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A Proofs

Proof of Lemma 2.1. Recall the property of the activation function o(z) = ¢/(2)z. Let us prove for any 0 < ¢t <
s < L, and any [ € [ks41]
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We prove this statement via induction on the non-negative gap s — t. Starting with s — ¢t = 0, we have

aOltJrl aO;Jrl aNltJrl

Wi~ anet awy — N E)Oi@),

80”1 ‘

8V:/-t. =0, forj#l,

ij
and, therefore,
(30;-*—1 t a1 + t t+1 t+1 t+1
/ ’
X Wh = 2 N @)0l@) W = o' (N @)NfH (2) = O] @), (A2)
i€[ke],je[ke+1] v i€[ke]

This solves the base case when s — ¢ = 0.

Let us assume for general s — ¢t < h the induction hypothesis (h = 0), and let us prove it for s —¢ = h + 1. Due
to chain-rule in the back-propagation updates
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This completes the induction argument. In other words, we have proved for any t,s that ¢ < s, and [ is any
hidden unit in layer s
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Remark that in the case when there are hard-coded zero weights, the proof still goes through exactly. The reason
is, for the base case s = t,
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and for the induction step,
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Proof of Corollary 2.1. Observe that 00(f,Y)/0f = —y if yf < 1, and 94(f,Y)/0f = 0 if yf = 1. When the
output layer has only one unit, we find

ol(fo(X),Y)
2fo(X)
For a stationary point 0, we have ng(@) = 0, which implies the LHS of the above equation is 0. Now recall

that the second condition that 6 separates the data implies implies —Y fp(X) < 0 for any point in the data set.
In this case, the RHS equals zero if and only if Y fp(X) > 1. O
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Proof of Corollary 2.2. The proof follows from applying Lemma 2.1
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Proof of Theorem 3.2 (spectral norm). The proof follows from a peeling argument from the right hand side.
Recall that Of € R1F WL e RFX1 and |OFWE| < |[WT|,|OF||2 so one has
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repeat the process to bound |O* ™|,
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Proof of Theorem 3.2 (group norm). The proof still follows a peeling argument from the right. We have
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In the proof of the first inequality we used Holder’s inequality

(W, 0) < JJwllp vl

where 1% + p* = 1. Let’s prove for v € R™, M € R"*™ we have
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Denote each column of M as M.;, for 1 < j < m,
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Proof of Theorem 3.2 (path norm). The proof is due to Holder’s inequality. For any = € RP
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Proof of Theorem 3.2 (matriz-induced norm). The proof follows from the recursive use of the inequality,
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where third to last line is because DEF1(X) e RY, [DEHL(X)| = | DEYL(X) | 4—p-
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Proof of Theorem 3.2 (chain of induced norm). The proof follows from a different strategy of peeling the terms
from the right hand side, as follows,
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Proof of Lemma 4.1.
d
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The last claim can be proved through solving the simple ODE. O

Proof of Lemma 4.2. Let us first construct 8’ € O, that realizes Afp, + (1 — X) fp,. The idea is very simple:
we put #; and 0 networks side-by-side, then construct an additional output layer with weights A\, 1 — X\ on the
output of fy, and fy,, and the final output layer is passed through o(z) = z. One can easily see that our key
Lemma 2.1 still holds for this network: the interaction weights between fp, and fy, are always hard-coded as 0.
Therefore we have constructed a 6’ € ©; that realizes Afy, + (1 — ) fo,.

Now recall that

1,
el = E£)"
— (E(\M o, + (1= N fa,)?)?
<AER)Pra-NER) <1
because E[fy, fo,] < (E fgl)l/2 (E f32)1/2. -

Proof of Theorem 4.1. Due to Eqn. (3.2), one has
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because in the linear case v(6, X) = WOD' (z)W'D?(z) - -- DL (z)WEDL+ () = [[r, W' =: v() € RP. There-



Fisher-Rao Metric, Geometry, and Complexity of Neural Networks

fore
1 XN
Ry (Be(7) =E sup — > eifo(X,)
eeerr(’y) i=1
1 X
=E sup —ZquTv(@)
60€Bfr(’y) i=1
=E sup — € X;,v(0
€9er,(v)N Z >
N
<9Ex|dieX
i=1 [IE(XXT)]’1
N 2
1 1
<r= | LE|S ax,
VAN ST
1 13 .
=y— — Y X XT [E(XXT] ).
T (v XA OO >
Therefore

N
ERy (Bu(v)) < 7\/% E<]b ;XiXﬁ [E(XXT)]1> = 7\/5.

O

Proof of Proposition 4.1. If G < F then one has the lower bound Ry (G) < Ry (F) on the empirical Rademacher
complexity of F. One can also obtain an upper bound by examining how the sub-space of functions G approxi-
mates F. For each f € F consider the closest point g € G to f,

gy :=argmin | f — gl .
9€S o

Then the empirical Rademacher complexity Ry (F) is upper-bounded in terms of Ry (G) by
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Therefore, taking expectation values over the data gives,
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Setting F = F5 (1) without loss of generality, we obtain the required result by appropriate choice of G € Fy(1).
Setting G = F,(r) with r = 1/[1/[43\\XH2]1/2 gives (Remark 4.1, Theorem 1.1 in [3]),
Polylog

ERN(Fu(1)) < sup inf |f— 9|+
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Setting G = F, ,(r) with r = 1/(kl/P*=1/4)+ )L max, | X,| + gives (Remark 4.2, Theorem 1 in [15])
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Setting G = F 1(r) with r = 1/max; | X; |« gives (Remark 4.3, Corollary in [15])
2L Polylog
ERN(Fr(l)) < sup inf |f— +— .
SE) S sl gl 2

In all cases data-dependent pre-factors exactly cancel out and moreover the first term is in function space, not
in parameter space.

O

A.1 Invariance of natural gradient

Consider the continuous-time analog of natural gradient flow,
df; = —X(0;) "'V L(6,)dt, (A.9)

where 6 € RP. Consider a differentiable transformation from one parametrization to another 6 — § € R? denoted
by £() : R? — R?. Denote the Jacobian J¢(6) = W € R7*P. Define the loss function L : £ — R that
satisfies !

L(6) = L(£(9)) = Lo £(9),

and denote I(¢) as the Fisher Information on ¢ associated with L. Consider also the natural gradient flow on
the £ parametrization,

g = —1(&) ' VeL(&)dt (A.10)

Intuitively, one can show that the natural gradient flow is “invariant” to the specific parametrization of the
problem.

Lemma A.1 (Parametrization invariance). Denote § € R?, and the differentiable transformation from one
parametrization to another 0 — & € R? as £(0) : R? — R2. Assume I(0), I(§) are invertible, and consider two
natural gradient flows {0;,t > 0} and {&,t > 0} defined in Eqn. (A.9) and (A.10) on 0 and & respectively.

(1) Re-parametrization: if ¢ = p, and assume J¢(0) is invertible, then natural gradient flow on the two parame-
terizations satisfies,

£(0:) =&, Vi,

if the initial locations 0y, &y are equivalent in the sense £(0p) = &o.

(2) Over-parametrization: If ¢ > p and & = £(0;) at some fized time t, then the infinitesimal change satisfies
EOrrar) —&(0y) = My(Esrar — &), My has eigenvalues either 0 or 1

where My = 1(&)~Y2(I, — ULUD)I(&)Y?, and U, denotes the null space of 1(€)'/2J¢(6).

Proof of Lemma A.1. From basic calculus, one has
VoL(6) = J¢(0)"VeL(€)
1(0) = J¢(6)"1(€)I¢(6)
Therefore, plugging in the above expression into the natural gradient flow in
df; = —X(0;) " *VoL(0,)dt
—[Je(6:)TI(E(6:))Te ()] Ie(80)T Ve L(£(61)) dt

In the re-parametrization case, J¢(6) is invertible, and assuming &, = £(6;),

do, = *[Jg(Gt)Ti( (00))Tc(0)] T(0)T Ve L(£(0,))dt
= —Je(0:) ' I(E(0,)) " Ve L(E(6y))dt
Je(0,)d6, = —1(£(0,)) " Ve L(E(6r) )t
dé(6,) = —1(&(6,)) 7 Ve L(§(0y))dt = —1(&) ' Ve L(&)dt.
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What we have shown is that under & = £(6;), £(0s+at) = &t4at. Therefore, if &g = £(0y), we have that & = £(0;).

In the over-parametrization case, J¢(0) € R7*? is a non-square matrix. For simplicity of derivation, abbreviate
B :=J(0) € R”*P. We have

dOy = Orvar — 0 = —1(0,) " Vo L(6;)dt
= —[B"1(¢)B] ' B Ve L(£(0:))dt
B0y — 0:) = —B [BTi(g)B]_1 BTL(£(6,))dt.

Via the Sherman-Morrison-Woodbury formula
1- - ! - S
[Iq - 61(5)1/213BT1(5)1/2] = I, - 1(§)"*B(el, + BTL(¢)B) "' BT1(¢)"/?

Denoting I(€)/2BBT1(¢)Y/? = UAUT, we have that rank(A) < p < ¢. Therefore, the LHS as
-1

-1
[Iq - 11(5)1/2BBT1(§)1/2] =U [Iq - 1A] U’

-1
1- -
lim [Iq + E1(5)1/23}37’1(5)1/2] -u,ut

12

where U, corresponding to the space associated with zero eigenvalue of i({)l/ 2BBTi(g) Therefore taking

€ — 0, we have

-1
i | 1, + LHO BT | = iy 1, - K€ B, + BTHOR) BT
1)U UTHE 2 = 1)~ — B(BTL§B) ' BT
where only the last step uses the fact i(f) is invertible. Therefore
f(9t+dt) - f(et) = B<9t+dt — 0t)

— —B[B"L,(&)B] " BTV.L(¢)dt

= —nl(&)" 2 (1y — ULUDI(E) Ve L()dt

— (&) (1 — ULUDI(E) 2 {1(€) ' Ve L(€)dt}

= My (§evar — &t)-

The above claim asserts that in the over-parametrized setting, running natural gradient in the over-parametrized
space is nearly “invariant” in the following sense: if £(6;) = &, then

EOrrar) — E(0r) = My (Eprar — &)
M, =X(&) " 2(1, — ULUD)I(&)Y?

and we know M, has eigenvalue either 1 or 0. In the case when p = ¢ and J¢(#) has full rank, it holds that
M; = I is the identity matrix, reducing the problem to the re-parametrized case.

O

B Experimental details

In the realistic K-class classification context there is no activation function on the K-dimensional output layer
of the network (or4+1(z) = z) and we focus on ReLU activation o(x) = max{0,x} for the intermediate layers.
The loss function is taken to be the cross entropy £(y',y) = —(ey,log g(y')), where e, € RE denotes the one-hot-
encoded class label and g(z) is the softmax function defined by,

g(z)—( exp(z1) exp(zk) )T
. ) )

e TR
Dho1exp(zk) ko exp(zk
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It can be shown that the gradient of the loss function with respect to the output of the neural network is
Vi f,y) = —V<ey,logg(f)) = g(f) — ey, so plugging into the general expression for the Fisher-Rao norm we
obtain,

1017 = (L + 1)*E[{{g(fo(X)), fo(X)) = fo(X)y}?]. (B.1)

In practice, since we do not have access to the population density p(z) of the covariates, we estimate the Fisher-
Rao norm by sampling from a test set of size m, leading to our final formulas

m K
612 = (L+ %22 (Fo(w)olo(o(@a)), folw)) — folw)y] (B.2)
1015 emp = (L +1) %Z[<g(f9(xz))af0(mi)>_f@(mi)yi]Q : (B.3)

~.
Il
—
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B.1 Additional experiments and figures
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Figure 3: Dependence of different norms on depth L (k = 500) after optimzing with vanilla gradient descent
(red) and natural gradient descent (blue). The Fisher-Rao norms are normalized by L + 1.
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Figure 4: Dependence of capacity measures on label randomization after optimizing with natural gradient descent.
The colors show the effect of varying network width from &k = 200 (red) to k& = 1000 (blue) in increments of 100.
The natural gradient optimization clearly distinguishes the network architectures according to their Fisher-Rao
norm.
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Figure 5: Distribution of margins found by natural gradient (top) and vanilla gradient (bottom) before rescaling
(left) and after rescaling by spectral norm (center) and empirical Fisher-Rao norm (right).

Figure 6: The levelsets of Fisher-Rao norm (solid) and path-2 norm (dotted). The color denotes the value of the
norm.

Figure 7: Reproduction of conditioning experiment from [16] after 10* iterations of Adam (dashed) and K-FAC
(red).



