
Chunyuan Li Ke Bai Jianqiao Li Guoyin Wang Changyou Chen Lawrence Carin

Supplementary Material : Adversarial Learning of a Sampler

Based on an Unnormalized Distribution

A Proof of the Entropy Bound in

Lemma 1

Consider random variables (x, ✏) under the joint dis-
tribution q

✓

(x, ✏) = q(✏)q
✓

(x|✏), where q
✏

(x|✏) = �(x�
h

✓

(✏)). The mutual information between x and ✏ sat-
isfies I(x; ✏) = H(x)�H(x|✏) = H(✏)�H(✏|x). Since
q
✓

(x|✏) is a deterministic function of ✏, H(x|✏) = 0.
We therefore have H(x) = H(✏) � H(✏|x), where
H(✏) = �

R
q(✏) log q(✏)d✏ is a constant wrt ✓. For

general distribution t
⇠

(✏|x),

H(✏|x) = �E
p✓(x,✏) log p

✓

(✏|x) (12)

=� E
q✓(x,✏) log t

⇠

(✏|x)� E
q✓(x)KL(q

✓

(✏|x)kt
⇠

(✏|x))

� E
q✓(x,✏) log t

⇠

(✏|x) (13)

We consequently have

H(x) = �E
q✏(x) log q

✓

(x)dx

= H(✏)�H(✏|x) � H(✏) + E
p✓(x,✏) log t

⇠

(✏|x).
(14)

Therefore, entropy is lower bounded by the log like-
lihood or negative cycle-consistency loss; minimizing
the cycle-consistency loss maximizes the entropy or
mutual information. ⇤

B Experiments

B.1 Sampling from 8-GMM

Two methods are presented for estimating the
likelihood ratio: (i) �-ALL for the discrimina-
tor in the standard GAN i.e., Eq (4); (ii) f -
ALL for a variational characterization of f -measures
in [Nguyen et al., 2010a].

In Figure 8, we plot the distribution of inception score
(ICP) values [Li et al., 2017a]. Similar conclusions as
in the case of the symmetric KL divergence metric the
can be drawn: (1) The likelihood ratio impelmenta-
tion improve the original GAN, and (2) the entropy
regularizer improve the all GAN variants. Note that
because ICP favors the samples closer to the mean of
each mode and SN-GAN generate samples that con-
centrate only around the mode’s centroid, SN-GAN
show slightly better ICP than its entroy-regularized
version. We argue that the entropy regualizer help

gernerate diverse samples, the lower value of ICP is
just due to the limitation of the metric.

The learning curves of the inception score and sym-
metric KL divergence values are plot over iterations
in Figure 9 (a) and (b), respectively. The family of
GAN variants with entropy term dominate the per-
formance, compared with those without the entropy
term. We conclude that the entropy regularizer can
significantly improve the convergence speed and the
final performance.

Architectures and Hyper-parameters For the 8-
GMM and MNIST datasets, the network architectures
are specified in Table 2, and hyper-parameters are de-
tailed in Table 3. The inference network is used to
construct the cycle-consistency loss to bound the en-
tropy.

Table 2: The convention for the architecture “X–H–
H–Y”: X is the input size, Y is the output size, and H
is the hidden size. “ReLU” is used for all hidden layer,
and the activation of the output layer is linear, except
the generator on MNIST is the sigmoid

8-GMM MNIST
Networks Size Size
Generator 2–128–128–2 32–256–256–784
Discriminator 2–128–128–1 784–256–256–1
Auxiliary 2–128–128–2 784–256–256–32

Table 3: The hyper-parameters of experiments. Adam
optimizer is used.

Hyper-parameters 8GMM MNIST
Learning rate 2⇥10�4 1⇥10�3

Batch Size 1024 64
#Updates 50k Iterations 60 Epoches

We further study three real-world datasets
of increasing diversity and size: MNIST,
CIFAR10 [Krizhevsky et al., 2012] and
CelebA [Liu et al., 2015]. For each dataset, we
start with a standard GAN model: two-layer fully
connected (FC) networks on MNIST, as well as DC-
GAN [Radford et al., 2016] on CIFAR and CelebA.
We then add the entropy regularizer. On MNIST, we

Adversarial Learning of a Sampler Based on an Unnormalized Distribution

Figure 8: Comparison of inception score on di↵erent GAN variants. The GAN variants and their corresponding
entropy-regularized variants are visualized in the same color, with the latter shaded slightly. The balck dots
indicate the means of the distributions.

(a) Inception score over iterations. (b) Symmetric KL over iterations.

Figure 9: Learning curves of di↵erent GAN variants. The standard GAN variants are visualized as dashed lines,
while their corresponding entropy-regularized variants are visualized as the solid lines in the same color.

repeat the experiments 5 times, and the mean ICP
is shown. On CIFAR and CelebA, the performance
is also quantified via the recently proposed Fréchet
Inception Distance (FID) [Heusel et al., 2017], which
approximates the Wasserstein-2 distance of generated
samples and true samples. The best ICP and FID for
each algorithm are reported in Table 4. The entropy
variants consistently show better performance than
the original counterparts.

Table 4: Performance of entropy regularization. Results
marked with [?] and [⇧] are from [Nguyen et al., 2017] and
[Heusel et al., 2017], respectively.

ICP " FID #
Dataset Standard Ecc Standard Ecc

MNIST 7.24 8.08 - -
CIFAR 6.40? 6.86 36.90⇧ 36.70
CelebA - - 12.50⇧ 11.88

B.2 Constrained Domains
The two functions are: (1) u1(x) = max((1 � (x/2 +
0.5))(x/2+0.5)3, 0), and (2) u2(x) = max((1� (x/2+
0.5))0.5(x/2+0.5)5+(1�(x/2+0.5))5(x/2+0.5)0.5, 0).
The network architectures used for constrained do-
mains are reported in Table 5. The batch size is 512,
learning rate is 1⇥ 10�4. The total training iterations
T = 20k, and we start to decay � after T0 = 10k
iterations.

Table 5: The convention for the architecture “X–H–
H–Y”: X is the input size, Y is the output size, and H
is the hidden size. “ReLU” is used for all hidden layer,
and the activation of the output layer is “Tanh”.

Networks Size
Generator 2–128–128–1
Discriminator 2–128–128–1
Auxiliary 1–128–128–2

Chunyuan Li Ke Bai Jianqiao Li Guoyin Wang Changyou Chen Lawrence Carin

Algorithm 1 Adversarial Soft Q-learning

Require: Create replay memory D = ;; Initialize network parameters ✓,�, ; Assign target parameters: ✓ ✓,
 .

1: for each epoch do
2: for each t do

3: % Collect expereince

4: Sample an action for s
t

using g✓: a
t

 g✓(⇠; s
t

), where ⇠ ⇠ N (0, I).
5: Sample next state and reward from the environment: s

t+1 ⇠ Ps and r
t

⇠ P
r

6: Save the new experience in the replay memory: D D [{s
t

,a
t

, r
t

, s
t+1}

7: % Sample a minibatch from the replay memory

8: {(s(i)
t

,a(i)
t

, r
(i)
t

, s(i)
t+1)}n

i=0 ⇠ D.

9: % Update Q value network

10: Sample {a(i,j)}M

j=0 ⇠ qa0 for each s(i)
t+1.

11: Compute the soft Q-values u(a, s) as the target unnormalized density form.
12: Compute gradient of Q-network and update

13: % Update policy network via RAS

14: Sample actions for each s(i)
t

from the stochastic policy via

a(i,j)
t

= f�(⇠(i,j), s(i)
t

), where {⇠(i,j)}M

j=0 ⇠ N (0, I)

15: Sample actions for each s(i)
t

from a Beta (or Gaussian) reference policy {a(i,j)
r

}M

j=0 ⇠ p
r

(a|s(i)
t

)
16: Compute gradient of discriminator in (8) and update �
17: Compute gradient of policy network in (9), and update ✓
18: end for
19: if epoch mod update interval = 0 then
20: Update target parameters: ✓ ✓,
21: end if
22: end for

B.3 Soft Q-learning

We show the detailed setting of environments in Soft
Q-Learning in Table 6. The network architectures are
specified in Table 7, and hyper-parameters are detailed
in Table 8. We only add the entropy regularization at
the beginning to stabilize training, and then quickly
decay � to 0. The total training epoch is 200, and we
start to decay � after 10 epochs, and set it 0 after 50
epochs. This is because we observed that the entropy
regularization did not help in the end, and removing
it could accelerate training.

Table 6: Hyper-parameters in SQL.

Environment Action Reward Replay
Spcae Scale Pool Size

Swimmer (rllab) 2 100 106

Hopper-v1 3 1 106

HalfCheetah-v1 6 1 107

Walker2d-v1 6 3 106

Ant-v1 8 10 106

Humanoid (rllab) 21 100 106

Table 7: The convention for the architecture “X–H–
H–Y”: X is the input size, Y is the output size, and
H is the hidden size. “ReLU” is used for all hidden
layer, and the activation of the output layer is “Tanh”
for the policy network and linear for the others. S
represents the state, A represents the action. N is the
gaussian noise. The dimension of the noise is the same
as the action space. The parameters settings of SVGD
version and ours version are the same.

Networks Size
Policy-Network |S +N|–128–128–|A|
Q-Network |S +A|–128–128–1
Inverse Mapping |A|–128–128–|S +N|
Discriminator |A+ S|–128–128–128–1

Table 8: The hyper-parameters of experiments.

Hyper-parameters Values
Learning rate of Policy 3⇥10�4

Learning rate of Q-network 3⇥10�4

Batch Size 128
#Particle in SVGD 32

