estimates
lsn|t by scaling the observed loss according to pt at the
current slot. For each entry lsn|t(asn|t) ∈ Lt, the estimator
of the loss vector lsn|t is

l̂sn|t(k) =
lsn|t(k)1

(
asn|t = k

)
pt(k)

, k = 1, . . . ,K. (5)

It is worth mentioning that the index sn in (5) is only used
for analysis while during the implementation, there is no
need to know sn. In contrast to EXP3 and its variant for de-
layed MAB with known delays (Joulani et al., 2013; Cesa-
Bianchi et al., 2016), our estimator for lsn|t(k) in (5) turns
out to be biased since asn|t is chosen according to psn in-
stead of pt, that is

Easn|t
[
l̂sn|t(k)

]
=
lsn|t(k)psn(k)

pt(k)
6= lsn|t(k).

SinceLt may contain multiple rounds of feedback, leverag-
ing each l̂sn|t, the learner must perform

∣∣Lt∣∣ updates to ob-
tain pt+1. Intuitively, to upper bound the bias of (5), an up-
per bound on psn(k)/pt(k) is required, which in turn calls
for a lower bound on pt(k). On the other hand however,
the lower bound of pt(k) should be small enough to avoid

Algorithm 1 DEXP3
1: Initialize: p1(k) = 1/K,∀k.
2: for t = 1, 2 . . . , T do
3: Select an arm at ∼ pt.
4: Observe feedback collected in set Lt.
5: for n = 1, 2, . . . , |Lt| do
6: Estimate l̂sn|t via (5) if lsn|t(asn|t) ∈ Lt.
7: Update pnt via (6) - (8).
8: end for
9: Obtain pt+1 via (9).

10: end for

slot slot

Figure 2: An example of DEXP3 with Lt including the losses
incurred in slot s1, s2, and s3 and Lt+1 = ∅.

incurring extra regret. Different from EXP3, our DEXP3
ensures a lower bound on pt(k) by introducing an inter-
mediate weight vector w̃t to evaluate the historical perfor-
mance of each arm. Let n denote the index of the inner-
loop update at slot t starting from p0

t := pt. For each
lsn|t(asn|t) ∈ Lt, the learner first updates w̃n

t by using the
estimated loss l̂sn|t as

w̃nt (k) = pn−1
t (k) exp

(
−ηmin

{
δ1, l̂sn|t(k)

})
, ∀k (6)

where η is the learning rate, and δ1 serves as an upper
bound of l̂sn|t(k) to control the bias of l̂sn|t(k). How-
ever, to confine the extra regret incurred by introducing δ1,
a carefully-selected δ1 should ensure that the probability of
having l̂sn|t(k) larger than δ1 is small enough. Then the
learner finds wn

t by a trimmed normalization with weights

wnt (k) = max

{
w̃nt (k)∑K
j=1 w̃

n
t (j)

,
δ2
K

}
, k = 1, . . . ,K. (7)

Update (7) ensures that wnt (k) is lower bounded by δ2/K.
Finally, the learner normalizes wn

t to obtain pnt as

pnt (k) =
wnt (k)∑K
j=1 w

n
t (j)

, k = 1, . . . ,K. (8)

It can be shown that pnt (k) is lower bounded as pnt (k) ≥
δ2

K(1+δ2) [cf. (28) in supplementary material]. After all the
elements of Lt have been used, the learner finds pt+1 via

pt+1 = p
|Lt|
t . (9)

Furthermore, if Lt = ∅, the learner directly reuses the pre-
vious distribution, meaning pt+1 = pt, and chooses an
arm accordingly. Our DEXP3 is summarized step-by-step
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Algorithm 2 DBGD
1: Initialize: x1 = 0.
2: for t = 1, 2 . . . , T do
3: Play xt, also query xt + δek, k = 1, . . . ,K.
4: Observe feedback collected in set Lt.
5: if Lt = ∅ then set xt+1 = xt.
6: else estimate gradient gsn|t via (11) if sn+ds= t.
7: Update xt+1 via (12).
8: end if
9: end for

in Alg. 1. We will show in Sec. 5.2 that if the delay
dt is bounded by a constant d̄, DEXP3 can guarantee an
Õ
(√

K(T +D)
)

regret, where D =
∑T
t=1 dt is the over-

all delay.

Remark 1. The recent composite loss wrapper algorithm
(abbreviated as CLW) in Cesa-Bianchi et al. (2018) can be
also applied to the delayed MAB problem. However, CLW
is designed for a more general setting with composite and
anonymous feedback, and its efficiency drops when the pre-
vious action as|t is known. The main differences between
DEXP3 and CLW are: i) the loss estimators are different;
ii) DEXP3 updates pt in every slot, while CLW updates oc-
cur every other O(2d̄) slots (thus requiring a larger learn-
ing rate); and iii) DEXP3 does not involve d̄ in the loss
estimator, leading to a tighter regret bound in terms of de-
lay Õ(

√
K(T +D)), in contrast to Õ(

√
(d̄+ 1)KT ) of

CLW. As it will be corroborated by simulations, DEXP3
outperforms CLW in the considered setting.

4 DBGD FOR DELAYED BCO

In this section, we develop an algorithm that we term de-
layed bandit gradient descent (DBGD) based on a deter-
ministic gradient estimator using M = K + 1-point loss
feedback. DBGD enjoys regret of O

(√
K(T +D)

)
for

BCO problems even when the delays are unknown. In prac-
tice, (K + 1)-point feedback can be obtained i) when it is
possible to evaluate the loss function easily; and ii) when
the slot duration is long enough, meaning that the algorithm
has sufficient time to query multiple points from the oracle.

The intuition behind our deterministic approximation orig-
inates from the gradient definition (Agarwal et al., 2010).
Consider for example x ∈ R2, and the gradient ∇f(x) =
[∇1,∇2]>, where

∇1 = lim
δ→0

f(x+δe1)−f(x)

δ
;∇2 = lim

δ→0

f(x+δe2)−f(x)

δ
.

Similarly, for a K-dimensional x, if (K + 1)-point feed-
back is available, the gradient can be approximated as

gt =
1

δ

K∑
k=1

(
ft(xt + δek)− ft(xt)

)
ek (10)

slot slot 

Figure 3: An example of DBGD with Lt including the losses
incurred in slot s1, s2, and s3 and Lt+1 = ∅.

where ek := [0, . . . , 1, . . . , 0]> denotes the canonical vec-
tor with k-th entry equal to 1. Intuitively, a smaller δ im-
proves the approximation accuracy. When ft(·) is further
assumed to be linear, gt in (10) is unbiased. In this case,
the gradient of ft(xt) can be recovered exactly, and thus
the setup boils down to a delayed one with full informa-
tion. However, if ft(·) is generally convex, gt in (10) is
biased.

Leveraging the gradient in (10), we are ready to intro-
duce our DBGD algorithm. Per slot t, the learner plays
xt and also queries ft(xt + δek), for k = 1, . . . ,K.
However, to ensure that ft(xt + δek) is feasible, the
xt should be confined to the set Xδ = {x : x

1−δ ∈
X}. Note that if δ ∈ [0, 1), then Xδ is still convex.
Let n = 1, 2, . . . , |Lt| index the inner loop update at
slot t. At the end of slot t, the learner receives obser-
vations Lt =

{
{fsn|t(xsn|t), fsn|t(xsn|t + δek), k =

1, . . . ,K},∀sn = t − dsn
}

. Per received feedback value,
the learner approximates the gradient via (10); thus, for
each {fsn|t(xsn|t), fsn|t(xsn|t+δek), k = 1, . . . ,K}, we
have

gsn|t =
1

δ

K∑
k=1

(
fsn|t(xsn|t+δek)−fsn|t(xsn|t)

)
ek. (11)

With gsn|t and x0
t := xt, the learner will update

∣∣Lt∣∣ times
to obtain xt+1 as

xnt = ΠXδ
[
xn−1
t − ηgsn|t

]
, n = 1, . . . , |Lt| (12a)

xt+1 = x
|Lt|
t . (12b)

If no feedback is received at slot t, the learner simply sets
xt+1 = xt. The DBGD is summarized in Algorithm 2.

5 UNIFYING REGRET ANALYSIS

In this section, we show that both DEXP3 and DBGD can
guarantee an Õ

(√
K(T +D)

)
regret. Our analysis broad-

ens that in Joulani et al. (2016), which was originally de-
veloped for delayed online learning with full-information
feedback.

5.1 Mapping from Real to Virtual Slots

To analyze the recursion involving consecutive variables
(pt and pt+1 in DEXP3 or xt and xt+1 in DBGD) is chal-
lenging, since different from standard settings, the number
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Figure 4: An example of mapping from real slots (solid line) to
virtual slots (dotted line). At the end of slot t, the feedback is
Lt = {ls1|t(as1|t), ls2|t(as2|t)}. “v.s.” stands for virtual slot.

of feedback rounds varies from slot to slot. We will bypass
this variable feedback using the notion of a “virtual slot.”

Over the real time horizon, there are in total T virtual slots,
where the τ th virtual slot is associated with the τ th loss
value fed back. Recall that the feedback received at the end
of slot t is Lt. With the overall feedback received until the
end of slot t−1 denoted by Lt−1 :=

∑t−1
s=1 |Ls|, the virtual

slot τ corresponding to the first feedback value received at
slot t is τ = Lt−1 + 1. In what follows, we will use MAB
as an example to elaborate on this mapping, but the BCO
setting can be argued likewise.

When multiple rounds of feedback are received over a real
slot t, DEXP3 updates |Lt| times pt to obtain pt+1; see (6)
- (8). Using the notion of virtual slots, these |Lt| updates
are performed over |Lt| consecutive virtual slots. Taking
Fig. 4 as an example, when p1

t is obtained by using an esti-
mated loss l̂s1|t [cf. (5)] and (6) - (8), this update is mapped
to a virtual slot τ = Lt−1 + 1, where l̃τ := l̂s1|t is adopted
to obtain p̃τ+1 := p1

t . Similarly, when p2
t is obtained using

l̂s2|t, the virtual slot yields p̃τ+2 := p2
t via l̃τ+1 := l̂s2|t.

That is to say, at real slot t, for n = 1, . . . , |Lt|, each
update from pn−1

t to pnt using the estimated loss l̂sn|t is
mapped to an “update” at the virtual slot τ + n− 1, where
l̃τ+n−1 := l̂sn|t is employed to obtain p̃τ+n := pnt from
p̃τ+n−1 = pn−1

t . According to this real-to-virtual slot
mapping, we have p̃τ+|Lt| = pt+1; see also Fig. 4 for two
examples. As we will show later, it is convenient to analyze
the recursion between two consecutive p̃τ and p̃τ+1, which
is instrumental for our ensuing regret analysis.

With regard to DBGD, since multiple feedback rounds are
possible per real slot t, we again map the |Lt| updates at
a real slot [cf. (12)] to |Lt| virtual slots. The mapping is
exactly the same as that in DEXP3, that is, per virtual slot
τ , vector g̃τ is used to obtain x̃τ+1.

From this real-to-virtual mapping vantage point, DEXP3
and DBGD can be viewed as (inexact) EXP3 and BGD it-
erations running on the virtual time horizon with only one
feedback value per virtual slot. That is to say, instead of an-
alyzing regret on the real time horizon, which can involve

multiple feedback rounds, we can alternatively turn to the
virtual slot, where there is only one “update” per slot.

5.2 Regret Analysis of DEXP3

Here we analyze the regret for DEXP3. The analysis builds
on the following assumptions.

Assumption 1. The losses satisfy maxt,k lt(k) ≤ 1; and

Assumption 2. The delay dt is bounded, i.e., maxt dt ≤ d̄.

Assumption 1 requires the loss function to be upper
bounded, which is common in MAB; see also Hazan
(2016); Auer et al. (2002); Bubeck et al. (2012). Assump-
tion 2 asks for the delay to be bounded that also appears
in previous analyses for the delayed online learning setup
(Joulani et al., 2013; Cesa-Bianchi et al., 2018, 2016). Let
us first consider the changes on p̃τ (k) after one “update” in
the virtual slot.

Lemma 1. If the parameters are properly selected such
that 1− δ2 − ηδ1 ≥ 0, the following inequality holds

p̃τ−1(k)

p̃τ (k)
≤ 1

1− δ2 − ηδ1
, ∀k, τ. (13)

Proof. See Sec. B.1 of the supplementary document.

Lemma 2. If the parameters are properly selected such
that 1− ηδ1 ≥ 0, the following inequality holds

p̃τ (k)

p̃τ−1(k)
≤ max

{
1 + δ2,

1

1− ηδ1

}
, ∀k, τ. (14)

Proof. See Sec. B.2 of the supplementary document.

Lemmas 1 and 2 assert that both p̃τ−1(k)/p̃τ (k) and
p̃τ (k)/p̃τ−1(k) are bounded deterministically, that is, re-
gardless of the arm selection and observed loss. These
bounds are critical for deriving the regret.

To bound the regret, the final cornerstone is the “regret” in
virtual slots, specified in the following lemma.

Lemma 3. For a given sequence of {l̃τ}Tτ=1, the following
relation holds

T∑
τ=1

(
p̃τ − p

)>
min

{
l̃τ , δ1 · 1

}
≤ T ln(1 + δ2) + lnK

η
+
η

2

T∑
τ=1

K∑
k=1

p̃τ (k)
[
l̃τ (k)

]2
(15)

where 1 is a K × 1 vector of all ones, and p ∈ ∆K .

Proof. See Sec. B.3 of the supplementary document.
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Lemma 3 can be viewed as the performance guarantee of
DEXP3 without delay (since if there is no delay, what hap-
pens in virtual slots is exactly the same as what happens in
real slots). Using Lemma 3, the DEXP3 regret follows.

Theorem 1. Supposing Assumptions 1 and 2 hold, defining
the overall delay D :=

∑T
t=1 dt, and choosing δ2 = 1

T+D ,

η = O
(√

1+lnK
K(T+D)

)
, and δ1 = 1

2ηd̄
− δ2

η , DEXP3 guaran-

tees that the RegMAB
T in (1) satisfies

RegMAB
T = O

(√
(T +D)K(1+lnK)

)
. (16)

Proof. See Sec. B.4 of the supplementary document.

Theorem 1 recovers the regret bound for delayed non-
stochastic MAB with fixed (yet known) delay (Neu et al.,
2010; Joulani et al., 2013).

5.3 Regret Analysis of DBGD

Our analysis builds on the following assumptions.

Assumption 3. For any t, the loss function ft is convex.

Assumption 4. For any t, ft is L-Lipschitz and β-smooth.

Assumption 5. The feasible set contains εB, where B is
the unit ball, and ε > 0 is a predefined parameter. The
diameter of X is R; that is, maxx,y∈X ‖x− y‖ = R.

Assumptions 3 - 5 are common in online learning (Hazan,
2016). Assumption 4 requires that ft(·) is L-Lipschitz and
β-smooth, conditions needed to bound the bias of the es-
timator gs|t (Agarwal et al., 2010). Assumption 5 is also
typical in BCO (Hazan, 2016; Agarwal et al., 2010; Flax-
man et al., 2005; Duchi et al., 2015). In addition, the coun-
terpart of Assumption 1 in BCO can readily follow from
Assumptions 4 and 5.

To start, the quality of the gradient estimator gs|t is first
evaluated. As stated, when ft(·) is not linear, the estimator
gs|t is biased, but its bias is bounded.

Lemma 4. If Assumption 4 holds, then for every fs|t(xs|t),
the corresponding estimator (10) satisfies

‖gs|t‖≤
√
KL, and ‖gs|t−∇fs|t(xs|t)‖≤

βδ

2

√
K. (17)

Proof. See Sec. C.1 of the supplementary document.

Lemma 4 suggests that with δ small enough, the bias of gs|t
will not be too large. Then, the following lemma specifies
the relation among g̃τ , x̃τ , and x̃τ+1, in a virtual time slot.

Lemma 5. Under Assumptions 4 and 5, the update in a
virtual slot τ guarantees that for any x ∈ Xδ , we have

g̃>τ
(
x̃τ − x

)
≤ η

2
KL2 +

∥∥x̃τ − x
∥∥2 −

∥∥x̃τ+1 − x
∥∥2

2η
.

(18)

Proof. See Sec. C.2 of the supplementary document.

Lemma 5 is the counterpart of Theorem 3.1 in Hazan
(2016) for the non-delayed and full-information setting,
which demonstrates that DBGD is BGD running on the vir-
tual slots. Finally, leveraging these results, the regret bound
follows next.

Theorem 2. Suppose Assumptions 3 - 5 hold. Choosing
δ = O

(
1

T+D

)
, and η = O

(
1√

K(T+D)

)
, the DBGD guar-

antees that the regret is bounded, that is

RegBCO
T =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) = O

(√
K(T +D)

)
(19)

where D :=
∑T
t=1 dt is the overall delay.

Proof. See Sec. C.3 of the supplementary document.

For the slightly different regret definition in Agarwal et al.
(2010), DBGD achieves the same regret bound.

Corollary 1. Upon defining xt,0 := xt and xt,k := xt +
δek, choosing δ = O

(
1

T+D

)
, and η = O

(
1√

K(T+D)

)
, the

DBGD also guarantees that

1

K+1

T∑
t=1

K∑
k=0

ft(xt,k)−
T∑
t=1

ft(x
∗)= O

(√
K(T+D)

)
.

Proof. See Sec. C.4 of the supplementary document.

The O
(√

K(T +D)
)

regret in Theorem 2 and Corollary
1 recovers the bound of delayed online learning in the full
information setup (Quanrud and Khashabi, 2015; Langford
et al., 2009; Joulani et al., 2016) in terms of the delay de-
pendence, while suffering from the dimension of the deci-
sion variables due to the bandit feedback.

6 NUMERICAL TESTS

In this section, experiments are conducted to corroborate
the validity of the novel DEXP3 and DBGD schemes.

In synthetic data tests, we consider T = 2, 000 slots. De-
lays are periodically generated with period 1, 2, 1, 0, 3, 0, 2,
with the delay of the last few slots slightly modified to en-
sure that all feedback arrives at the end of T = 2, 000,
resulting in an overall delay D = 2, 569.

DEXP3 Synthetic Tests. Consider K = 5 arms, and
losses generated with a sudden change. Specifically, for
t ∈ [1, 500], we have lt(k) = 0.4k| cos t| per arm k, while
for the rest of the slots, lt(k) = 0.2k| sin(2t)|. To bench-
mark the DEXP3, we use: i) the standard EXP3 for non-
delayed MAB (Auer et al., 2002); ii) the BOLD for de-
layed MAB with known delay (Joulani et al., 2013); and,
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Figure 5: Tests of DEXP3 and DBGD: (a) Regret of DEXP3 using synthetic data; (b) Regret of DEXP3 using real data; (c) Regret of
DBGD using synthetic data; (d) Regret of DBGD using real data.

iii) CLW to deal with the composite and anonymous feed-
back (Cesa-Bianchi et al., 2018). The instantaneous accu-
mulated regret (normalized by T ) versus time slots is plot-
ted in Fig. 5 (a). The gap between BOLD and EXP3, illus-
trates that even with a known delay, the learner suffers from
an extra regret. The small gap between DEXP3 and BOLD
demonstrates that the biased estimator [cf. (5)] gives rise to
larger regret, which is the price paid for the unknown de-
lay. Compared with CLW, DEXP3 performs significantly
better because it can leverage more information relative to
the anonymous feedback used by CLW.

DEXP3 Real Tests. We also tested DEXP3 using the
Jester Online Joke Recommender System dataset (Gold-
berg et al., 2001), where T = 24, 983 users rate K =
100 different jokes from 0 (not funny) to 1 (very funny).
The goal is to recommend one joke per slot t to amuse
the users. The system performance is evaluated by lt =
(1−the score of this joke). In this test, we assign a random
score in the range [0, 1] for missing entries of this dataset.
The delay is generated periodically as in the synthetic test,
resulting in D = 32, 119. Similar to the synthetic test,
it can be observed in Fig. 5 (b) that DEXP3 incurs slightly
larger regret than BOLD due to the unknown delay, but out-
performs the recently developed CLW.

DBGD Synthetic Tests. Consider that K = 5, and the
feasible set X ∈ R5 is the unit ball X :=

{
‖x‖ ≤ 1

}
. The

loss function at slot t is generated as ft(x) = at‖x‖2 +
b>t x, where at = cos(3t) + 3, while bt(1) = 2 sin(2t) + 1,
bt(2) = cos(2t)−2, bt(3) = sin(2t), bt(4) = 2 sin(2t)−2,
and bt(5) = 2. To assess the influence of the bandit feed-
back and the unknown delay, we consider the following
benchmarks: i) the standard OGD (Zinkevich, 2003) in the
full-information and non-delayed setting; ii) the (K+1)-
point feedback BCO (Agarwal et al., 2010) for non-delayed
BCO; iii) the SOLID for delayed full-information OCO
(Joulani et al., 2016); and iv) the CLW-BCO with the
inner algorithm relying on (K + 1)-point feedback BCO
(Cesa-Bianchi et al., 2018). Fig. 5 (c) depicts the in-
stantaneous accumulated regret (normalized by T ) versus
time slots. This test shows that DBGD performs almost as
well as SOLID, and the gap between DBGD/SOLID and
OGD/(K + 1)-BCO is due to the delay. The regret of

DBGD is again considrably lower than that of CLW-BCO,
demonstrating the efficiency of DBGD.

DBGD Real Tests. To further illustrate the merits of
DBGD, we conduct tests dealing with online regression
applied to a yacht hydrodynamics dataset (Dheeru and
Karra Taniskidou, 2017), which contains T = 308 data
with K = 6 features. Per slot t, the regressor xt ∈ R6

predicts based on the feature wt, before the measurement
yt is revealed. The loss function for slot t is ft(xt) =
1
2 (yt−x>t wt)

2. The delay is generated periodically as be-
fore, and cumulatively it is D = 394. The instantaneous
accumulated regret (normalized by T ) versus time slots is
plotted in Fig. 5 (d). Again, DBGD outperforms CLW-
BCO considerably. Comparing with the regret performance
of DBGD and SOLID, we can safely deduce the influence
delay has on bandit feedback.

7 CONCLUSIONS

Bandit online learning with unknown delays, including
non-stochastic MAB and BCO, was studied in this pa-
per. Different from settings where the experienced de-
lay is known in bandit online learning, the unknown de-
lay prevents a simple gradient estimate that is needed by
the iterative algorithm. To address this issue, a biased
loss estimator as well as a deterministic gradient estima-
tor were developed for non-stochastic MAB and BCO, re-
spectively. Leveraging the proposed estimators, the so-
termed DEXP3 and DBGD algorithms were developed. An
Õ
(√

K(T +D)
)

regret was analytically established for
both DEXP3 and DBGD. Numerical tests on synthetic and
real datasets confirmed the performance gain of DEXP3
and DBGD relative to state-of-the-art approaches.
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